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Abstract

Previous research on the kinematics of robotic manipulators
has addressed fixed configuration manipulator systems. In this
paper, we present a method of automatically generating the
kinematics of a new class of manipulators called Reconfigurable
Manipulators. Reconfigurable Manipulators are designed and built,
from a system consisting of links and joints of various sizes, as
appropriate for particular task. Generation of the kinematic
equations that govern a modular manipulator starts with geometric
descriptions of the units, or modules, as well as their sequence in the
manipulator. We propose an algorithm that automatically
generates the Denavit-Hartenberg (DH) kinematic parameters of a
reconfigurable manipulator. The DH kinematic parameters are then
used to obtain the forward kinematic transformation of the system.
We also address the problem of obtaining the inverse kinematics of
reconfigurable manipulators. In order to automate the inverse
kinematics and to make the procedure as general as possible, we use
a numerical approach. In the case of a redundant manipulator, we
exploit the extra degrees of freedom to achieve singularity
avoidance. We have implemented our algorithms on the prototype
Reconfigurable Modular Manipulator System (RMMS) being
developed in our laboratory.

1 Introduction

Traditionally, robot manipulators have been developed for
specific applications. While this is practical and sufficient for
industrial applications where the task can be well defined and
constrained, manipulators are also needed in unpredictable and
changing environments (such as those at a space station). In theory,
robot manipulators are flexible and can be reprogrammed for new
tasks. However, each robot’s configuration makes it capable of only
a limited number of applications. For example, a manipulator well-
suited to precise movement across the top of a table, would not be
capable of lifting heavy objects in the vertical direction. A solution
to this problem is to have a set of joints of various performance
characteristics and a set of links of various lengths which can be
assembled into a configuration appropriate for each task. This set
of joints and links of various specifications is called the
Reconfigurable Modular Manipulator System (RMMS) [18].

The first step in configuring a modular manipulator for a
specific task is to choose the desired components from the set of
joint and link modules of RMMS. The next step is to obtain the
forward kinematics to define the position and orientation of the end-
effector for a given set of joint angles. After this has been done, an
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inverse kinematic solution must be found to determine the joint
angles necessary to achieve a desired cartesian position and
orientation of the end-effector. While the derivation of the
kinematic equations of manipulators has been researched in depth
for fized con figuration manipulators {15, 17], work has not been
done for reconfigurable manipulators where the creation of the
kinematic equations must be done without a priori knowledge of the
number and arrangement of joint and link modules that compose
the manipulator.

This paper addresses the problem of automatically generating
the kinematics of the RMMS. Other researchers [9, 19, 11] have
started with a kinematic model, in the form of DH parameters (4],
and generated symbolic equations for the forward kinematics.
However, our approach is fundamental and addresses the problem of
automatically generating the DH parameters [7]. Starting with a
geometric description of the modules used, as well as their sequence
in the manipulator, we generate the DH parameters to completely
define the geometry of the manipulator.

Using the DH parameters, we create the system of kinematic
equations which must be solved to find the joint angles necessary to
achieve a desired position and orientation of the end-effector of the
manipulator. This is the inverse kinematics problem. In this paper
we present a method to numerically solve the inverse kinematics for
non-redundant, as well as redundant, manipulators. Our approach
for kinematics of redundant manipulators is based upon the
singularity robust inverse [12]. It exploits the redundancy to
achieve singularity avoidance with minimal additional computation.
We propose a configuration independent method for choosing the
design parameters necessary for the singularity robust method.

This paper is organized as follows: In Section 2, we briefly
describe the DH system for representing the kinematics of
manipulators.  Our approach to obtaining the kinematics of
reconfigurable manipulators is described in Section 3. In Section 4,
we outline a numerical method for obtaining the inverse kinematics
of a modular manipulator and present a method for expanding the
inverse kinematics algorithm to solve for the joint variables of
redundant manipulators.
Section 5.

2 Forward Kinematics of Fixed
Configuration Manipulators

Finally, we summarize our results in

The forward kinematic transformation for fixed configuration
manipulators are typically found by assigning DH link
frames (4, 14]. While many such methods exist [5, 17], we chose the
DH system which allows for easy derivation of the manipulator
Jacobian [14].

DH parameters represent a systematic way for the designer to
define the position and orientation of adjacent links in a
manipulator. The coordinate frames are aligned so that the z-axis
for link ¢ is the axis of rotation of the i** DH frame. The following
series of transformations describes the position and orientation of
the ¢** link in the i-1" frame:

Rotation(ziil,Oi) Translation(ai,o,di) Rotation(xi,ai].



The variables 0i, a;, di’ and a; are called the DH parameters of the
system [14]. The homogeneeus transformation matrix created from
the rotations and translations defined by the DH parameters is
called an A matrix of the system. By multiplying successive A
matrices, A1>A2~ . 'AN’ where N is the number of degrees of
freedom of the manipulator, one obtains the TN matrix. The T

matrix represents the position and orientation of the end-effector,

with respect to the base frame [14], as a function of the joint
variables (6, i = 1, N).

3 Forward Kinematics of Reconfigurable
Manipulators

A RMMS consists of a collection of modules, joints and links,
which can be combined as desired to create a manipulator. Given a
manipulator, a complete description of the configuration depends
upon: the number of modules, the types and shapes of the
individual modules, and the relative orientation between successive
modules. The module information must be fully specified in order
to determine the forward kinematics of a reconfigurable
manipulator.

RMMS includes a database containing a geometric description
of each joint and link module included in the system. For all
modules, the geometric description includes specifying homogeneous
transformations that describe the geometry of the link or joint
module.

We use one homogeneous transformation matrix to completely
specify the geometry of a link. It relates the position and
orientation of the connector at one end of the link relative to the
connector at the other. The homogeneous transformation for the
sample link depicted in Figure 1 is given by:

L = Trans(0,0,w)
y y
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Figure 1: Sample Module Specification for a Link

In order to incorporate the movement (or the degree of
freedom) effected by a joint, as well as its shape, into its geometric
description we use two homogeneous transformation matrices. We
begin our specification of the joint by placing a coordinate frame
with its z-axis coincident with the axis of rotation of the joint. The
directions of the x and y axes are chosen arbitrarily so long as they
form a right-handed orthogomal coordinate system. Also, the origin
of the coordinate frame may be located arbitrarily along the z-axis.
The origin of this frame designates the origin of the module, or the
joint origin. Figure 2 shows a sample module specification for a

joint.
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Figure 2: Sample Module Specification for a pivot joint
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The complete geometric description of the joint is then specified by
two transformations: IJD from the lower left connector to the origin

. . 3
of the joint, and °Ju from the origin to the upper right connector”.

The transformations:

]Jo = Trans(0,0,w_)Rot(x,-90°)
°Ju = Trans(O,-wb,h)Rot(x,90°)4

specify the geometry for the sample joint in Figure 2.

In order to allow for the modules to be assembled in any
sequence, the coordinate frames for the connectors, as assigned in
the database, all have the same orientation. Therefore, the implied
transformation between connectors of successive modules is the
identity transformation. However, a manipulator may be
configured with a twist, or orientation offset, between two modules.
We incorporate this into our model with an offset angle about the
z-axis at the connector. It represents the angle by which a module’s
orientation differs from its previously assigned home position. We
call the link offset angle o.

Thus the complete geometric transformation from the origin
of joint module j-1 to the origin of joint module 7 is given by:

“Mj = [*);; " Rot(z0)) - [L]; - Rot(z,,) - [’Jo]j
The above expression allows for the most general case. If two joints
are connected in sequence, without a link between them, then the
matrix [L]. is replaced by an identity matrix.

The above transformation equation expresses the geometry of
the modules, or more specifically the shape of the manipulator
between successive axes of rotation. It does not include the variable
of motion of the joints. We use this transformation equation solely
to determine the constant values of the DH parameters. The degree
of freedom, or the variable of motion, is included when we form the
DH A matrices. If the joint is revolute, we include the parameter 9i
as a variable, else the joint is prismatic and we include the
parameter d.‘ as a variable.

While the modular transformation given above can always be
achieved with a homogeneous transformation, it may not be DH in
nature. That is, it may not be possible to transform the coordinate
frame at the j—lul joint origin to that at the ]‘h origin with the four
DH transformations.

Figure 3 contains an example manipulator configured with
RMMS. The modular frames are labelled with [j=n] and the DH
frames are labelled with {i=n}, where n is the frame number. For
frames 0 and 2 the modular frames and the DH frames are identical.

3 y
A
C N a
{i=1]"
z N
. [i=1]
[&x
{i=0}
[j=0]

Figure 3: Example: 3 DOF Manipulator

3The specification of lower left and upper right is arbitrary.

4 . . . .

Note:  This modular transformation is not realized by a Denavit-Hartenberg
transformation; it requires a translation along the y-axis of the frame at the joint
origin.



However, the modular frame of the rotation joint, frame [j=1] in
Figure 3, cannot be reached from the base frame by DH
transformations. It requires a translation along the y-axis of the
base frame and the DH system only allows for translations in the x
and z directions. Therefore, the locations of modular frame [j=1]
and DH frame {i=1} must differ. (The disparity between the
modular frame [j=1] and DH frame {i=1} cannot be eliminated by
simply choosing an alternate orientation for the base axes. This
also yields a frame which cannot be transformed to frame [j=1]
through DH transformations.)

We cannot define the DH parameters for successive frames
solely from the modular transformation 1M,
have a transformation equation which involves the modular
transformations for the new joint and for the previous joint, as well
as the DH transformation for the previous joint. We define a
transformation from the i-1'* DH frame to the fh modular frame.
It is called "le and is given by:

It is necessary to

FIN. = (A,

BRSNSt
; - N M

i
where i'2N‘H is the transformation between the i-#* DH frame and

the j-1'* modular frame. [Ai_l]'1 is the inverse of the previous DH
transformation. The justification for this equation comes from the

transformation diagram in Figure 4.
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Figure 4: Transform relation between D-H and modular frames

3.1 Forward Kinematics Algorithm

In this section, we present a systematic algorithm to
automatically generate the DH parameters for any RMMS
manipulator. Our algorithm works without regard for the shapes of
the modules or their sequence in the manipulator. We model the
degrees of freedom of the manipulator in our model with equations
for the axes of rotation. Each joint axis is represented as a line in
three dimensional space defined by one point on the line and the
line’s direction cosines. As an example of our notation, consider the
equation of the z-axis of the base frame. It is {(0,0,0) (0,0,1)},
where the first subset is a point on the axis, and the second is the
direction cosines.

Each modular axis of rotation gives rise to a DH axis of
rotation; that is, the z-axis for each DH frame has the same
direction cosines as its corresponding modular axis of rotation. We
incorporate the geometric descriptions into our model with the
transformation i'le. (We use the geometric information to
calculate the displacements between the DH frames.)

Actual generation of the DH parameters involves determining
the relative position and orientation of successive DH frames. The
angle between the z, | and z; is the DH parameter ;. The
displacements between the origins of successive DH frames give rise
to the parameters a, and d.‘. They represent translations along the

X; and 2, , axes, respectively.
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In order to find a;, we need to know the equation of the X,
and x; axes. Before determining the equation for the X axis, we
classify the i** DH frame according to one of two classes: those for

which the z, axis is parallel or skew to the ., axis, and those for

which the z-axes intersect. To determine into which class the i#
frame falls, we assume that the z-axes intersect and then check for a
contradiction. That is, we assume that there exists a point of
intersection between the 2, axis and the z, axis. We find a
symbolic representation for that point on both z-axes and equate the
two representations for the point. If we discover an inconsistency,
then our assumption is incorrect and the z-axes must be parallel or
skew. Otherwise, they intersect.

If the z-axes intersect, then the direction cosines for x; are

found from the cross product of z; and z, The distance between

”
the origins of the i-1"* frame and the i** frame defines di' No

translation along X; is necessary to get to the i** frame. Therefore,
a; is equal to zero.

If the z-axes are parallel, then the direction cosines for X; are
defined so that X; lies along the common normal between the z axes.

To find the equation of the common normal, we represent it by a
line and then consider the dot product of the line with the z and .
axes. If the line is perpendicular to both z-axes, then both dot
products must be zero. In this way the direction cosines of the
common normal are defined; its length is the DH parameter a;.
Because the z-axes are parallel or coincident, di' which is the
distance between the coordinate frames along z, ;» must be zero.

The last DH parameter, a;, is defined to be the angle between

z and z . It is computed as: cos’! [zi-l . zi}. However, some
configurations require an additional angular displacement. The
transformations between the home positions of successive frames,

where Gi is assumed to be 0°, is not possible without a constant
rotation about the Z axis. Such a rotation, which we call ﬂi, is
typically £90° because manipulators are built with joints and links
at right angles to each other. However, in general, it is equal to the
angle between the X; and x;, axes and can take any value. It is

computed as: cos’! [XH . xi]. Therefore, our DH rotation becomes:

Rot(zi_l, 0i+ﬂi). This completes the forward kinematic model and
creates the information needed as input to solve for the inverse
kinematics.

4 Inverse Kinematics for Reconfigurable
Manipulators

In order to do any controlled movement it is necessary to have
an inverse kinematic model to determine the joint angles required to
achieve a desired position and orientation of the end-effector.
Ideally, one derives closed form equations for the inverse kinematics
where each joint variable is expressed in terms of other know
quantities. However, existence of a closed form inverse kinematics
solution depends on the kinematic structure of the
manipulator [16, 20]. For example, we know that a closed form
solution exists for a manipulator which has six degrees of freedom,
three of which have intersecting axes, such as in a spherical
wrist [16]. This solvability condition is not necessary, but only
sufficient. Because an RMMS manipulator can assume any
configuration, including one with more than six degrees of freedom,
it may not be possible to find a closed form solution. The standard
method of obtaining closed form solutions further inhibits the
feasibility of employing them for RMMS. The inverse kinematics
equations are typically found by isolating expressions for the
individual joint variables in terms of other known quantities in the



complex forward kinematic relationships. Since this is not feasible

in an automated system, we propose using numerical methods to
solve the inverse kinematics equations,

In the forward kinematic equation the vector of position and
orientation, x, is related to the joint variables, q, by:

x = f{(q), (1)
where f(q) is the standard T\ matrix (for an N degree of freedom
manipulator).

A closed-loop method for solving the inverse kinematics
equations using the Newton Raphson method proposed in (8] is

Desired Ty

Ditferential
change
matnx

Differential changes Updated Joint
of joint variables variables

q

dTn, dqy. k+1 Qi
Jacobian D
— 4

Present joint
variables

Forward
Kinematics,

Figure 6: Block diagram of iterative inverse kinematics procedure

depicted in Figure 5. The algorithm, which was derived for a non-
redundant manipulator, uses the closed form inverse kinematics
expressions to create a closed form inverse Jacobian. For RMMS,
we solve numerically for the inverse Jacobian and expand upon the
algorithm to create a system which is valid for a manipulator with
any number of degrees of freedom.

The iterative method determines the necessary changes in the
joint angles to achieve a differential change in the position and
orientation of the end-effector. The differential changes in the
cartesian coordinates (dx) are related to the corresponding
differential changes in the joint coordinates (dq) by:

dx = J(q)dq, (2)
where J(q) is the position dependent Jacobian of the manipulator.
Inverting Equation (2) to obtain an expression for the differential
inverse kinematics we get:

dq = J(q)dx, (3)
where dx is equivalent to dTN’ which represents the differential

change in the homogeneous transformation matrix of position and
orientation, and J™! is the closed form inverse Jacobian. It is a
function of the TN matrix and the differential changes in the joint
angles. We rewrite this equation as,

(4)

The joint variables are

-1
doy,, =17 (qk)dTNk’

where k is the number of the iteration.
updated according to:

Y = G +Hda )
We solve Equations (4) and (5) iteratively, until each term in Ty

k
is within the required error tolerance, ¢, of the desired TN'

4.1 Redundant Manipulators

Although a six degree of freedom manipulator is highly
versatile, it is may inadequate for performing a specified task. For
example, it may be incapable of avoiding obstacles in its workspace
while maintaining the desired position and orientation of the end-
effector. Additionally, it may enter a singular configuration while
tracing a specified path. Adding extra degrees of freedom to a
manipulator enables it to avoid obstacles in its path or to avoid
configurations corresponding to internal singularities [6].

Because of the benefits of kinematic redundancy, many
manipulators are configured with more than six degrees of freedom.
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A manipulator is easily made redundant with RMMS. However,
introducing redundancy complicates the control algorithm. The
Jacobian, which relates differential changes in the joint variables to
differential changes in the cartesian variables, is no longer a square
matrix. Its dimensions are M x N, where M is the number of
degrees of freedom of the workspace and N is the number of degrees
of freedom in the manipulator. For a redundant manipulator, M
and N are not equal and the Jacobian is not invertible. In this case,
we use a generalized inverse of the Jacobian.

Much of the previous research on inverse kinematics for
redundant manipulators has focused on the pseudoinverse [1, 3, 10].
The pseudoinverse is a generalized inverse which provides the
minimum norm solution [13]. It is defined as follows:

=TT (6)
Because standard pseudoinverse control has been shown to be
inadequate in the neighborhood of singularities, many methods have
been developed which augment the pseudoinverse so as to use the
kinematic redundancy to optimize an objective function [1, 2, 10}.

In this section we consider a method for control of redundant
manipulators within RMMS. While the methods cited above are
configuration dependent, computationally intensive, or both, the
method we propose for RMMS achieves singularity avoidance and
requires marginally more computations than the standard
pseudoinverse. It is called the singularity robust inverse [12]. We
begin by discussing the background and properties associated with
the singularity robust inverse and then we propose a configuration
independent technique for automatically choosing the necessary
design parameters.

The pseudoinverse solution is problematic in the neighborhood
of a singularity. For example, in an effort to converge to an exact
solution, the pseudoinverse may generate an infeasible solution.
That is, it may generate a solution for which one, or more, of the
dq values is so large that it cannot be physically realized. To
circumvent the problem of excessively large joint velocities, we
consider the singularity robust inverse [12]. It generates continuous
and feasible solutions at, and in the neighborhood of, singular
points.

The singularity robust inverse is based upon an evaluation
index,

dx — J.dq

d¢ — da , o]
which simultaneously considers the exactness of the solution, as
measured by the top term, and the feasibility of the solution, as
measured by the bottom term. When solving the inverse kinematics

problem one must find the minimum weighted Euclidean norm of
the evaluation index. Through a weighted norm, one is able to
control the relative importance of the terms in the evaluation index.

The singularity robust inverse, J‘, replaces the pseudoinverse,

JT, in the inverse kinematics algorithm. It is given by the following
equation:

= 3TITy 4, (8)
where X is the scale factor between the exactness and the feasibility
of the solution. It provides a means for weighting the terms in the

evaluation index. In the following section we propose a method for
choosing an appropriate value for \.

4.2 A Method for Automatically Choosing the Scale Factor

In order to employ the singularity robust inverse for RMMS,
we must develop a method to automatically generate an appropriate
scale factor for any manipulator. We would like the scale factor, X,
to have a larger value in the neighborhood of singular points and a
small value, or zero, far from singular points. That is, when the
manipulator is far from singular points, we would like the solution
found with the singularity robust inverse to emulate the solution



found with the pseudoinverse. We consider the following equation

for X [12]:
M1 = —) i
- =) 1 w < W,
0 0
= { “o (9)
0 otherwise
where w = \/detcrminant(J'JT) is a manipulatability measure for

the manipulator [21], X, approximates the magnitude of the scale
factor at singular points, and w is a threshold which identifies the

boundary or the neighborhood of singular points. Equation (9)
automatically adjusts X according to the manipulator’s distance
from a singular point.

In the remainder of this section we propose a technique for
selecting the design parameters to determine A. Since our technique
is driven by the need for generality, it should not be configuration
dependent. It must be valid regardless of the type or the degree of
the redundancy. It must work without a priori knowledge of the
location of a manipulator’s singularities. Finally, it must operate
within a real-time inverse kinematics control loop.

First we consider the problem of detecting the neighborhood of
a singularity, and thus specifying Wo: Just as the location and
neighborhood of singularities are manipulator dependent, so is the
manipulatability measure, w. It is a function of the shape of the
manipulator.  While the value of w approaches zero as the
manipulator approaches a singular point, the absolute magnitude of
w varies with the dimensions and the units of measure of the links
and joints of the manipulator. An w on the order of magnitude of
102 may imply that one manipulator is near a singular point, but
another manipulator, which has much smaller dimensions, may be
far from one. By secaling a manipulator we are able diminish the
disparity in the magnitudes of w between different manipulators and
eliminate the dependence on the units of measure. Specifically, we
propose dividing the a and di DH parameters of a manipulator by
the magnitude of the largest one. The resulting parameters have
magnitudes between zero and one, inclusive. However, a disparity
in w values between manipulators remains; different scaled
manipulators may still generate significantly different w values.

Rather than defining an absolute threshold, we propose
checking for a sudden drop in the value of w between iterations. As
a manipulator approaches a singular configuration the value of w
decreases dramatically. We detect the neighborhood of a singularity

w
. k+1
when the ratio —— falls below a threshold u. That is, we examine
W
k

the ratio of w between the k™ and the k+1™ iterations of the
Newton-Raphson algorithm.

The equation governing the scale factor A becomes:

w

w
k+1 . k+1
)\0(1 - —) if — <y
A= “k “ (10)
0 otherwise.

1
we suggest A — as a

41 v N
reasonable value for a scaled 7 degree of freedom manipulator.

We choose )\0 based on the tradeoff that is the premise for the
singularity robust inverse method. By adding a larger scale factor
we make the solution less exact, but more feasible or robust. In
order to generate a less exact solution we must increase ¢. (Recall ¢
is the convergence error tolerance for the Newton-Raphson
algorithm.)  Alternatively, we maintain the error tolerance and
increase the number of iterations of the Newton-Raphson algorithm
until the error becomes less than ¢. In order for the Newton-
Raphson iteration to converge, the residual error must be less than
the error tolerance €. As X\ contributes to the residual error, we
propose setting X, equal to a value one order of magnitude smaller

Based upon experimental results {7],
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than e. That is, we set %0 = 0.1¢ as a conservative choice for the
scale factor near a singularity.

Based upon experimental results, our algorithm typically
requires 3-4 iterations to converge with four decimal place accuracy
for large changes in the joint variables. Generally, the singularity
robust inverse converges in the neighborhood of a singular point in
4-5 iterations.

The desired effect of implementing the singularity robust
inverse according to Equation (10) is the augmentation of the
in the neighborhood of a singular point.
However, if augmenting should occur far from a singular point, it
causes very little disturbance to the system. The scale factor, \ (as
chosen according to the above method), is significantly smaller than
Therefore, it has

pseudoinverse only

the singular values of the manipulator Jacobian.
very little effect on the system.

4.3 Examples: Pseudoinverse vs. Singularity Robust
Inverse

In order to compare the singularity robust inverse with the
pseudoinverse we consider examples for both redundant and non-
redundant manipulators. Figure 6 shows a 3 degree of freedom
planar manipulator under pseudoinverse control. The manipulator
starts in a nearly singular configuration, moves to a distant point,
and then returns to its start point. Notice that the manipulator
returns to a nearly singular configuration with w = 8.82E-2. Figure
7 shows the same manipulator under singularity robust control. It
returns to a more robust configuration with w = 2.91E-1.

Figure 8: Pseudoinverse Control Near a Singularity

x=2.0
y=0.0

®=2.91E-1

Singularity Robust Control Near a Singularity

Figure 7:

While Figures 6 and 7 provide insight for a 3 degree of
freedom planar manipulator, they cannot effectively show the
improvement of the singularity robust inverse for 6 and 7 degree of
freedom manipulators. Rather, we present a table which
summarizes the manipulatability results for several examples. In
each case, the manipulator begins in a configuration which is nearly
singular and then moves in the direction of the singularity. Table 1
lists the initial w, and final w, values for the scaled manipulators

under pseudoinverse control and under singularity robust control.

Manipulator Pseudoinverse Singularity Robust
Planar 3-DOF | w,=4.0E-2 w=6.2E-3 w;=4.0E-2 w~=84E-3
6-DOF wi-=l.SE-3 ur=l.lE-7 ulzl.ﬁE-Zi u‘.=1.98-6
7-DOF ui=2.5E-3 uf=3.5E-5 u‘:Q.SDS u‘:l.lE-/(

Table 1: Comparison of Pseudoinverse and Singularity Robust



5 Summary

In this paper we have proposed an algorithm to determine the
forward and the inverse kinematic solutions of a Reconfigurable
Modular Manipulator System. Our method is not only independent
of the number and shape of the modules, but it is also independent
of the types of joints used in the manipulator. That is, it
accomodates both prismatic and revolute joints. We solve for the
inverse kinematics using numerical methods. Our method is
completely general and can be applied to a redundant system. In
the proposed method the extra degrees of freedom of a redundant
manipulator are used to achieve singularity avoidance. Further, in
order to make the singularity robust inverse independent of the
manipulator link lengths, we have proposed the idea of scaling a
manipulator. We have also described techniques for choosing the
design parameters for the singularity robust inverse. Finally, we
have implemented our method on the prototype RMMS developed in
our laboratory. Our implementation requires 35 msec for each
iteration of the inverse kinematics algorithm for a seven degree of
freedom manipulator.
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