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Abstract

A central problem in stereo matching by computing corre-
lation or sum of squared differences (SSD) lies in selecting
an appropriate window size. The window size must be large
enough to include enough intensity variation for matching
but small enough to avoid the effects of projective distor-
tion. If the window is too small and does not cover enough
intensity variation, it gives a poor disparity estimate, be-
cause the signal (intensity variation) to noise ratio is low.
If, on the other hand, the window is too large and covers
a region in which the depth of scene points (ie., dispar-
ity) varies, then the position of mazimum correlation or
minimum SSD may not represent correct matching due to
different projective distortions in the left and right images.
For this reason, a window size must be selected adaptively
depending on local variations of intensity and disparity.

The stereo algorithm we present selects a window adap-
tively by evaluating the local variation of the intensity and
the disparity. We employ a statistical model that repre-
sents uncertainty of disparity of points over the window:
the uncertainty is assumed to increase with the distance of
the point from the center point. This modeling enables us
to assess how disparity variation within ¢ window affects
the estimation of disparity. As a result, we can compute
the uncertainty of the disparity estimate which takes into
account both intensity and disparity variances. So, the al-
gorithm can search for a window that produces the estimate
of disparity with the least uncertainty for each pizel of an
image. The method controls not only the size but also the
shape (rectangle) of the window. The algorithm has been
tested on both synthetic and real images, and the quality of
the disparity maps obtained demonstrates the effectiveness
of the algorithm.

1 Introduction

Stereo matching by computing correlation or sum of
squared differences (SSD) is a basic technique for obtain-
ing a dense depth map from images [6][2][3]{12][10][7]. As
Barnard and Fischler [1] point out, ”a problem with corre-
lation (or SSD) matching is that the patch (window) size
must be large enough to include enough intensity variation
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for matching but small enough to avoid the effects of pro-
jective distortion.” If the window is too small and does not
cover enough intensity variation, it gives a poor disparity
estimate, because the signal (intensity variation) to noise
ratio is low. If, on the other hand, the window is too large
and covers a region in which the depth of scene points (ie.,
disparity) varies, then the position of maximum correla-
tion or minimum SSD may not represent correct matching
due to different projective distortions in the left and right
images. For this reason, a window size must be selected
adaptively depending on local variations of intensity and
disparity.

However, most correlation- or SSD-based stereo meth-
ods in the past have used a window of a fixed size that
is chosen empirically for each application. There has been
little research for adaptive window selection. As a relevant
technique, Panton [10] warped the image to account for pre-
dicted terrain relief, but failed to consider contribution due
to intensity variation. Levine et. al [4] changed the win-
dow size locally depending on the intensity pattern, but
uncertainty in matching due to the variation of unknown
disparities was unaccounted for.

The difficulty of a locally adaptive window lies, in fact,
in a difficulty in evaluating and using disparity variances.
While the intensity variation is directly obtained from the
image, evaluation of the disparity variation is not easy,
since the disparity is what we intend to calculate as an end
product of stereo. To resolve the dilemma, an appropriate
model of disparity variation is required which enables us to
assess how disparity variation within a window affects the
estimation of disparity.

The stereo algorithm we propose in this paper selects a
window adaptively by evaluating the local variation of the
intensity and the disparity. We employ a statistical model
that represents uncertainty of disparity of points over the
window: the uncertainty is assumed to increase with the
distance of the point from the center point. This modeling
enables us to compute both a disparity estimate and the un-
certainty of the estimate. So, the algorithm can search for
a window that produces the estimate of disparity with the
least uncertainty for each pixel of an image. The method
controls not only the size but also the shape (rectangle) of
the window.

In this paper, we first develop a model of stereo match-
ing in section 2. Section 3 shows how to estimate the most
likely disparity and the uncertainty of the estimate based
on the modeling in section 2. These two sections provide
theoretical grounds of our proposed algorithm. In section
4, we presents a complete stereo algorithm which selects ap-
propriate window size and shape adaptively for each pixel.
Section 5 provides experimental results with real stereo im-
ages. The quality of the disparity maps obtained demon-
strates the effectiveness of the algorithm.



2 Modeling Stereo Matching

We will first develop a statistical model of the difference of
intensities of two images within a window. The analysis is
based on the uncertainty model presented in [8]. Let the
stereo intensity images be fi(z,y) and fo(z,y). Assume
that the baseline is parallel to the x-axis, and fi(z,y) and
f2(z,y) come from the same underlying intensity function
with a disparity function d,(z,y) and additive noise. Then
f1 and f; are related by

fi(z,y) = fo(z + dr(=,9), y) + n(=z,¥), (1)

where n(z,y) is Gaussian white noise
n(z,y) ~ N(0,207). )

The value o2 is the power of noise per image.”

To simplify the notation, suppose that we want to com-
pute the disparity at (z,y) = (0,0), i.e., the value 4,(0,0).
Also, suppose a window W = {(¢,7)} is placed at the
correct corresponding positions in both images, that is,
at (0,0) in image fi(z,y) and at (d,(0,0),0) in image
f2(z,y). Figure 1 illustrates the situation. Then, the value
of fi at (§,n) in the window is f1(¢,7), and that of f; is
f2(€+d.(0,0),7). These values would be the same, except
the noise component, if the disparity d.(¢, ) were constant
and equal to d.(0,0), but in general they are not. By ex-
panding f2(é+d.(¢,7),7n) at £4+d.(0,0) and using equation
(1), we see that the difference of intensities between f; and
f2 at (¢, 7n) in the window can be approximated as

f](£1 7]) - f2(€ + dr(o’o)»n)
~ (d(ym) - dr(O,O))a%fz(E +d,(0,0),m) + n(6, m).
3)

At this point, let us introduce the following statistical
model for the disparity d,(£,7) within a window:

L& - 40,0 ~ N (00y/Br), @

where a4 is a constant that represents the amount of fluc-
tuation of the disparity. That is, this model assumes that
the difference of disparity at a point (£,7) in the window
from that of the center point (0,0) has a zero-mean Gaus-
sian distribution with variance proportional to the distance
between these points. In other words, the expected value
of the disparity at (£, 7) is the same as the center point,
but it is expected to fluctuate more as the point is far-
ther from the center.! Or, in terms of the scene, the sur-
face covered by the window is expected to be locally flat
and parallel to the baseline, but it is less certain as the
window becomes larger. We also assume that the image
intensity derivatives 85_5 f2(¢,7) within a window follow a

*We use 202 in equation (2) as variance of n(z, y) to indicate
that it includes noise added to both f; and fa.

tThe statistical model of (4) can be shown equivalent to as-
suming that d,(£,7) is generated by Brownian motion (refer to
[5][11]). More generally, we can assume d,(£,7) to be a fractal.
This corresponds to choosing a different degree of €2 + 72 in the
variance in (4). The Brownian motion is the simplest case in
which the degree is % However, our preliminary experiments
have shown no noticeable advantage of using a general fractal

assumption.
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Figure 1: Illustration of n,(£,7n) in one dimension. The
graph at the top shows fi(z); the middle one, f2(z) (the
thicker curve) with fi(z) shifted by d,(0) (the thinner
curve); the bottom omne, d.(z). The region indicated by
the very thick lines on the axes indicate the region covered
by the window.

zero-mean Gaussian white distribution,* and that intensity
derivatives B% f2(€,m) and disparities d.(¢,7) are mutually
independent.

These assumptions allow us to model a statistical dis-
tribution of the intensity difference (3). Let us denote the
right hand side of equation (3) by n,(¢,7n). First, we com-
pute the mean and variance of n,(§,7):

E[n,(¢,7)]

= Bld(&n) - d0,00E |2

BE fz(ﬁ + dr(01 0),7])]
+E[n(,7)] =0 (5)

B [(na(&,))’]

E [((dr(f,n) - dr(O,O))a%fz(ﬁ + dr(0,0),7l)) ]
+E 2(d,.(€, ") - df‘(OaO))'

: (%h(& + dr(o,O),n)) a(€, n)] + E [(n(¢,m))?]

E [(d.(¢,7) ~ d.(0,0))*] -

$This is also equivalent to assuming the pattern f2(£,7) to
be result of Brownian motion: i.e., locally it has a constant
brightness, but has more fluctuation as the window becomes
bigger.



‘E [(B%fz(u dr(o,O),n)) ] +E [(n(&,m))*]
20: +afad\/ma

af = E [(%_ﬁ(f'{"dr(o’o)v")) ] *

We can show that n,(, n) is white noise and its distribution
can be approximated by a Gaussian distribution with the
above mean and variance. That is,

nﬂ(Ev") fl(svn)_f2(£+dr(030)7n)
~ N (0,2(7,21 +araay/E + 7]2) . (8)

The intuitive interpretation of (8) is as follows. Referring
to figure 1, n,(¢,n) is the difference between f; and f»
at (£,7n) within a window when the window is placed at
the corresponding positions for obtaining the disparity at
(0,0). If there is no additive noise n(z,y) in the image
(i.e., o, = 0) and the disparity is constant within the win-
dow (i.e., ag = 0), then the two images match exactly, and
n,(€,m) must be null. Otherwise, however, the difference
has a value which shows a combined noise characteristic
which comes from both intensity and disparity variations.
As derived in (8), it can be modeled by zero-mean Gaus-
sian noise whose variance is a summation of a constant
term and a term proportional to 4/¢% + 5%. The constant
term is from the noise added to the image intensities. The
second term is from uncertain local support. That is, while
the points surrounding the center point in the window are
used to support the matching for the center point, it should
be noted that these points may actually increase the error
in computing the disparity of the center point. This is be-
cause, in general, the disparity of the surrounding points
deviates from that of the center point. This uncertainty is
represented as if the intensity signals have additional noise
whose power is proportional to the distance from the center
point in the window. If the disparity is constant over the
window (i.e. ag = 0), the additional noise is zero. If the
disparity changes more in the window (i.e., the larger a4 is),
its effect becomes larger and the information contributed
by the surrounding points becomes more uncertain.

(6)

where

(M)

~
~

3 Estimating Disparity and Its Uncertainty

Now, we will show how the disparity and its uncertainty
can be estimated based on the modeling presented in the
previous section. Let do(z,y) be an initial estimate of the
disparity d,(z,y). By using the Taylor expansion, equation
(8) becomes

fr(6m) = Fa(€ + do(0,0),m) - Ad(%fz(f + do(0,0), 7)
na(Ea"])v (9)

where Ad is an incremental correction of the estimate to

be made, such that Ad = d,(0,0) — do(0,0). Dividing both

\/20;‘1 + agog/E + n? yields

f](€777) - fZ(f + dO(Ovo)’ 77) - Ad%fZ(E + d0(070)7 77)

\/20,2, + ajagr/E +0?

sides of this equation by

na(&,m),

(10)
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&) = —nel&m) ___ j5 Gaussian white
20} +aagy/e2+n?

where n,(

noise such that

nn(€$n) NN(O,]). (11)
By letting
¢1(E! T]) fl(gvn)_f2(§+dﬂ(070)sn) (12)
\/;a?; +ajaa/E + 12
2 f2(€ + do(0,0),
$2(6m) h D00 gy
\/Zcri + agaa/€ + 77
we have
61(&,m) — Adgz(&,7) = nalé,n)- (14)

Now, by sampling ¢; and @ at (£;,7;) in the window W
we can define §;; as

& = $1(€i,m5) — Adda(&iym5) = na(&i,m5)- (15)

From equation (11), the conditional probability density
function of {;; given Adis

_(#1(&,m5) — Adga(&i,m5))?
2

p(€is1Ad) = \/Lz-;e""(

(16)
Since n, (¢, 7) is white noise, ¢;; are mutually independent.
So we get

P&t ew)lad) = TT p(éslaa),
1, JEW

(17

where p(&;;(i,7 € W)|Ad) is the conditional joint probabil-
ity for the points in the window, and iGew denotes the
product over the window. From the continuous version of
Bayes’ theorem,

p(&ii(i,5 € W)|Ad)p(Ad) _
T p(€ii(ird € W) ADp(Ad)A(AD)
(18)
Assuming no prior information of Ad (i.e., p(Ad) =
constant), substitution of (16) into (18) yields

p(Ad[&;(i,5 € W) =

. 1 (Ad—A”d)Z)
Ad|&;(3, W)) = ——exp|————F5")>
p(Ad|&;(5,5 € W) oaas P ( =y
(19)
where
. 2 sew (@1(&, m5) b2 (&, mj))
Ad = 2 20
Z,“jew(‘ﬁ?(&»rh’))z ( )
oA ! (21)

Ei,jew(¢2 (€i1 771))2 ’
where E‘,‘j w denotes the summation over the window.
Equation (19) says that the conditional probability density
function of Ad given the observed stereo intensities over the
window becomes a Gaussian probability density function.
The mean value and the variance of the Gaussian proba-
bility are Ad and 0% , computed with equations (20) and
(21). That is, Ad and o2 4 provide the maximum likelihood
estimate of the disparity (increment) and the uncertainty
of the estimation for the given window W, respectively.
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Figure 2: Window expansion

ag and oy are parameters that represent the disparity

fluctuation and the intensity fluctuation, respectively. We

estimate them locally within the window from equations
(4) and (7),

& 1 :E: (do(&i,m:) — do(0,0))*

Ve +n?
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where N,, is the number of the samples within the window.
These parameters change as the shape and size of a window
changes.

4 TIterative Stereo Algorithm with an Adaptive
Window

In the previous sections we have developed a theory for
computing the estimates of the disparity increment and its
uncertainty, which take into account the fact that not only
the intensity but also the disparity varies within a window.
We now describe the complete stereo algorithm based on
the theory:

1. Start with an initial disparity estimate do(z,y). This
initial estimate can be obtained by any existing stereo
algorithm.

2. For each point (z,y), choose a window that provides

the estimate of disparity increment having the low-
est uncertainty. For the chosen window, calculate the
disparity increment by (20) and update the disparity
estimate by di11(z,y) = di(z, y) + Ad(z,y).
Here we need a strategy to select a window that re-
sults in the disparity estimate having the lowest uncer-
tainty. In the discussions so far the shape of the win-
dow can be arbitrary. In practice we limit ourselves to
a rectangular window, as illustrated in figure 2, whose
width and height can be independently controlled in
all four directions. Our strategy is as follows:

(a) Place a small 3 x 3 window centered at the pixel,
and compute the uncertainty by using (22), (23),
and (21).

Expand the window by one pixel in one direction,
e.g., to the right z+, for trial, and compute the
uncertainty for the expanded window. If the ex-
pansion increases the uncertainty, the direction
is prohibited from further expansions. Repeat
the same process for each of the four directions

(b)
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Figure 3: Synthesized stereo images, with a ramp intensity
pattern with Gaussian noise: (a) Left image; (b) Right
image; (c) Disparity pattern; (d) An isometric plot of the
disparity pattern

z+,z—,y+, and y— (excluding the already pro-
hibited ones).

Compare the uncertainties for all the directions
tried and choose the direction which produces the
minimum uncertainty.

Expand the window by one pixel in the chosen
direction.

Iterate steps (b) to (d) until all directions become
prohibited from expansion or until the window
size reaches to a limit that is previously set.

(e)

Thus, our strategy is basically a sequential search for
the best window by maximum descent starting with
the smallest window

. Iterate the above process until the disparity estimate
d;(z,y) converges, or up to a certain maximum num-
ber of iterations.

Now, by using synthesized data we will examine how the
window is adaptively set by the stereo algorithm for each
position in an image, and demonstrate its advantage. Fig-
ures 3 (a) and (b) show the left and the right images of the
test data. In generating the data set, a linear ramp in the
direction of the baseline is used as the underlying intensity
pattern. It is deformed according to the disparity pattern
in figures 3 (c) and (d), and Gaussian noise is added in-
dependently to both images. We apply the iterative stereo
algorithm to the resultant data.

First, we will examine the result of window selection at
several representative positions shown in figure 4. The win-
dows selected at those positions are drawn by dashed lines
in figure 5 relative to the disparity edges drawn by solid
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Figure 4: Positions for which size and shape of selected
windows are examined.
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Figure 5: Selected windows for each position

lines.! For example, at PO a window has been expanded
to the limit for all directions, whereas at P1 expansion to
the right has been stopped at the disparity edge. At P5,
a window is elongated either vertically or horizontally, de-
pending on the image noise, but consistently avoids the
corner of the disparity jump.

Next, let us examine the computed disparities. For com-
parison, we also have computed disparities by running the
same iterative algorithm but with a fixed window size; that
is, in Step 2 of the stereo algorithm we use a window of pre-
determined size rather than the window selection strategy.
We run with two window sizes, 3x3 and 7x 7. Figures 6 (a)
and (b) show the result produced by fixed window sizes, and
(c) by the adaptive-window algorithm. We can clearly see
the problem with using a predetermined fixed window size.
A larger window is good for flat surfaces, but it blurs the
disparity edges. In contrast, a smaller window gives sharper
disparity edges at the expense of noisy surfaces. The com-
puted disparity by the proposed algorithm shown in figure
6 (c) shows both smooth flat surfaces and sharp disparity
edges. The improvements are further visible by plotting
the absolute difference between the computed and true dis-

§ Actually these are the average of ten runs with different
noise to obtain the general tendency, rather than accidental set
up.
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parities as shown in figure 7, with a table that lists their
mean error values. The adaptive-window algorithm has the
smallest mean error, but more importantly we should ob-
serve that the algorithm has reduced two types of errors.
A small fixed window results in large random error every-
where. A large fixed window removes the random error,
but introduces systematic errors along the disparity edges.
The adaptive-window based method generates small errors
of both types. In fact, we have shown that at each point the
expected value of the error by the adaptive-window method
is always smaller than or equal to that produced when any
fixed-size window is used [8].

Figure 6: Isometric plots of the computed disparity by: (a)
a 3 x 3 window; (b) a 7x 7 window; (c) the adaptive window
algorithm.

Window Mean Error

Value (pixel)

3x3 0.22

7Tx7 0.20
Adaptive 0.08
Window

Figure 7: Difference between the true disparity and the
computed disparity: (a) by a 3 x 3 window; (b) by a 7 x 7
window; (c) by the adaptive window.



5 Experimental Results

We have applied the adaptive-window based stereo match-
ing algorithm presented in this paper to real stereo images.

Figure 8 shows images of a town model that were taken
by moving the camera vertically. The disparity, therefore,
is in the vertical direction.

For initial disparity estimates, we have used a technique
of multiple-baseline stereo matching [9] which can remove
matching ambiguities due to repetitive patterns, especially
in the top portion of the image. Figure 9 (a) shows the fi-
nal disparity map computed by the adaptive window algo-
rithm. In addition, the uncertainty estimate computed by
the algorithm is shown in figure 9 (b): increasing brightness
corresponds to higher uncertainty. With this uncertainty
estimate we can locate the regions whose computed dispar-
ity is not very reliable (very white regions in figure 9 (b)).
In this example, they are either due to aliasing caused by
the fine texture of roof tiles of a building (in the middle part
of the image) or due to occlusion (the others). The dispar-
ity estimates of those uncertain parts can be discarded for
later processing.

Figure 10 shows perspective views of the recovered scene
by texture mapping the original intensity image on the con-
structed depth map and generating views from new posi-
tions which are outside of the original stereo views. They
can give an idea of the quality of reconstruction. This stereo
data set is the same one used in [6]. We can observe a no-
ticeable improvement of the result over the previous result.
Also it should be noted that this is extremely narrow base-
line stereo: the baseline is only 1.2 cm long and the scene
is about 1m away from the camera, thus the depth to the
baseline ratio is approximately 80.

Figures 11 (a) and (b) show another set of real stereo
images which are top views of a coal mine model. Figure
12 (a) shows the isometric plot of the computed dispar-
ity. For comparison, an actual picture of the model taken
from roughly the same angles is given in figure 12 (b). The
shapes of buildings, a A-shaped roof, a water tank on the
roof, and a flat ground have been recovered without blur-
ring edges.

6 Conclusions

In this paper, we have presented an iterative stereo match-
ing algorithm using an adaptive window. The algorithm
selects a window adaptively for each pixel. The selected
window is optimal in the sense that it produces the dis-
parity estimate having the least uncertainty. By evaluating
both the intensity and the disparity variations within a
window, we can compute both the disparity estimate and
its uncertainty which can then be used for selecting the
optimal window.

The key idea for the algorithm is that it employs a sta-
tistical model that represents uncertainty of disparity of
points over the window: the uncertainty is assumed to in-
crease with the distance of the point from the center point.
This model has enabled us to assess how disparity variation
within a window affects the estimation of disparity.

An important feature of the algorithm is that it is com-
pletely local and does not include any global optimiza-
tion. Also, the algorithm does not use any post-processing
smoothing, but smooth surfaces are recovered as smooth
while sharp disparity edges are retained.
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The experimental results have demonstrated a clear ad-
vantage of this algorithm over algorithms with a fixed-size
window both on synthetic and on real images.
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Figure 9: Computed disparity and uncertainty for the "town” stereo data: (a) Disparity map; (b) Uncertainty;

Figure 10: Perspective views of the recovered scene: (a) from an upper left position; (b) from an upper right position.
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(a)

Figure 11: ”Coal mine” stereo data set: (a) Lower image; (b) Upper image.

(b)
Figure 12: Isometric plots of the computed disparity map and their corresponding actual view: (a) (b) Isometric plot and
corresponding view from the upper right corner.
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