IMAGE UNDERSTANDING

Immersion info Visval Media:
New Applications of Image
Understanding
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,MAGE UNDERSTANDING HAS TRA-
ditionally been applied to recognition prob-
lems, such as those that arise in military, fac-
tory, and autonomous vehicle applications.
Recently, IU technologies are finding a place
in the use of images to interface people and
machines. Such applications entail greater
interaction between the user and the visual
data—individuals can immerse themselves
in the pool of visual information, systemati-
cally navigate through the data, and extract
the necessary material or experience the de-
sired sensation. We've developed two such
applications: a digital library that brings vi-
sual data to the user, and virtualized reality
that brings users to the visual data. The dig-
ital library calls on IU techniques such as
scene segmentation and content analysis, and
joins together natural language analysis and
IU. Virtualized reality uses precise, dense, and
video-rate stereo reconstruction techniques.

Creation und exploration of a
digital video library

With the growth and popularity of multi-
media computing technologies, video is
gaining importance and broadening its uses
in libraries. Digital video libraries hold great
potential for education, training, and enter-

USING IMAGES TO INTERFACE MACHINES AND HUMANS
OFFERS AN EXCITING NEW APPLICATION DOMAIN FOR IMAGE
UNDERSTANDING. THIS ARTICLE DESCRIBES TWO SUCH
APPLICATIONS: DIGITAL LIBRARIES THAT BRING VISUAL DATA
TO THE USER, AND VIRTUALIZED REALITY THAT BRINGS USERS

tainment; but to achieve this potential, the in-
formation embedded in the digital video li-
brary must be easy to locate, manage, and
use. Searches in a large data set or lengthy
video can take a user through vast amounts of
material irrelevant to the search topic. A typ-
ical database search by keywords (for ex-
ample, by title) only references images; it
does not directly search for them. Such a
search is not appropriate or useful for the dig-
ital video library, because it does not give the
user a way to know the image’s contents,
short of viewing it. We need new techniques
to organize these vast video collections so
that users can effectively retrieve and browse
their holdings, based on the holdings’ content.

Visual indexing, retrieval, and presenta-
tion. For effective use of the digital video li-

TO THE VISUAL DATA.

brary, video must be segmented, indexed,
searched, manipulated, and presented ac-
cording to its content. IU plays a critical role
in these operations. One of the first capabil-
ities required for the creation of a digital
video library is the segmentation, or para-
graphing, of video into meaningful groups.
Each group can be abstracted by a represen-
tative frame, which can be the basis for
image-content search.

Any textual information attached, such
as title, domain, and date, can help quickly
filter video for locating potential items of
interest. However, subsequent queries are
usually visual and refer to images them-
selves—for example, “Find video with the
same person,” and “Find the same scene with
similar camera motion.” Searches usually
produce multiple hits. Browsing can help
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F|gure 1. The Informedia Digital Video LiBrﬁry s}stéﬁﬁntegmles image, speech, and language understanding.

users rapidly filter these hits to obtain the
precise target information. While browsing
video is not as casy as browsing text, we can
take advantage of the human visual system,
which is adept at quickly. holistically view-
ing an image. The library might simultane-
ously present numerous icons (static frames)
or motion icons (short motion sequences) of
the segments in separate windows.

Some of these visual query capabilities
rely on image-processing methods based
mostly on image statistics and image match-
ing. For example. key-frame detection, based
on MPEG (Moving Picture Experts Group)
codes. can parse video into scenes. Statistics
of other primitive image features, such as
color histograms, shape, and texture mea-
sures. have proved useful for indexing,
matching. and characterizing images. Some
algorithms determine camera work, such as
panning and zooming, and others detect tran-
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sitions between scenes, such as fades, cuts,
and dissolves. A commercial image database
system, QBIC, incorporates many of these
capabilities into a visual query.!

Video is more than images. Although cur-
rent successtul efforts at visual querying of
image databases are founded on indirect
image statistical methods, they fail to cap-
ture and exploit the massive information con-
tained in video. Video is temporal, spatial.
and often unstructured; the combined video
signal and audio signal convey an abundance
of information.

The audio signal includes language infor-
mation in the form of narration and dialogue
that, when transcribed, provide direct indices
to the video content. Natural language analy-
sis of the transcript, together with production
notes and other text information about the
video, can determine the narrative’s subject

arca and theme. This understanding can be
uscd to generate summaries of each video
segment for icon labeling, browsing, and in-
dexing. The language information also pro-
vides critical cues to U tasks, as evidenced
by many successful programs that use col-
lateral data for recognition.>* The audio sig-
nal conveys other information. including
pauses, silence, music, and laughter. These
bits of information can supplement the other
structured descriptors. For example. pauscs
might be useful in identifying natural start
and stop positions (with some phase differ-
ence) for video paragraphing.

Each appropriately sized video clip in the
digital video library should therefore have a
far richer description than the context-free
image-statistical methods can provide. Each
description would include a full text transcript
with links to corresponding sections of the
audio signal, scene segments. individual scene
characterizations. a representative single
image icon, and a short skim video (which
we’ll describe later), in addition to the full
video itself. Scene characterizations would
consist of camera motion, representative ob-
jects, object motion, caption text. and a
scenery classification (such as outdoor and in-
door). With such an organization. the digital
video library user should be able to conduct
content retrieval, as well as image retrieval.
based on image, audio. and other context cuces.

Informedia: integrating speech, language,
and image understanding. Carncgic Mel-
lon’s Informedia Digital Video Library pro-
ject, funded by the NSF, ARPA, and NASA.
is developing intelligent, automatic mecha-
nisms to populate the library and allow full-
content knowledge-based search. retricval.
and presentation. Leveraging two decades of
ARPA-funded research in speech. language.
and image understanding. Informedia inte-
grates these technologics for efficient cre-
ation and exploration of the library.

Figure 1 shows the overview of the Infor-
media system. Using a high-quality speech
recognizer, Informedia converts each video-
tape’s sound track to a textual transcript. A
language-understanding system analyzes and
organizes the transcript, then stores it in a
full-text information retricval system. U
techniques segment video sequences. detect
and identify objects, obtain a visual charac-
terization of the scene, identify the repre-
sentative images for the skim video. and
match images by incorporating language and
speech information.
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Figure 2. Analysis results of a video clip. Informedia segments the video info scenes, detects and classifies camera motions, detects significant objects (human faces and text), and

evaluates word relevance in the franscript.

Awtomatic creation of skim video. A good ini-
tial example of Informedia’s integrated ap-
proach is the automatic creation of skim
video. The original data in the Informedia Li-
brary is generally a one-hour full-feature
broadcast. A skim video is a very short syn-
opsis comprising the significant words and
images. with which the user can grasp the
whole content of the original video. During
video playback for browsing, a user can
choose to compact the video as much as
needed. One of the project’s goals is to auto-
matically reduce an hour-long video's play-
back time to a few minutes.

The critical aspect of compressing a video
is context understanding. which is the key to
choosing the images and words that the skim
video should include. This requires the inte-
gration of language and image understand-
ing. Informedia examines segment breaks
produced by image processing, along with
the boundaries of topics identified by the lan-
guage processing of the transcript. It evalu-
ates the relative importance of the scenes
based on the corresponding objects that ap-
pear. the associated words and sounds, and
the video scene’'s structure. Figure 2 shows a
result of analyzing a video clip by various
speech. language, and image understanding
techniques.
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Speech transcription and language analysis.
Language understanding works on the tran-
script. Effective use of the video information
assets requires automatic generation of tran-
scripts by speech-recognition technology. be-
cause not all video is closed-captioned. The
Informedia system uses the Sphinx-II
speech-recognition system,* which is a large-
vocabulary, speaker-independent, continu-
ous speech recognizer developed at Carnegie
Mellon. Applying the speech-recognition
system to transcript generation presents a
number of challenges, including dealing with
multiple unknown microphones, segmenting
spontaneous fluent speech, and dealing with
an unlimited vocabulary.

For the moment, we are using manually
edited, semiautomatically generated tran-
scripts. The initial language analysis com-
putes word relevance by the well-known
Term Frequency/Inverse Document Fre-
quency (TF/IDF) technique.’ Word rele-
vance, plotted as the second row from the
bottom in Figure 2, is each word’s frequency
in a particular script divided (normalized) by
its frequency in a much broader corpus. In
other words, if a word that seldom appears
in a general document appears often in a
video, it signifies the word’s relative impor-
tance in the video.

We also use specch recognition to detect
transitions between speakers and topics that
are usually marked by silence or low-energy
areas in the acoustic signal.

Scene segmentation and motion analysis. We
use comparative histogram disparity mea-
sures to detect scene breaks. This technique,
successfully used for image-query systems,
is robust enough to maintain high levels of
accuracy, yet efficiently computable directly
from MPEG codes. By detecting significant
changes in the weighted color histograms of
successive frames, Informedia can separate
image sequences into scenes. Figure 2 shows
the disparity plot (the second row) and the
resultant scene breaks with the first frame
from each scene (the first row).

One important clue for scene characteri-
zation is camera and object motion. We clas-
sify the camera motion as static, pan, or zoom
(see the third row in Figure 2) by examining
the optical flow vectors. Velocity vectors for
pans and zooms have distinct statistical char-
acteristics. Global motion analysis distin-
guishes between object motion and actual
camera motion.

Object detection: fuce and text. Informedia
also identifies significant objects. For the
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time being, we have chosen to deal with
human faces and text (caption characters).
Human faces are among the more interest-
ing objects in video. A human interacting in
an environment is a common theme in video,
and the talking-head image is common in in-
terviews and news clips. Recognizing the
same anchorperson in a news clip helps un-
derstanding the start and end of a story. Our
human-face detection system is based on the
multineural network arbitration method,®
which can detect frontal faces over a fairly
wide range of sizes (see Figure 3a). Cur-
rently, it can detect over 90% of more than
300 faces in 70 images, while producing ap-
proximately 60 false detections. Because it
is a learning system, it can be trained to de-
tect other objects as well.

Text characters in visual frames usually
provide significant information regarding a
scene’s content. Often, important informa-
tion, such as statistics, is not verbalized but
is included in the visual frames for viewer in-
spection. We extract text regions from video
frames and supply them to the optical reader
to convert to textual information (Figure 3b).

Extracting the skim video. The previous
analyses segment and characterize the video.
Informedia associates each segment with the
transcript, word relevance, motion, object
(human face) appearance, caption text, and
audio level, as shown in Figure 2. The next
task is to extract and order the significant
parts of the video and audio tracks to create
the skim video.

First, to select scenes for the skim, Infor-
media analyzes word relevance. The number
of scenes used in the final skim depends on
the compression rate. The compression rate
is typically set at 10:1. We have found that a
skim video with a rate as high as 20:1 can
still offer sufficient comprehension of the
video data.

The next step is to select video segments
corresponding to the selected words. The
video segment that corresponds to the timing
of the audio is not necessarily the best selec-
tion. Quite often, the important word and the
important video, while in the same scene, are
not synchronized. We use the video charac-
terization results to classify and rank frames
by a set of priority rules. Tentatively, we favor

(1) frames with human faces or text,

(2) static frames following camera motion,

(3) frames with human faces and text with
camera motion, and

Figure 3. Object detection in video: (a)} faces, (b} texi regions.

(4) frames at the middle of the scene (the
default).

Because the selected relevant word deter-
mines the audio length, we select only
enough image frames to fill the compressed
audio track.

We have also developed several heuristic
rules for the final selection and ordering of
skim frames. The choice of rules depends on
various conditions, such as the duration of
the words, scene contents, and the selection
of the previous frames. Figure 4 illustrates a
few examples of applying these rules, and
the resultant skim frames.

Although much room remains for im-
provement of this context-based method of
generating skims, this method illustrates the
potential power of integrated image, speech,
and language input for digital video library
applications. The ultimate goal is complete
systematic characterization of video data for
video-context-based indexing, retrieving,
and presentation.

Virtualized reality

Most visual media available today—
such as photographs, movies, and televi-
sion—share one aspect: a: “director” de-
cides the view of a scene while recording
or transcribing the event. Combining 3D
IU and computer graphics technologies,
we can eliminate this limitation and envi-
sion a new visual medium called virtual-
ized reality.

To create virtualized reality, an event is
captured by a number of cameras, positioned
to document the event from all viewpoints
(see Figure 5). They form multiple sets of
stereo configurations of cameras. A stereo
method computes the time-varying 3D struc-
ture of the event, described in terms of each
point’s depth and aligned with the pixels of
the image for a few of the camera angles
(called the transcription angles). Once the
real world has been virtualized, we can place
asoft, or virtual, camera at an arbitrary posi-
tion, and graphic techniques can render the
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2727 Selexted Frames for Skim

Figure 4. Skim video creation from the original video, incorporafing word relevance in the transcript, objects in video (humans and text), and camera motion. Informedia exiracts
four skim segments, using different rules: {a) For the word “doomed,” Informedia selects the portion of the scene with no or lttle motion, because typically the static region is the
focus of the scene; (b) The narrator uses 1.13 seconds (34 frames) fo utter the word “dinosaurs.” This segment also includes a portion from the next scene; (c) This segment has no
significant motion or object, so Informedia uses the portion directly corresponding to “changing”; (d) For the word “replacing,” Informedia chooses the latter portion of the scene,
which contains both humans and text.
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Figure 5. Virtualized reality. Many cameras cover a 3D virtualizing studio. The combination of stereo machines and graphics machines allows the users to he positioned at arbitrary
locations in the virtualized space.
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with the color image.

event as viewed from it. A user, wearing a
stereo-viewing system that can feed the soft
cameras’ positions, can freely move about in
the world and observe it.
Virtualized reality has many applications.
It is similar to virtual reality, but instead of
using an artificially built model, this system
starts with the real world.” Training can be-
come more realistic, safer, and more effec-
tive. A surgical operation recorded in a vir-
tualizing studio could be repeatedly revisited
) by medical students, who could view it from
various vantage points.® Telerobotic maneu-
vers for decommissioning hazardous nuclear
facilities could be rehearsed in a virtualized
environment that feels every bit as genuine as
the real world. True 3D telepresence could
be achieved by performing transcription and
view generation in real time. An entirely new
generation of entertainment media could be

Figure 6. Transcribing a scene by multiple cameras: {a) six images of u scene, (b} the recovered depth map aligned

developed: basketball enthusiasts and Broad-
way aficionados could experience the feel-
ing of watching the event from their pre-
ferred seat, or even a seat that changes as the
action progresses.

The 3D virtualization studio. Virtualizing
the real world requires imaging an event
from a large number of transcription angles.
The photo in Figure 5 shows a prototype of
such a 3D virtualization studio at CMU,
which uses a hemispherical dome five me-
ters in diameter. The dome currently houses
10 cameras, and will eventually have more
than 50. The studio synchronizes all cameras
to a common signal, and records each cam-
era’s output on a separate VCR that time-
stamps each frame with the Vertical Interval
Time Code (VITC) for later digitization. (We
use this off-line procedure because we can-

not simultaneously digitize the outputs of 10
cameras at 30 frames per second.) Figure 6a
shows six images of a scene transcribed
using our studio.

Multicamera stereo. Technologies for fast,
precise, and dense stereo matching are the
key components in virtualized reality. Stereo
has long beern a subject of intenisive study in
TU. Recently, precise and dense scene re-
construction has become possible using the
multibaseline stereo (MBS) technique.’ The
MBS algorithm takes advantage of the re-
dundancy of information in multiple images
of the same scene, for robust and precise
measurement.

In general, binocular stereo- techniques
measure distances by findin:g corresponding
points in the left and right images, and then
by triangulating to calculate distance. The
precision of stereo distance estimation in-
creases as the baseline (the distance between
a pair of cameras) increases. However, in-
creasing the baseline also increases the like-
lihood of mismatching the corresponding
points—causing a gross errot. In other words,
a trade-off exists between the desire for cor-
rect correspondence among images (using
narrow baselines) and for accurate estimates
of scene depth (using wide baselines).

The MBS technique eliminates this trade-
off by simultaneously computing the mea-
sure of correspondence among pairs of image
points from multiple cameras with different
baselines. Figure 6b shows the depth map re-
covered by applying the MBS algorithm to
the input scene. The depth map has 74 lev-
els for a depth range of two to five meters.

Video-rate stereo machine. One of the
greater challenges in IU has been develop-
ment of a real-time 3D steréo machine that
maps a 3D time-varying scene into a se-
quence of accurate dense depth maps. At
CMU we have built and demonstrated a
video-rate stereo machine based on the MBS
algorithm.'° This machine can produce over
1.2 million depth pixels of seven-bit reso-
lution per second, corresponding to a
200200 depth image at 30 frames per sec-
ond. This stereo-mapping capability will let
us virtualize the environment in real time,
capturing the appearance and geometry of
time-varying environments.

Generating novel views. The stereo program
produces a dense 3D description of a scene
for a transcription angle. The program
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aligns a depth map with a color map—the
point (i. j) in the depth map gives the dis-
tance of the color image pixel (7. j) from the
camera. Graphics workstations can render
the scene from other viewpoints with the
original color images texture-mapped onto
the rendered regions. Figure 7 shows real-
istic images of the scene in Figure 6
viewed from new viewpoints.

For rendering. the program first converts
the depth map into a triangle mesh represen-
tation. The most straightforward method of
converting every section of the depth map
into two triangles produces 40.000 meshes
for a 200x200 depth image. Adaptively plac-
g vertices for triangulation of the depth map
while limiting the maximum deviation can
reduce the number of triangles substantially
without affecting the output’s visual quality,
typreally by factors of 20 to 25 on typical
seenes. Today's graphics workstations have
no difficulty in rendering scenes of that com-
plexity with texture mapping at the video rate.

We can also virtualize moving scenes by
virtualizing cach frame. The resulting virtu-
alized reality movie can be played with the
viewer standing still, or can be observed by
a viewer who is moving in the scene inde-
pendently of the virtualized motion. Figure
8 shows seven frames of a basketball se-
quence from the reference transcription
pointand from a synthetically created mov-
g viewpoint.

Combining multiple scene descriptions. The
generated images in Figure 7 have holes, or
unpainted regions. These are surfaces that
are occluded by the front objects in the orig-
inal transeription angle but that are visible in
the new view angle. The 3D virtualizing stu-
dio captures images from multiple tran-
seription angles. Detection of occlusion
boundaries is not trivial, but once they are
detected. we can fill these holes using a scene
description from another transcription angle
in which that portion of the scene is not oc-
cluded. Morcover. even when occlusions are
not involved. the color image used for tex-
turing gets oo stretched when the viewing
angle is far from the transcription angle, re-
sulting in poor quality of the synthesized
image. To minimize this degradation, we
choose the most direct transcription angle for
cach viewing angle. Figure 9 shows an ex-
ample of combining the results from two
transcription angles. Such occlusionless, bet-
ter-quality images would provide a complete
teeling of immersion.

Figure 8. Motion sequence of a basketball scene: (a) originul reference images, (b} synthesized from a mbving; view-

point. The image starts left and above the original viewpoint and moves 1o the right.
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Beyond visual virtualized reality. To sup-
port training for visual-motor tasks, such as
telerobotic handling of hazardous materials,
we must reproduce both the geometry and the
mechanics of actual complex environments.
This will give the trainee a convincing expe-
rience of performing the task. Segmenting the
‘virtualized geometric model to objects, in-
ferring constraints, and assigning material
properties will transform the geometric model
into a mechanical model. Techniques for real-
time mechanical simulation, including the ef-
fects of collision, contact, and friction, will
make the virtualized objects respond appro-
priately to each other and to the trainee’s ac-
tions. Finally, a high-bandwidth, high-fidelity
haptic interface device, such as the one based
on Lorentz levitation,!! will let the trainee ma-
nipulate the virtualized environment using
tools that represent such devices as surgical
instruments and remote manipulators. Such
adevice will provide accurate and convincing
force feedback.

USING IMAGES TO INTERFACE
machines and humans offers an exciting new
application domain for IU. Applications that
immerse users in visual data—such as our
digital library and virtualized reality—will
lead to fertile new lines of investigation in IU.
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