Reconstructing Specimens using DIC Microscope Images

Farhana Kagalwala

Takeo Kanade

Robotics Institute
Carnegie Mellon University
Pittsburgh, PA 15213

farhana@cs.cmu.edu

Abstract

Differential Interference Contrast
(DIC) microscopy is a powerful visualization tool used
to study live biological cells. Its use, however, has been
limited to qualitative observations. The inherent non-
linear relationship between the object properties and
the image intensity makes quantitative analysis diffi-
cult. Towards quantitatively measuring optical proper-
ties of objects from DIC images, we develop a method
to reconstruct the specimen’s optical properties over a
three-dimensional volume. The method is a nonlinear
optimazation which uses hierarchical representations of
the specimen and data. As a necessary tool, we have
developed and validated a computational model for the
DIC image formation process. We test our algorithm
by reconstructing the optical properties of known spec-
imens.

1 Introduction

The Nomarski differential interference contrast
(DIC) microscope is the preferred method for visualiz-
ing live biological specimens. The DIC microscope is
an interferometer, and therefore the refractive struc-
ture of the specimen is made visible. In biological
research, live, transparent cells can be imaged with
this microscope modality. Three-dimensional struc-

ture can be visualized by optically—sectioningT through
the specimen. To date, however, biologists only qual-
itatively assess DIC images of cell specimens. Quan-
titative microscopy methods, such as computational
optical sectioning microscopy (COSM), have been re-
stricted to linear microscopy modalities.[5] The inher-
ent nonlinearities in the DIC image formation process
have hindered past attempts at quantitative analysis.
In this paper, we describe a method to reconstruct
specimens 1maged with DIC microscopy.

DIC microscopy offers several advantages over other
contrast-generating optical systems. In DIC the pupil

is unobstructed, and therefore transversel and ax-
ial resolution exceeds that in Zernike phase contrast.
Consequently, thick specimens with three-dimensional

!For each image in an optically sectioned set, the optical
elements are configured to focus at a particular object distance.

2Transverse planes are perpendicular to the optical axis of
the microscope

0-7695-0862-6/00 $10.00 © 2000 IEEE

tk@cs.cmu.edu

Figure 1: DIC Image of Bead: Specimen has a 10um
polystyrene bead embedded in optical cement. The left-
most image is in focus while the other 2 images are in-
creasingly de-focused. The arrow indicates the shear.

features are better resolved. Unlike some fluorescence
methods, no dyes are injected and therefore live spec-
imens are not adversely affected. Finally, unlike con-
focal scanning methods which have slow rates of ac-
quisition, an entire stack of optically sectioned images
can be acquired within a minute. In the case of mobile
cells, the short acquisition time minimizes distortions
between optically sectioned slices.

Looking through the eyepiece of the DIC micro-
scope, an observer sees a shadow cast image which
deceptively indicates three-dimensional structure. Ex-
ample DIC images are shown in Fig. 1. Actually, the
image is the differential of the optical path length
introduced by the object into the propagating light
wave. The differential is along a particular direction,
in the transverse plane, called the shear direction. In
addition, each image contains both in-focus and out of
focus information. Therefore, the challenge in DIC mi-
croscopy remains to interpret image features belonging
to in-focus object properties correctly.

2 DIC Microscopy Background

The DIC microscope, is essentially a brightfield
microscope with a polarizer-analyzer pair and two
prisms.[Fig. 2] As in standard brightfield optics, light
from a lamp 1s collimated by a collector and a con-
denser lens combination. In DIC, however, a polarizer
and a Wollaston prism is inserted between the collec-
tor and condenser lens. Moreover, the prism is po-
sitioned with respect to the back focal plane of the
condenser. The described setup produces two mutu-
ally coherent, polarized beams. Each electric field is
polarized perpendicularly with respect to the other. In
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Figure 2: DIC Optical Components: Regular bright-
field microscope components such as a light source,
collector, condenser, objective and eyepiece are sup-
plemented with a pair of polarizer-prism set. Three
light paths are shown to illustrate conjugate planes of
reference. Optical elements, spacing, and the incident
light angles are not to scale.

addition, the wavefronts impinging on the object are
differentially translated with respect to each other. In
front of the objective lens, an analyzer and Nomarski
prism are inserted and aligned with the front focal
plane of the objective. The Wollaston prism behind
the condenser introduces a linear phase gradient across
the two fields emerging from the condenser. The No-
marski prism in front of the objective lens compensates
for this linear phase gradient. Therefore, the com-
bined action of the two prisms results in a constant
phase bias between the two perpendicularly polarized
fields. This combination produces a steady pattern of
interference between the two beams which can then be
detected by a CCD camera or the human eye.
Mathematically, the DIC imaging process can be
summarized by the following set of equations. First,
consider a coherent field represented by
Uin (%) = Aexp[—i¢iu(Z)]. (1
where £ = (z,y, 2) are spatial variables in the coor-
dinate space of the object with the z-axis coincident
with the optical axis. ¢(Z) is the phase function. The
action of the two prisms can be represented as an ag-
gregate by Uj; (%) and UZ (), where

1= —
Uin(7) ¥s)

2 (o -
(%) 7s)]
In the above equations, Adpiqs 18 the constant phase

bias and 27, is the shear vector. After a phase trans-
formation, ¢op;(&), due to the object, the wavefronts

()
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Aexp [—i[¢iu(Z +
Aexp [-—id)m(i -

+ A¢bias]] (2)
(3)
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Aexp [—i[@ob; (£ + ) + Advias)] (4)
Aexp [—idon; (E — 7)) (5)
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contain the object information. The field in the image
space is

obj

Uimg(ximg) . /obj
Yo
[Uolbj

where Zimg = (Zimg, Yimg, Zimg) are spatial vari-
ables in the coordinate space of the image with
the 2;mg-axis coincident with the optical axis.
K, (Timg, Yimg, &, y) is the complex amplitude point
spread function of the imaging system (objective and
any other auxiliary lens) of the microscope. K;(...)
describes the propagation from the object plane at
z = z1 to the image plane zimg. The Image intensity
I(f,‘mg) 18

b
77
o K, (mimg) Yimg; T, y)
x
°

(6)

The nonlinearity in the DIC image has two basic
sources. First, since the image is an interference pat-
tern, the detected intensity is the squared magnitude
of the light field’s complex amplitude. Therefore, a
convolution of the light intensity with a lens transfer
function does not accurately represent the DIC image,
which is a linear superposition of complex amplitude,
rather than intensity components, of the light field. In
addition, out of focus contributions from the object
have to be considered. Therefore a three-dimensional
amplitude point spread (or transmission) function is
needed to accurately model the image intensity. Sec-
ond, the object itself aberrates the light wave as it
propagates through. The biological specimens under
consideration, though weakly refractive, are thick and
scatter light significantly. Therefore, aberrations due
to the object contribute significantly to the image.

Deconvolution methods, such as computational op-
tical sectioning microscopy (COSM), are widely used
to recover object information from images acquired by
certain optical modalities. COSM methods model the
image intensity as a convolution of the object’s inten-
sity transmittance with a computed point-spread func-
tion. In modalities such as fluorescence and bright-
field, a linear function of the intensity from the object
provides an accurate, first order approximation of the
image. However, in DIC microscopy, the image can-
not be represented by merely considering the intensity
from the object. Both phase and amplitude informa-
tion have to be modelled.

Initial work in DIC image analysis algorithms used
linear models.[4] In 1996, Feinegle used a contour find-
ing algorithm to locate edges in each image from an
optically sectioned stack.[6] In her work, specimen
structure is obtained by axial stacking of contours.
The most recent work in the analysis of DIC images
is by Preza.[12] This work recovers the optical path-
length at each image point due to the object, and
therefore does recover some quantitative information.
The only other attempt to quantify information from
DIC optics has been made by Cogswell, et. al. us-
ing optical techniques referred to as geometric phase

I(fimg) = lUimg(zimg; Yimg, Zimg)|2

(il?, Y,z = Zl) - Uozbj(xayaz = 21)]dl'dy



methods.[3] Though we are unaware of cases where
this method has been applied to recover three di-
mensional object information. The work by Feinegle
produced a three dimensional model of the specimen,
but the object properties were not quantitated and
the recovered specimen model was not validated with
ground truth experiments. Preza’s work recovers opti-
cal path-length but does not actually reconstruct three
dimensional object information. So far, no attempt
has been made to quantitatively reconstruct the three
dimensional properties of the object from DIC images.

In contrast, the reconstruction algorithm that we
have developed recovers the whole object information.
We address the nonlinearities in the image formation
process by a precise computational model of DIC mi-
croscopy which is used for reconstructing specimens.
Using a generalized ray tracing method we have devel-
oped a model of light propagation through the micro-
scope and specimen. [8, 9] The computational model is
used to generate simulated images of the current esti-
mated object as part of the hierarchical reconstruction
algorithm.

3 Reconstruction Problem Description

Given a set of DIC images, the goal of the recon-
struction is to estimate the refractive index distribu-
tion throughout the volume encompassing the object.
Due to the nonlinearity of the DIC image-formation
process, a direct inversion of the imaging equations
is not feasible. Therefore, we use an iterative nonlin-
ear optimization algorithm. The optimization starts
with an initial estimate of the distribution. Using our
computational model, we generate simulated images
corresponding to this estimate. The sum of squared
differences between the real data and the simulated
images is the error function. The estimate is modi-
fied at each iteration such that this error function is
minimized. Such a reconstruction process requires a
representation of the refractive index distribution at
every point across the specimen volume. One possi-
ble representation is a weighted combination of basis
functions where the weights are the parameters. The
degrees of freedom in the representation, that is the
number of parameters used, plays a critical role in the
accuracy with which an object can be represented and
the ease with which the optimization converges to the
correct answer. If too few parameters are used, the
object may not be represented with enough accuracy.
If too many parameters are used, the optimization al-
gorithm could be overwhelmed and may not converge
to the solution.

A nonlinear optimization method traverses the pa-
rameter space searching for the point where the error
function 1s minimized. To avoid converging to incor-
rect minima, traditional nonlinear optimization prob-
lems require that the initial set of parameters be close
to the actual solution. In general, the number of lo-
cal minima increases with more degrees of freedom in
the representation, since the error function develops
more undulations. Finding an appropriate initial es-
timate for complex optimization problems is difficult.
In order to be able to converge to the correct solution,
despite the initial estimate being far, one needs a sys-
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tematic method of traversing the parameter space such
that the estimates approach the neighborhood of the
global minima without being trapped in local minima.
One possible method to achieve this is to first reduce
the parameters such that only coarse object properties
can be represented. If the volumetric distribution is
approximated by a small number of parameters, the
consequent error function is also of reduced dimen-
sion. In the process, local fluctuations (minima) are
smoothed over and the error function retains global
shape properties. One can then solve the optimiza-
tion with respect to the reduced parameter set. When
projected back to the original problem, the solution of
the coarse optimization is closer to the original global
minima. Thus the coarse solution serves as an ap-
propriate initial estimate for the original optimization
problem. Depending on the complexity of the prob-
lem, this parameter reduction can be done in multiple
stages.

In our method, we represent the object and image
data hierarchically and optimize at successive levels of
the hierarchy by using a multi-level wavelet-like repre-
sentation for the object. At each level, the original im-
age data is projected onto a basis spanning a space of
possible image features at the given object resolution
level. This projected data is compared with simulated
images in our nonlinear optimization. Thus, at each
level of the hierarchical reconstruction we obtain an
object estimate that fits the data at that level. This
object is used as an initial estimate for the optimiza-
tion at the next level of the hierarchy.

4 Reconstruction Algorithm

The hierarchical reconstruction consists of three
processes. In the first step, we represent the object
at different resolutions. Second, we decompose the
image data in order to identify image features corre-
sponding to objects at the different resolutions. Third
is the nonlinear optimization algorithm which recovers
an estimate of the object at each resolution.

4.1 Hierarchical Object Representation
Since the DIC image captures the directional gradi-
ent of the phase introduced by the object into the light
path, we represent the object as a volumetric distribu-
tion of refractive index values. At present, we assume
that the object is transparent, and therefore the re-

fractive index is a scalar quantity.T We represent the
refractive index by a wavelet-like bases, approximat-
ing it at different levels of resolution, where at each
level only a subset of spatial frequencies are present.
For the purpose of illustration, let us formulate in one
dimension. At a particular resolution J, ns(z) is rep-
resented by combining versions of the scaling function,
®(z), and wavelet function, ¥(z),

= SK% 0 ®(2—k)+ S T2 K120, 4 U (P2 —k)

(7)
Both ®(z) and ¥(z) are cubic spline functions, de-
veloped by Cai and Wang[2]. The scaling function

nJ(:l))

! This may be generalized to include absorption. The refrac-
tive index would then be a vector, or complex number.



represents the lowest spatial frequencies. The wavelet
function represents the details at different resolutions.
Translated versions of ®(z), in addition to, scaled and
translated versions of ¥(z) span the domain of an ob-
ject. To represent a function at a particular level
one needs to find the combination of weights up to
that level which best approximates the original func-
tion. In Fig. 3, at the first level (J=-1), an example
function is coarsely approximated by a combination of
the translated scaling functions. At each subsequent
level, the corresponding wavelet functions are added to
the representation and the function is better approx-
imated. To represent a two-dimensional distribution,
ny(z,z), we have to use a combination of functions
that are outer products of the one-dimensional scaling
and wavelet functions,

K-2 L-2

Y aki®(z - k)O(z —1)
k=-2l=-2

J 27K-227L-2

SIS N bjwa¥(Pe - k)22 -
3i=0 k=-1 I=-2

2K -227L-2

Z Z Cj’k,lQ(QjZ—k)\I’(QjZ—l)
k=—2 I=—1

2K -227L-2

ny(z,z)

+
k=-1 I=-1

Each tensor product results in a two-dimensional func-
tion that can represent different properties of the ob-
ject. [Fig. 4] The extension to three dimensions is
similar. The levels of the wavelet functions provide a
systematic hierarchy for representing and recovering
the object. At each level, of the reconstruction algo-
rithm, the goal is to recover the parameters at that
level. The scaling function coefficients (ax ) are re-
covered in the very first level (J=-1). At that level,
the distribution is

K-2 L-2

n_i(z,z) = Z Z ag 1 ®(x — k)®(2z — 1)

k=-21=-2

©)

The values of ag, are initialized to 0. We then pro-
ceed to update the parameters ax iteratively so that
the error between the simulated images and the image
data at this level is minimized. The iterations at this
level terminate when small changes in the parameter
vector do not effect a significant improvement to the
error. The algorithm then proceeds to the next level
(J=0). The estimated object from the previous level
is transferred as the initial object at this level and
we proceed to recover bo ki, coki, doks. Analogous
to the previous level, these parameters are initialized
to 0 and iteratively updated so that the error between
simulated images and the image data at level 0 is min-
imized. Each subsequent level of the reconstruction
proceeds similarly.

)

Do D dikg¥(Pe - k)¥(27z - 1)](8)
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Figure 3: Object Hierarchy. In the right column an
original 1-d object is shown superimposed with the ap-
prozimate object at the level of the hierarchy. The left
column shows the basis functions at each level. Each
row shows the basis functions that are added to the
representation at that level.
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Figure 4: Sample 2-d Scaling and Wavelet Functions.
Each corresponds to a term in FEq.8.

The wavelet-like basis provides a continuous repre-
sentation for the refractive index. For computations,
we discretize this distribution. In our model, the re-
fractive index is stored at discrete locations of a three-
dimensional voxel grid. We typically use grids with
resolution .2-1 pm perpendicular to the optical axis
and .03-1 pm axially. A typical grid size is 100x100x50
in the x, y and z dimension respectively.

4.2 Hierarchical Image Representation
Unlike microscope modalities for which analytical
models of the three-dimensional optical transfer func-
tion are available[13], object structure and the DIC
image is related nonlinearly. Due to this nonlinearity,
an algorithm using an analytical DIC imaging model
is not practical. If the relationship between the object
and image intensity were linear, then a linear decom-
position of the object would result in a linear decom-
position of the image. Since this is not possible, we
have developed a “matching by synthesis” algorithm
that identifies image features which result from the
represented object frequencies. The original data con-
sists of image features due to all object frequencies but
this data cannot be linearly decomposed into features
at all levels. Therefore, at each resolution level we
have to determine the image features which are ap-
propriate and match these to the original data. An
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Figure 5: Hierarchy of Objects and Images. The 2
object dimensions are the axial (Z) and transverse (X).
For each tmage, the object plane is at the center of the
Z azis. Rows 1-8 show the objects and corresponding
tmages from the coarsest to finest resolution (J=-1,
J=0, J=1).

example of an object at different resolutions and the
corresponding images simulated by our computational
model is depicted in Fig. 5.

The matching by synthesis algorithm extracts fea-
tures in the original intensity data which correspond
to objects at a particular resolution. At a given reso-
lution level J, we suppose that the DIC image of the
object can be represented in terms of a basis such that

Q7
IJ(wimg; zimg) = Z rng(ximgy Zimg)
q=0

(10)

where {Bj} for ¢ = 0..Q” is a set of basis functions
specific to the resolution J. In order to relate the orig-
inal image data, I(Zimg, Zimg), to the images at each
resolution level, we need to find the features in the
original data that correspond to the features in the
basis functions. Before we can proceed to match fea-
tures in the original data, we need to find the basis
images. We obtain the basis images by perturbing pa-
rameters at a particular resolution and synthesizing an
image per perturbed object. Functions selected to be
in the basis represent the image features most common
to the synthesized images. The original image data is
then projected onto this basis, thereby giving the im-
age features that are present in the original data corre-
sponding to an object at the given resolution. Specif-
ically, our algorithm proceeds in three steps. First, at
a particular resolution, we introduce a large set of per-
turbations to the initial object and generate simulated
images of each of the perturbed objects. Second, we
select a basis that best characterizes the images corre-
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sponding to the perturbed objects. Third, we project
the original image data onto the estimated basis.

4.2.1 Object Perturbations

At a given resolution level J, the initial object is per-
turbed by a large number of random configurations.
Each perturbation involves adding or subtracting a
random amount from all parameters of the Jt# level
basis functions. Therefore, given random parameter
vectors 7274 ¢mand and drend. a perturbed object at
level J is
5 (2, 2) = ny_i(z, 2)
27K-227L-2

+ > D (bag H P27z — k)22 - 1)
k==2 I=-1
2'K-227L-2

+ Y S (gY@ - k)E(272 - 1)
k=-1 I==2
2 K-227L-2

+ Y D ok + G2 — kU272 4T

k=-2 [=-2

We use the computational model to generate a simu-
lated image, Isim, 7(®img, Zimg), for each perturbed ob-
Ject. The set of simulated images contain a wide range
of possible image features corresponding to objects at
this resolution. Though, we have only shown pertur-
bations of the wavelet coefficients, the coefficients of
the scaling functions are also perturbed at level J=-1
to obtain basis images at that level. For a particular
resolution, the total degrees of freedom at that reso-
lution is

oy = (QJK)(QJL—1)+(2"K—1)(2"L)+(2"K)(2;L2)).
1

We have experimentally determined that 8ay pertur-
bations (and simulated images Isim, j(Zimg, Zimg)) suf-
fice.

4.2.2 Basis Selection

Next, we implement a basis selection method from
the simulated images, {I;im’J(ximg,zimg)} for i =
1..8ay. One simple basis selection method is
a Karhunen-Louve decomposition applied to two-
dimensional signals.[10, 14] This method results in
a set of “eigenimages”, each functioning as a ba-
sis vector. We found that the eigenimages based
method does not sufficiently abstract image features
from the set of images. That 1s, although each
Isim, 5 (Zimg, Zimg) can be represented by a combina-
tion of the eigenimages, each eigenimage doesn’t nec-
essarily represent isolated image features.

To find basis vectors which explicitly represent im-
age features, we implemented a basis selection method
using the “matching pursuit” algorithm. [11, 1, 7] This
algorithm uses a redundant dictionary of functions,
where each function is a scaled and translated version



of an exponentially modulated window function. In
our implementation, the window is Gaussian. Using
a redundant dictionary of such functions offers an ad-
vantage over decomposition into a pre-established ba-
sis, such as a wavelet basis. In a wavelet basis, scale
and frequency have a fixed relationship so that only
features which have a particular frequency content can
be represented at a particular scale. In contrast, ex-
ponentially modulated functions can represent several
kinds of features at any given scale.

The matching pursuit is an iterative greedy algo-
rithm to identify functions out of the dictionary that
best match an image in the set. Note, the itera-
tions of the matching pursuit algorithm are embed-
ded within each resolution level of the reconstruc-
tion algorithm. Given an intensity vector I(zimg),
(I(zimg) = Iim 5(Timg, 2img = constant), i € [1,8ay]
in our algorithm), the matching pursuit algorithm
defines a residual, Ry {I}{zimg) at each iteration w,
where Ro{I}#img) = I(Zimg). An iteration consists
of finding, the best function g}’ (zimg) from candidate
functions in the dictionary, such that

< Rw{1}(Ximg), gb (Ximg) >>< Rw{I}(Xims),gi(Ximlgg >

where <> denotes inner product. g¥ (img) is then re-
moved from the candidate functions in the dictionary.
The residual is updated as,

Ry 41{IH(Zimg) = Ru{I}(Zimg)
- < RW{I}(ximg)y.qg}(zimg) > gg‘(ximg)-(pl)

The algorithm is terminated when the residual’s norm
falls below a preset threshold. More details can be
found in the references.

As a result of matching pursuit, each I, ; is
decomposed with respect to a unique matched set,
{9¥ (zimg)} for w = 1..wpyqq, selected from the dic-
tionary. Therefore we will have 8a; matched sets.
Finally, we extract a set of dissimilar functions that

are most prevalent across all the matched sets.! This
set of functions forms the basis, {B;l’} for ¢ = 0...Q7,
for the subspace of images corresponding to objects
at resolution level J. [Fig. 6] The number, @7, is set

experimentally to ensure that {B”} spans the entire
image.

4.2.3 Image Projection

Once the appropriate basis hierarchy for the images
is selected, the original image data is projected onto
the basis at each level. A matrix, M, is constructed
in which all the columns are the individual functions
comprising of the basis at a particular resolution.

!Two functions, 91(zimg) and g2(Timg), are dissimilar if

< > < > . .. .
—21*22—< TS and -—21-1-‘-72—<92’92> is less than an empirically determined

threshold.
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Figure 6: 1-d basis functions at the levels 0 and 1.
(From specimen 1 reconstruction).

That is,

Bi(z,z=0)
Bi(z,2=1)

Bl (2,2 =0)
Boi(z,2=1)

B(}](J;,Z = zmaz) Bél (.’E,Z = Zmaz')

In the above matrix, each basis image corresponding
to a different axial position is stacked vertically so that
the entire basis image can be represented as a column
vector. Since the matrix will not be square in most
cases, the original data is multiplied with the pseudo-
inverse to obtain the necessary weights for each of the
basis functions. This is the over constrained solution
of &{M;7—I}? = 0 where  is the vector of weights,
I is the original data, formatted into a column vector
similar to the basis images above. The least squares

solution is ¥ = M}LI . where MI is the Moore-Penrose
pseudo-inverse of M. The projected image, I,

I; = Pi{I} = M7 (16)

corresponding to the J* resolution is the weighted lin-
ear combination of the basis functions, using the func-
tions obtained with the matching pursuit algorithm
and the weights based on the least squares solution.

4.3 Optimization at Each Resolution

For each level in the resolution hierarchy, we op-
timize with respect to the wavelet coefficients at the
current resolution. At a particular level, the initial
object is the estimated object from the previous level.
At the first resolution level, the initial object is a com-
pletely blank volume, i.e. all voxels are initialized with
the same refractive index as the background. The im-
age data used in the optimization is the original data
projected onto the basis selected for this resolution
level. (I; defined previously.) So at each resolution
level, the target data is actually the projected images
described above. At the final resolution level, we use
the original data. The sum of squared differences be-
tween the projected data and the simulated data is
the error term for the optimization.

4.3.1 Levenberg-Marquardt

At the first resolution level, J=-1, the degrees of
freedom of the object 1s quite low. Therefore,



a Levenberg-Marquardt type nonlinear optimization
produces sufficiently good results. [15] This is basi-
cally a Gauss-Newton type gradient-based optimiza-
tion, where the Hessian matrix is supplemented with
an identity matrix scaled by a parameter. The pa-
rameter is decreased at each iteration if the current
estimate reduces the error, otherwise it is increased.
Implicitly, this optimization method assumes that the
neighborhood of the global solution is predominantly
convex, barring some minor local undulations, and
that the current estimate is within this neighborhood.

4.3.2 Randomized Methods

At subsequent resolution levels, the degrees of free-
dom in the object increase rapidly. No longer can
one assume that the initial estimate is close to the so-
lution at this level and that the neighborhood along
the error surface to be traversed is sufficiently con-
vex. Therefore, Gauss-Newton type methods such as
Levenberg-Marquardt tend to converge to local min-
ima. Although, the optimization is significantly aided
by the resolution hierarchy, we still need to implement
a randomized search method within the nonlinear op-
timization. We have implemented a genetic algorithm
that has been very successful in finding the correct
solutions.

The genetic algorithm combines parameters from
members of a population to produce a new member.
The population that we use to initiate the genetic al-
gorithm is the same set of perturbed parameter vec-
tors described above. Each parameter vector, p, is
a concatenation of bjk i, csx; and dyiy. In addi-
tion, each p has an associated error value which is
the sum of squared differences between the simulated
image due to this object and the projected image at
the current level, plus any penalty terms due to con-
straints. The population is divided into good and
bad candidates, represented by p’;ood and pf,;. The

good and bad candidates have error values in the top
and bottom 50th percentile respectively. There are
two ways of combining member parameters. The first
method selects two good members (p,,; and pj,.,)

and a bad candidate (p},;). The new member is
comb

pEIRe = a(.5p;ood+.5pgood)—-bpgad where a > 0,5 >0
and @ — b = 1. This method is similar to traditional
combination methods in genetic algorithms. In this
selection method, good candidates with lower error
values have better chances of being selected than ones
with higher error values. If the new member is bet-
ter than either of its “parents”,ie. p .4 and pZ,.4,
according to the above defined error, then the worst
parent is replaced by the new member. The second
method simply selects a member of the population at
random and randomly perturbs some parameter val-

ues, i.e. pmutate — pk 4 p_ 4 where p* is a randomly
selected parameter vector from the entire population
and Prang Is a vector of random values. This method
1s consistent with traditional mutation. If the error
value corresponding to piuté!¢ is better than that of

the worst parameter vector, then this mutant replaces
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Figure 7: Physical data of bead specimen.

Figure 8: Real data of wafer specimen.

the worst member. At each iteration of the algorithm
we sort the members according to their error values,
and perform one combination and one mutation step.

4.3.3 Constraints

The only strong constraint on the object is that the
minimum refractive index be 1.0. Therefore, every es-
timated distribution is offset by a suitable amount to
ensure that the minimum value in the distribution is
1.0. In our reconstruction experiments, the physical
specimen has only two distinct refractive index val-
ues. So for those experiments we add a term in the
error that penalizes for inhomogeneity in the distribu-
tion. This additional penalty term is only introduced
at the finest resolution level and has considerably sped
up convergence. The penalty is achieved by segment-
ing the volume into regions of high and low refractive
index values and then measuring the variance within
those regions. The variance terms are scaled by pa-
rameters, w and B and added to the error. Therefore
the modified error is

M
E = Z(IJ[m]“Isim[m])2
m=1
(@)
g
+ Niw (K] = niow) (17)

where the first term is the sum of squared differences
between the intensity values of the projected image
and the simulated image calculated over the total
number of pixels, M. In the rest of the error, N is the
total number of voxels, npign and nj.w are the means
of the high and low valued n[x] respectively, ypigh and
Yiow are the sets of discrete voxels which are above
and below the threshold respectively.

5 Results

The reconstruction results we have obtained thus
far have all been in two dimensions. That is, in-
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Figure 9: Intensity plots at different resolutions. Col-

umn 1-2: The original data projected onto the levels
0-1 respectively. Column 3: The original data.
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Figure 10: Results for Spectmen 1. A-C are the esti-
mated answers at levels 0-2. D: Real object. E: Final
estimate. F: Error between real and estimated object.
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Figure 11: Intensity plots of wafer data at different
resolutions. Columns 1-3: The projected data at levels
0-2 respectively. Column J: The original data.
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Figure 12: Results for Specimen 2. A-C are the esti-
mated answers at levels 0-2. D: Real object. E: Final
estimate. F: Error between real and estimated object.

stead of estimating the full three-dimensional volu-
metric distribution, we chose to reconstruct one slice
in the volume. To provide a good proof of concept for
this reconstruction algorithm that would be less com-
putationally expensive than a full three-dimensional
reconstruction, we chose an axial slice (rather than a
transverse slice). Our decision is based on the fact that
reconstructing along the axial dimension presents the
greatest challenge. Spatial frequencies which have sig-
nificant components in the axial direction are attenu-
ated the most in the image formation process. The two
transverse dimensions are imaged according to identi-
cal principles, thus reconstructing in one of them can
serve as a validation for both. We chose two test spec-
imens, each having some unique attributes. The first
specimen, consisting of a bead in optical cement, is
symmetric and the object structure is embedded in
the volume. The second specimen, consisting of an
ion-milled wafer, does not have perfect symmetry and
the structure extends to the top edge of the volume.
In the first experiment, we embedded several 10um
diameter beads in optical cement. The homogeneous
beads have a refractive index that is .03 less than the
cement. We acquired an optically sectioned data set
of this specimen with an axial resolution of .2 ym. A
cropped region showing one bead in some of the images
is shown in Fig. 7. The data used in the reconstruc-
tion experiment consisted of a diagonal cut through
the cropped region of 10 images in the set. Some of
the intensity plots are shown in Fig. 9. The image data
projected onto the basis at different object resolutions
is shown in Fig. 9 as well. Fig. 10 shows the estimated
objects at the different resolutions and a comparison
between the expected object structure and the recov-
ered object. The grid resolution in this experiment is
lpm in both directions. As can be seen from the error
image, the object structure is recovered quite accu-
rately. The original object has symmetric structure
and the recovered shape is symmetric as well. The
specimen used for the second experiment consisted of
an ion-milled glass wafer. Due to error prone multiple
millings, the actual milled wafer pattern is defective



in that it does not have symmetric walls even though
the specifications have symmetric structure. The spec-
imen was prepared by filling the milled cavity with oil
that had a refractive index .08 less than the glass.
The optically sectioned image set of this specimen has
a .2pm axial resolution. A subset of the images are
shown in Fig. 8. For the reconstruction experiment,
we extracted a line of intensity data from each one of
ten images in the set. The line (horizontal) was ex-
tracted above the midpoint of the shown images at a
point such that two of the depressions in the pattern
are captured. The original image data is shown in
Fig. 11 along with the results of the image data pro-
Jected onto the basis at different object resolutions.
Fig. 12 shows the estimated object at different res-
olutions and a comparison of the final reconstructed
object and the expected object. The grid resolution
in this experiment is .3 in the x-direction and .03 in
the z-direction. Since the exact nature of the defects
introduced by the milling process is not known, the
expected object shown is merely a hypothesis. As can
be seen, barring some small extraneous patches, the
structure of the recovered object is very close to that
of the expected object. The lack of symmetry that is
apparent from the DIC images appears in the recov-
ered object as well.

6 Discussion and Conclusion

The analysis of DIC images presents a substantial
challenge due to the nonlinearity of the image forma-
tion process and the out-of-focus artifacts. We tackle
the problem by developing two tools. First, the com-
putational model has been discussed in detail in previ-
ous publications. The second is the hierarchical recon-
struction algorithm discussed here. As shown by the
results, the nonlinear optimization is powerful enough
to recover axial and transverse structure and quanti-
tate the optical properties of the object. Even though,
we initialize the optimization far from the actual solu-
tion, we are able to converge very close to it. In order
to successfully converge to solutions when faced with
highly nonlinear error surfaces, we developed a hier-
archical method. This method represents the object
with respect to a wavelet basis in order to systemat-
ically reduce the dimension of the search space and
arrive at a chain of object estimates at finer and finer
resolutions. The intensity data also has to be decom-
posed In a manner censistent with the object decom-
position. Since the imaging process is nonlinear, we
developed a method by which image features present
at the different object resolutions are explicitly cap-
tured in a particular basis at each level. The real data
can then be projected onto the basis at each resolu-
tion level to obtain a hierarchical representation of the
data. Our results show that such an algorithm is capa-
ble of recovering structure along all directions. By re-
covering the structure of two very different specimens,
we illustrate the capabilities of the reconstruction al-
gorithm. We are currently performing reconstruction
experiments in all three dimensions. Since the compu-
tational model is already capable of simulating three
dimensional objects, the extension merely applies to
the hierarchical reconstruction method.
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