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Abstract

The use of artificial neural networks in the domain of
autonomous driving has produced promising results.
ALVINN has shown that a neural system can drive a vehi-
cle reliably and safely on many different types of roads,
ranging from paved paths to interstate highways. The next
step in the evolution of autonomous driving systems is to
intelligently handle road junctions. In this paper, we
present an addition to the basic ALVINN driving system
which makes autonomous detection of roads and traversal
of simple intersections possible. The addition is based on
geometrically modelling the world, accurately imaging
interesting parts of the scene using this model, and moni-
toring ALVINN's response to the created image.

1. Introduction

Much progress has been made toward solving the
autonomous lane-keeping problem. Systems have been
demonstrated which can drive robot vehicles at high
speeds for long distances. Some systems use road models
to determine where lane markings are expected[2][6][7],
while others are based on artificial neural networks which
learn the salient features required for driving on a particu-
lar road type[4][S][10].

The current challenge for vision-based navigation
researchers is to build on the performance of the already
developed lane-keeping systems, adding the ability to do
higher level driving tasks. These tasks include actions
such as lane changing, localization, and intersection detec-
tion and navigation. This papers examines the task of road
and intersection detection and navigation.

ALVINN (Autonomous Land Vehicle In A Neural
Network)[10] is the neural network based lane-keeping
system upon which the work presented in this paper is
based. Using simple color image preprocessing to create a
grayscale input image and a 3 layer neural network archi-
tecture, ALVINN can learn in about 5 minutes, using
back-propagation, the correct mapping from input image
to output road location. This steering direction is used to
control our testbed vehicle, a converted U.S. Army
HMMWYV called the Navlab 2. On this vehicle, ALVINN
has driven at speeds up to 55 m.p.h. for 90 continuous
miles.

0-8186-7108-4/95 $4.00 © 1995 IEEE

344

The extended system, one which is capable of detect-
ing roads and intersection, is called ALVINN VC (VC for
Virtual Camera). ALVINN VC uses the robust road detec-
tion and confidence measurement capability of the core
ALVINN system along with an artificial imaging sensor to
reliably detect road segments which occur at locations
other than immediately in front of the vehicle (and the
camera.) -

The imaging sensor that ALVINN VC uses is called a
virtual camera and is described in detail in Section 2. Vir-
tual cameras are the fundamental tool upon which the
techniques presented in this paper are based. They provide
a mechanism for determining the appropriateness of vehi-
cle actions, but do not compromise the robust driving per-
formance of the core ALVINN system.

2. The virtual camera

A virtual camera is simply an imaging sensor which
can be placed at any location and orientation in the world
reference frame. It creates artificial images using actual
pixels imaged by a real camera that have been projected
onto some world model. By knowing the location of both
the actual and virtual camera, and by assuming a flat world
model, accurate image reconstructions, called virtual
images, can be created from the virtual camera location.
Virtual camera views have been used by ALVINN VC to
successfully navigate on all road types which the original
ALVINN system performed.

An interesting issue that is a general theme of this
paper is the ability of virtual cameras to merge neural sys-
tems with symbolic ones. Virtual cameras impose a geo-
metric model on the neural system. In our case, the model
is not a feature in an image, but rather a canonical image
viewpoint which ALVINN VC can interpret. To ALVINN
VC, the virtual camera is a sensing device. It is ALVINN
VC’s only link to the world in which it operates. ALVINN
VC doesn’t care where the virtual camera is located, only
that it is producing images which are similar to those on
which it was trained and can thus be used to locate the
road. This interpretation may seem to trivialize ALVINN
VC’s functionality, but in reality, finding the road is what
ALVINN VC is designed to do best. The virtual camera
insures that the system gets images which will let it do its
job to the best of its ability. The details of creating appro-



priate virtual camera locations and interpreting the result-
ing output are left to other, higher level modules. So in
essence, the virtual camera imposes a geometric model on
ALVINN VC without it knowing, or even caring, about it.
Used in conjunction with higher level modules, the model
allows ALVINN VC to exhibit goal directed, intelligent
behavior without compromising system performance.

3. Detection philosophy

There are three principles upon which road and inter-
section detection and navigation systems should be based.
They are:

1. Detection and navigation should be data (image)
driven.

2. Detection is signaled by the presence of features.
3. Road junctions should be traversed by actively track-
ing the road or intersection branch.

These principles and their relationship to ALVINN
VC, as well as other road and intersection detection sys-
tems, are examined in greater detail in [3].

ALVINN VC uses a priori knowledge that specifies
where and when appropriate virtual cameras should be
created. The cameras are created relative to the vehicle
and creation does not coincide with when the intersection
is actually located, but rather somewhere before it occurs.
Instead of “Now we are at the intersection, so look for its
branches,” the system deals with information like “Start
looking for a single lane road.” The virtual camera’s loca-
tion, and the network associated with each, is dependent
upon the type of road that is expected to be encountered.
When the road or intersection to be detected is present, the
virtual cameras image it in a way that is meaningful to the
system’s neural networks. By continually monitoring the
network’s confidence for each virtual camera, the system
can determine when the road or intersection is present.

ALVINN VC currently adheres to the first two princi-
ples of road junction detection and traversal mentioned
earlier. Also, methods are under development that will
allow ALVINN VC to actively track roads using a combi-
nation of active camera control and intelligently placed
virtual cameras.

4. Other systems

Several other groups have built systems
[11[8][10][11] to study the road and intersection detection
problem. Many of them have adopted a data directed
approach, but many also rely on the absence of features
rather than the presence of them to indicate when a road or
intersection is present. Few use active camera control. A
complete summary of these system can be found in [3].
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5. Experimental results

A series of experiments was conducted to assess the
usefulness of virtual cameras for autonomously detecting
roads and intersections. All of the experiments described
were performed on the Navlab 2. The experimental site
was a single lane paved path near the Carnegie Mellon
campus. The path was unlined with grass on either side
and was 3.1 meters wide.

The first experiment was very simple and designed to
assess the basic ability of virtual cameras to create images
which were usable by the system. For this, a single virtual
view was used to detect an upcoming road and to navigate
onto it. The second experiment was more challenging -
virtual cameras were used to not only keep the vehicle on
the road, but to also detect an upcoming ‘Y’ intersection.
After the intersection was detected, the system used higher
level information to choose the appropriate fork to follow.

5.1 Road detection experiment

This experiment was designed to test the system’s
robustness for detecting and navigating onto roads. In this
experiment, the system had information that the vehicle
was approaching a road perpendicularly. Its job was to
detect the road, drive the vehicle onto it, and then continue
operating in a normal autonomous driving mode. The
vehicle was not on another road as it approached the road
to be detected. This scenario could corresponds to ending
a cross country navigation mission and acquiring a road to
begin autonomous road following.

Initially, the vehicle was positioned approximately 35
meters off of the road which was to be detected, and
aligned perpendicularly to it. A virtual view was created
that was rotated 90 degrees from the direction of vehicle
travel. This view was placed 20 meters in front of the vehi-
cle. See Figure 1. The vehicle was instructed to move
along its current heading until the system detected the
road. At this point, the system instructed the vehicle to
turn appropriately based on the point specified by the neu-
ral network. Once the system had aligned the vehicle suffi-
ciently with the road, it was instructed to begin road
following.

5.2 Road detection

The ability to detect the upcoming road was the first
and most important requirement of the system. To accom-
plish this, every 0.3 second as the vehicle approached the
road (at a speed of about 5 m.p.h.), a virtual image was
created and passed to ALVINN VC’s neural network. The
network produced an output vector, interpreted as a point
on the road to drive over, and a confidence value using the
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Figure 1

Input Reconstruction Reliability Estimation (IRRE) met-
ric. This metric is described in greater detail in Section
5.3. To determine when the system had actually located
the road, the IRRE metric was monitored. When this met-
ric increased above a user defined threshold value, which
was typically 0.8 (out of 1.0), ALVINN VC reported that it
had located the road.

5.3 Application of IRRE to road detection

IRRE is a measure of the familiarity of the input
image to the neural network. In IRRE, the network’s inter-
nal representation is used to reconstruct, on a set of output
units, the input pattern being presented. The more closely
the reconstructed input matches the actual input, the more
familiar the input and hence the more reliable the net-
work’s response.

The network is trained using backpropagation to both
produce the correct steering response on the steering out-
put units and to reconstruct the input image as accurately
as possible on the reconstruction outputs.

During testing, images are presented to the network
and activation is propagated forward to produce a steering
response and a reconstructed input image. The reliability
of the steering response is estimated by computing the cor-
relation coefficient between the activation levels of units
in the actual input image and the reconstructed input
image. The higher the correlation between the two images,
the more reliable the network’s steering response is esti-
mated to be[10].

Using the IRRE metric to indicate when roads are
present in the input virtual image assumes that it will be
low for images which do not contain roads and distinctly
higher for those that do. For this assumption to hold, two

things must occur. First, the system’s neural network must
not be able to accurately reconstruct images which do not
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contain roads, leading to a low IRRE measure. Second,
images created by the virtual camera when a road is
present must look sufficiently similar to ones seen during
training, thus leading to an accurate reconstruction and a
high IRRE response.

To test these assumptions several image were taken at
various distances from the road as the vehicle approached.
In each of these images, the location of the virtual camera
was moved so that it imaged areas between the vehicle and
the road, on the road, and past the road. Specifically, actual
images were taken when the vehicle was at distances of
25, 20, 15, and 10 meters from the center of the road. Vir-
tual camera images were created at 1 meter intervals on
either side of the expected road location. For example,
using the actual image taken 20 meters from the road cen-
ter, virtual views were created every meter between the
distances of 14 meters to 29 meters.

For each actual image, virtual camera images were
created at intervals similar to those specified above and
given to a network previously trained to drive on the one
lane road. The output road location and the IRRE confi-
dence metric were computed. The result of this experiment
is shown in Figure 2. It shows the IRRE response with
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Figure 2

respect to the position of the virtual view for each actual
image. For each actual image, the network’s IRRE
response clearly peaks near the expected road distance. As
the virtual view moves closer to the road, the IRRE
response increases, peaking when the virtual view is
directly over the road. Response quickly falls again after
the view passes over the road. For comparison, when
ALVINN is driving on a familiar road, the IRRE response
is typically between 0.70 and 0.95. The peaks in each
IRRE curve actually occur about 2 meters past the actual
road center. This is due to three things: a violation of the
flat world assumption, errors in camera calibration, and
improper initial alignment to the road.

Figure 2 shows that both assumptions are basically



correct - the IRRE response when the network is not being
presented road images is low, and the IRRE response is
high when the network is being presented accurately
imaged virtual views.

The relationship between the input virtual image and
the IRRE value associated with that image is better shown
in Figure 3. The figure shows virtual images created at dif-
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Figure 3
ferent distances in front of the vehicle along with the
IRRE response they solicit. The images are all from an
actual image that was taken when the vehicle was 20
meters from the road center. In the upper left image, the
road is barely visible and, as expected, the IRRE response
is very low. As the virtual view is moved forward, shown
in the upper right and lower left images, it begins to image
more of the road. The IRRE value increase correspond-
ingly. The trend continues until the virtual view is centered
over the road, as shown in the lower right image. At this
location, the IRRE value peaks.

Each of the IRRE response curves shown in Figure 2
clearly indicate that a road is present at some distance in
front of the vehicle. Because it is generally better to detect
aroad at a greater distance, it is desirable to know if accu-
racy in detection decreases as the distance from the vehi-
cle to the road increases. Insight to this can be gained by
transforming all of the curves from Figure 2 into the same
reference frame. This can be done for each of the virtual
views associated with a single actual image by subtracting
the distance between the vehicle and the road center from
the virtual camera location. This results in a coordinate
system whose origin is at the center of the road. The result
of transforming each of the response curves in Figure 2
into this coordinate frame is shown in Figure 4. This graph
shows that detection accuracy, at least when approaching
the road perpendicularly, does not degrade as distance
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5.4 Alignment

While testing the detection phase of the system, it
became clear that the problem would not be detecting the
road, but rather driving onto it after it was detected. The
next sections detail two algorithms used to drive the vehi-
cle onto the road. The algorithms are presented in increas-
ing order of robustness. The detection method described
previously was used for finding the road for each method.

5.4.1. Simple road alignment

The first algorithm that was tested for moving the
vehicle onto the road was to simply drive the vehicle over
the point on the road which was specified by the system.
For our vehicle, this meant that the center of the rear axle
would pass over the specified road point. (The center of
the rear axle is the origin of the vehicle coordinate system.
Our point tracking algorithm uses this point as the location
on the vehicle which should follow points to be tracked.)

The point tracking algorithm was able to reliably
position the vehicle over the detected road point. The
problem with this approach was that the vehicle heading
was not matched with the road orientation. See Figure 5.
Consequently, in many cases the vehicle was not able to
begin road following after it had reached the road point
because the road was no longer visible in the camera’s
field of view. One cause of this situation is that our point
tracking algorithm, pure pursuit, does not attempt match
desired and actual headings. But even if it did, the combi-
nation of the computed road point location relative to the
vehicle origin and the minimum turn radius of the vehicle
would prevent proper alignment to the road in some cases.
Basically, the road position computed using the virtual
view does not provide enough offset from the original
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direction of travel to allow the necessary turn to be exe-
cuted. The virtual view, and, in turn, the computed road
position, is constrained by the actual camera - a large por-
tion of the virtual view must be within the actual camera’s
field of view in order for realistic images to be created.
This result suggests that another point on the road, further
along it in the desired direction of travel, is needed.

5.4.2. Alignment by projecting along the road

To remedy the heading match problem encountered in
the previous experiment, another point (P2) was created in
addition to the network’s output road location (P1). P2 was
created using information about the orientation of the vir-
tual view with respect to the vehicle. By doing this, it is
assumed that the orientation of the virtual view is consis-
tent with the expected road orientation. For example,
when the virtual view is at a 90 degree angle with respect
to the vehicle, P2 was created by projecting from P1 at an
angle of 90 degrees from the line that runs forward from
the vehicle origin. P2 is assumed to be on the road. The
projection distance was typically 20 meters. See Figure 6.

20 meters P2

Figure 6

Whereas the first technique computed a single arc to
drive to reach the road point, this technique requires more
advanced interaction with the point tracking algorithm.
Because the two points along with the vehicle location
define a path to follow rather than just a point to drive

over, other variables like the lookahead distance of the
point tracker, the projection distance from P1 to P2, and
the detection distance effect system performance. These
parameters are discussed in detail in [3].

The selection of these parameters is not independent -
changing one will likely require changing others in order
to maintain system performance. This made developing a
set of consistently usable parameters very difficult. In
some trials, the vehicle turned smoothly onto the road and
was able to begin road following. Other times, it turned
too sharply and could not locate the road at all. In still
other instances, it would cross over the road in its path to
reach the projected road point.

There are two main disadvantages to this approach.
The first is that it is not a trivial task to develop a correct
set of point tracking parameters. Different parameters
would likely be needed for every detection scenario and
although it could be done, it would be a very large, brittle,
and inelegant solution.

The second reason relates directly to determining P2.
A large projection distance when computing P2 is desir-
able, but may not accurately model the road. A similar sit-
uation can happen even with small projection distances if
the virtual view is not oriented exactly with the road. This
occurs because ALVINN VC’s neural network is trained
on images which are created as if the vehicle was shifted
and/or rotated from it true location. In the road detection
scenario, this means that even if the road is not at the pre-
cise orientation defined by the virtual view, the network
will respond with a high confidence. As a result, the road
may not continue in the virtual view orientation and pro-
jecting to find P2 will yield a point off the road.

5.5 Intersection detection experiments
In this experiment, the goal was to drive along a sin-

gle lane road, search for and detect a ‘Y’ intersection, and
drive onto one fork or the other. See Figure 7. The central
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point of this experiment was to determine if intersections



could be detected by extending the work done for detect-
ing single roads. This experiment was more difficult than
the previous road detection experiments for two reasons.
First, it required that the system keep the vehicle on the
road and at the same time look for the intersection
branches. Second, it required that the system find two road
branches rather than just one. Another factor adding to the
difficulty of the scenario is that the intersection lies at the
crest of a small hill - each of the road segments which
meet at the intersection are inclined. This means that the
flat world assumption is violated.

The road which the vehicle is travelling upon as well
as each of the road branches are of the same type. Virtual
views were created 9 meters in front of the vehicle. The
view which was used to search for the left fork was angled
25 degrees to the left of straight ahead. The one used to
search for the right fork was 20 degree right of straight
ahead. Because of the geometry of the situation, the IRRE
threshold value, which both virtual images were required
to exceed, on a single actual image was lowered to 0.70.
The experiment was conducted several times, with the
results from each being similar to those of the single road
case. The system was able to drive the vehicle at low
speeds (5 m.p.h.) and detect each of the road branches.
Although not as pronounced as in the single road detection
case presented earlier, the system still had problems navi-
gating onto either branch.

6. Conclusions and future work

Clearly, there is much work left to be done to robustly
detect all roads and intersections. This paper presents a
vision based approach which uses the core of a robust neu-
ral network road follower to accurately detect single lane,
unlined roads. It is reasonable to assume that the detection
method is directly extendable to any road type which the
base neural network can learn to drive on. If this assump-
tion is, in fact, found to be true, this system will have an
advantage over other road and intersection detection sys-
tems which require the researcher to program in new
detection methods when new road types are encountered.

Currently, the weak link of the system is its ability to
navigate road junctions once they are found. We are inves-
tigating active camera control methods to address this
problem.

Finally, the results presented were from a real, but
fairly constrained environment. A robust road and inter-
section detection system must be able operate in more
challenging environments - on typical city streets, with
other cars, and with more extensive interaction with higher
level knowledge. These areas are also actively being pur-
sued.
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