Vision Based Intersection Navigation

Todd M. Jochem, Dean A Pomerleau, and Charles E. Thorpe
The Robotics Institute,
Carnegie Mellon University, Pittsburgh, PA 15213
Phone +01-412-268-3260; Fax +01-412-268-5571; email contact: tjochem @ri.cmu.edu

Abstract

Much progress has been made toward understanding
the autonomous on-road navigation problem using
vision based methods. A next step in this evolution is
the intelligent detection and traversal of road
Junctions and intersections. The techniques presented
in this paper are based on a data driven, active
philosophy of vision based intersection navigation.
Traversal is accomplished by imaging relevant parts
of the intersection using a combination of active
camera control techniques and a Virtual Active Vision
tool called a virtual camera. By monitoring the
response of the underlying lane keeping system to the
created images, intersections and road junctions can
be detected and traversed.

Introduction
Most current vision based intersection navigation
systems require some a-priori model of the

intersection geometry or markings. The system
presented in this paper can detect and navigate
through intersections of arbitrary geometry and
unknown location using only visual cues. If geometric
information is available, it can be incorporated to
more quickly define the probable location of the
intersection by constraining the search for intersection
branches.

The core of the intersection navigation algorithms
presented in this paper is the ALVINN lane keeping
system enhanced with virtual cameras and active
camera control [1]. Using these tools, ALVINN can
detect intersections from both stationary and moving
vehicles. The detection and traversal algorithms are
completely image driven - they need no other
positioning sensor for detection and navigation to be
successful. The system detects the presence of an
intersection by looking for the intersection branches.
When an intersection branch is present, a virtual
camera will image it so that ALVINN produces a high
confidence value. After all branches have been found,
the system can use high level information to choose
the appropriate branch and begin navigating through
the intersection.

After the intersection has been detected and the

0-7803-3652-6/96/$5.00 © IEEE

201

branch to be navigated onto has been selected,
traversal of the intersection begins. During traversal,
the system continnally updates the location and
orientation of the vehicle with respect to the branch
using output from the ALVINN system. In addition,
this same information is used to update the position of
the virtual camera with respect to the vehicle so that it
continues to image the branch appropriately. When
the system detects that the road branch that the
vehicle is moving onto is about to move out of the
field of view of the actual camera, it pans the actual
camera appropriately. In this manner, only visual
information is needed to successfully traverse the
intersection.

Results are presented for two different intersection
navigation scenarios. In the first scenario, the system
has a-priori knowledge that specifies the approximate
location of an upcoming road branch, along with the
branch geometry and road type. Because searching is
not needed, the system can detect the branch while the
vehicle is in motion and smoothly navigate onto it. In
the second scenario, the system only has knowledge
that an intersection is present in front of the vehicle.
The system does not know the orientation of road
branches that are intersecting at this road junction.
The goal is to locate each intersection branch and
navigate onto one of them. Results are presented from
live vehicle runs which show the performance of the
system in both scenarios.

Experimental Description

After the intersection branches have been detected,
traversal can begin [2]. A robust traversal algorithm
must overcome two potential problems: a fixed
camera location and violations of the assumptions
about the geometry of the road branch. The fixed
camera problem, which limits the effective field of
view of the system, was overcome by simply placing
the camera on a pan-tilt mount located on the roof of
the vehicle. The geometric constraint violation
problem, which caused poor traversal performance in
prior experiments [2], was resolved by using image-
derived information to continually update the estimate
of the branch position. Adding these capabilities

Image 1

Image 2

Image 3

Figure 1 Intersection branch detection from a moving vehicle.

allowed the system to reliably detect and navigate two
test intersections. The first was a “Y” intersection
while the other was a “T” junction from a driveway
onto a rural road. While not exhaustive, these two
locations are typical of intersection geometries
encountered in everyday driving.

Known Geometry and Unknown Location

In this experiment, the goal was to move along a
single lane road, search for and detect a branch of “Y”
intersection, and drive onto it. In order to accomplish
this, the moveable camera was required. This camera
could be positioned so that the road, as well as a
substantial portion of the anticipated road branch,
could be imaged. If a fixed camera had been used, the
number of branch locations and the amount of actual
and virtual camera view overlap which was possible
would have been limited.

Initially in this scenario, ALVINN controlled the
vehicle in normal lane keeping mode. See Image 1 of
Figure 1. While driving, the system received a
message that an intersection was approaching.
Although the exact location of the branch was not
known, its orientation with respect to the current road
segment was given. Using this information, the
system created the appropriate virtual camera view,
called the Detection View, which would properly
image the branch when it appeared. For this
experiment, the target road branch was oriented
approximately 40 degrees left of straight ahead. In
addition to being angled 40 degrees, the Detection
View was typically located 7 meters in front of the
vehicle. This distance was selected so that the branch
would be detected enough in advance to perform the
traversal maneuver but close enough so that violations
in the flat world assumption would not become
significant.

After creating the Detection View, the system
determined if the current pan location of the actual
camera was sufficient to image both views
completely. If not, which was typically the case, the
system automatically panned the camera so that the

largest portion of the Detection View was in the field
of view of the actual camera, while maintaining the
entire Driving View in the actual camera’s field of
view. See Image 2 of Figure 1. Note that after the
actual camera had been panned, it is no longer in the
same orientation as when the ALVINN network was
trained. But because the virtual camera is at a fixed
location with respect to the vehicle and is independent
of the actual camera location, the images it created
allowed ALVINN to continue driving reliably.

New images from the Detection View were created
approximately 4 times per second and passed to
ALVINN’s neural network for processing. The
intersection branch was considered detected when the
IRRE confidence value of the network, in response to
a Detection View image, became greater than a
predetermined threshold value. See Image 3 of Figure
1. The threshold value was typically set to 0.75. At
this point, the system began to localize the
intersection branch and navigate through the
intersection. This process is described in detail in later
sections.

Unknown Geometry and Known Location

This intersection detection scenario is the opposite
of the previous. In this case, the location of the
intersection was known, but the geometry of the
intersection was not. Specifically, ALVINN had
knowledge about where the center of the intersection
was located with respect to the vehicle, but did not
know the orientation of any of the intersection’s
branches. The goal was to find each branch and store
it location for further processing.

The branch detection process began with the
vehicle located a known distance from the
intersection center. The detection algorithm uses a
radial search technique to create virtual camera views
which image different hypothesis branch locations.
Virtual views are created a fixed distance from the
intersection center at varying orientations. For this
experiment, the angular change between hypothesis
views was 45 degrees, while the vehicle’s distance

Image 1: -90 degrees

Image 4: 45 degrees

Image 2: -45 degrees

Image 5: 90 degres

Figure 2 Searching for “T” intersection branches.

from the intersection center ranged between 7 and 10
meters. Images taken at each of these hypothesis
branch locations are shown for the “T” intersection in
Figure 2. Image 6 of Figure 2 shows which hypothesis
intersection branches the system believes are likely to
be actual branches as determined by the simple
detection method described in the next paragraph.

The basis for signaling detection is a high IRRE
value. If the hypothesis view images an actual road
branch, the corresponding IRRE confidence metric
will be high, and the orientation of the branch being
examined can be saved for further processing. For
preprocessed images created from virtual cameras
which did not image actual road branches in Figure 2,
the IRRE value is very low, indicated by the short bar
next to the preprocessed image in each of the images.
But for the images which were of actual road
branches, the confidence value is significantly higher.
From this examination, it is evident that by
thresholding based on the IRRE value, hypothesis
views which image actual road branches can be
discriminated from those that do not.

Navigation Using Active Camera Control

Before traversal takes place, the road branch must
be localized to a greater degree of accuracy than was
done for detection. This is necessary because of
ALVINN'’s ability to correctly respond to images in
which the vehicle appears misaligned with the road.
Because of this, the exact location and orientation of
the road branch with respect to the vehicle is not
precisely known. Because lateral translation and

o9N92

Image 3: 0 degrees

Imae 6: Detected Branches

orientation errors in virtual view alignment cannot be
determined from a single image and its associated
output, the following two step branch localization
process is used to refine the road branch location
estimate.

The first step in localizing the branch further is to
use the output displacement of the network to update
the position of the virtual camera imaging the road
branch. This is done by moving the view laterally,
perpendicular to the hypothesis branch direction, for a
distance equal to the output displacement of the
network. After the view has been moved, an image is
created from this new location and passed through
ALVINN’s network, producing another output
displacement which is again used to adjust the view.
This process is repeated until the output displacement
of the network changes sign, meaning that the current
and last view have “bracketed” the view location
which will produce zero output displacement. In this
last step, the final displacement from straight ahead is
very small.

Although the first phase of road branch localization
causes the output displacement of the network to
become nearly zero, the orientation of the view with
respect to the road branch cannot be assumed to be
correct. Figure 3 illustrates this concept. In this figure,
the preprocessed image along with ALVINN’s output
displacement from each image, when the vehicle is in
both the left and right configurations with respect to
the road, is shown. Note that in each case the
displacement is near zero although the vehicle is only

Output Displacement

Output Displacement

Figure 3 Possible alignments with zero output displacement.

properly aligned with the road in the right example.
This occurs because ALVINN is trained to produce
the necessary displacement to return the vehicle to the
center of the road the lookahead distance in front of
the vehicle. In both cases, the required displacement
to return the vehicle to the center of the road is near
ZEro.

In order to accurately determine the intersection
branch orientation, a second view is required. This
view, called the Projection View, is typically created
between 3 and 5 meters in the direction of the current
estimated road branch orientation. Figure 4 shows the
actual road scene along with a diagram of the original
and Projection View arrangement.

If the original view is properly aligned with the
intersection branch, creating an image using the
Projection View and passing it through ALVINN’s
network should yield an output displacement close to
zero. This is because the previous alignment step
reduced the lateral offset of the original view to near
zero, in effect centering the original view over the
longitudinal axis of the road branch. If the original
view is at the correct orientation, projecting 5 meters
along the branch orientation should also create a view
which is centered over the longitudinal axis of the
intersection branch. As is shown in Figure 4, this is
not usually the case. Although the original view has
zero displacement, indicated by the centered gaussian
hump of activation over the preprocessed image, it is
not aligned correctly with the intersection branch.
Because the original view was misaligned, the
Projection View is also misaligned, which results in a
non-zero output displacement. In Figure 4, the
gaussian hump indicating the network output
displacement created from the Projection View image
is shifted right to reflect this misalignment.

The output displacement difference from zero that
the Projection View image produces is a measure of
the misalignment in orientation between the original
view and the intersection branch. By using the output
displacement from the Projection View, the projection

distance, and the location of the original and
Projection Views, the amount of this angular
misalignment can be computed. After rotating the
original view to its correct orientation, its lateral
position must also be corrected. This is necessary
because the rotation correction was done about the
original view’s Jocation and not about a point on the
longitudinal axis of the intersection branch. From the
same information used to compute the orientation
error, the lateral offset error, which is a result of the
orientation error correction, can also be computed [1].
After both error values have been computed, they are
used to update the original - view location and
orientation so that it more closely matches the
intersection branch geometry. Once this step of
localization is finished, traversal of the intersection
can begin.

Traversal

There are two issues which must be considered and
resolved in order for intersection traversal to be
successful: tracking the branch as the vehicle moves
through the intersection and computing the correct
steering arc to execute.

The branch tracking problem was solved by
adapting the branch localization algorithm presented
in the previous section. During traversal, the system
continually updated the location and orientation of the
original virtual camera view by repeating the
alignment procedure presented in the previous
section. In addition, when the original view was about
to move out of the field of view of the actual camera,
the system automatically panned the actual camera
appropriately. The ability of the system to correctly
orient and localize the intersection branch during
traversal is shown for the “T” intersection in Figure 5.
Note that a camera pan occurs before each image in
this figure.

Creating an acceptable vehicle control algorithm
for navigating intersections was one of the most
difficult tasks in this work. The majority of the

Projection View

Figure 4 Orientation localization.

methods tried caused the vehicle to either severely cut
corners, overshoot, or generally become misaligned
with the road. A contributing factor to these problems
was the lack of accurate geometric information about
the intersection branch as the vehicle turned.

This problem was alleviated by tracking the
intersection branch using a combination of traditional
and virtual active vision techniques. But given this,
many of the vehicle control algorithms still had
difficulty matching the vehicle heading to the road
orientation. Based on this observation, the vehicle
control algorithm shown in Figure 6 was developed.
This algorithm takes into account the branch
orientation as determined by the localization
algorithm.

The vehicle control algorithm finds tangent points
on two lines representing the vehicle’s current
heading and the intersection branch orientation. The
first tangent point, P1, is defined to be the current
vehicle position while the second point, P2, is on the
intersection branch axis. The distance along the
branch that P2 is located, measured from the
intersection center point, C, is defined to be equal to
the distance from P1 to C. After being computed, this
distance is held fixed throughout the intersection
traversal. C is computed before traversal begins by
finding the intersection point of the branch axis and
the line representing the vehicle heading. As
mentioned earlier, the orientation of the branch axis is
not fixed at the hypothesis view orientation, but rather
is the refined branch orientation derived during the
branch localization phase.

This construction insures that a circle can be found
which will intersect P1 and P2 tangentially. The radius
of the circle that intersects these tangent points is the
arc that the vehicle uses to drive through the
intersection. For each new image, the tangent point,

Projection View

Original View

P2, and arc to drive are recalculated based on the new
location of the intersection branch so that any errors
in vehicle control, positioning, pan angle, or nonlinear
branch geometries are taken into account.

Results and Discussion

Using simple thresholding as the discriminating
technique, the system was able to successfully detect
each intersection branch in 33 of the 35 cases on the
“Y” and “T” intersections. These trials were
distributed about evenly over the moving vehicle “Y,”
the stationary “Y” and “T” detection scenarios. In no
cases did the system detect a branch which was not
present.

Both failure cases were in the “T” scenario. In one
case, the system successfully detected one of the two
branches. The other branch’s confidence value fell
just below the threshold but was still much higher
than any of the other three hypothesis locations. In the
other failure case, neither branch was detected. For
this case, of the two real branches that should have
been detected, one did have a noticeably higher IRRE
value, but it was still below the detection threshold.
The other branch’s IRRE value was not significantly
different than any of the other branches. In this case
the problem can be attributed to a change in the
ambient lighting, from overcast skies to sunshine, to
which the camera was not able to properly adjust. In
any case though, this indicates that although detection
is robust, it is not foolproof and redundant branch
verification procedures are necessary.

In all 34 cases which the system detected at least
one branch, it was able to properly move the vehicle
onto the branch and continue driving. The system was
able to drive the vehicle onto the left and right
branches of the “T” intersection as well as navigate
onto the 45 degree branch of the “Y” intersection.

Image 4
Figure 5 “T” Intersection traversal.

Branch Orientation
Estimate

Turn Radius

Figure 6 Traversal turn radius determination.

Although the control algorithm during traversal is
very simple, having a moving camera and tracking the
road branch throughout the maneuver allowed it to
work reliably over the experimental domain.

It is reasonable to assume that the detection method
will work for any road branch type which the base
neural network can learn to drive on. If this
assumption is true, this system will have an advantage
over other road and intersection detection systems
which require the researcher to program in new
detection methods when new road types are
encountered.

Acknowledgments
Sponsorship for this work was provided by the

The X intercept of L1 is the
correct turn radius to steer.

USDOT under contracts DTNH22-93-C-07023 and
DTFH61-94-X-00001. The authors would also like to
thank Delco Electronics for providing the testbed
vehicle on which much of this work was conducted.

References

[1] Jochem, T. and Pomerleau D. “Life in the Fast
Lane: The Evolution of an Adaptive Vehicle
Control System,” AI Magazine, Volume 17, No.
2, pp. 11-50, Summer 1996.

[2] Jochem, T., Pomerleau, D., and Thorpe, C.
“Vision-Based Neural Network Road and
Intersection Detection and Traversal,” IROS 95,
Pittsburgh, PA, USA.

