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Abstract

The pose (position and orientation) of a polyhedral
object can be determined with sparse range data ob-
tatned from simple light-stripe range finders. How-
ever, the sensing data tnherently contains some error
which introduces uncertainty in the determination of
the object’s pose. This paper presents a method for
estimating the uncertainty in determining the pose of
an object when using several light-stripe range finders.
Three dimensional line segments obtained by the range
finders are matched to model faces based on an inter-
prelation tree search. The object pose is obtained by
a least squares fit of the segment-face pairings. We
show that the uncertainty in the position of the object
can be estimated using the covariance matriz of the
endpoint positions of the sensed line segments. Ezper-
iments with three light-siripe range finders show that
our method makes it possible to estimate how accu-
rately the pose of an object can be determined.

1 Introduction

Recognizing the pose of a three-dimensional (3-D)
object in a workspace is a fundamental task in many
computer vision applications, including automated as-
sembly, inspection, and bin picking. Many object
recognition algorithms have been developed. However,
there has been little attention given to estimating the
uncertainty of object pose determinations. In this pa-
per, we study a problem of estimating uncertainty in
determining the pose of a polyhedral object when us-
ing multiple light-stripe range finders.

Simple light-stripe range finders are among the
fastest and least expensive ways to acquire accurate
range data. Multiple range finders viewing an object
from different perspectives can usually provide enough
constraints to determine the object’s pose. Imagine
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that a polyhedral object is placed at an arbitrary pose
in the workspace and that we place three simple light-
stripe range finders above the workspace. Based on an
interpretation tree search technique, 3-D line segments
obtained by the range finders can be assigned to model
faces consistent with geometric constraints. Once a
feasible interpretation is found that satisfies the ge-
ometric constraints for all line segments, the trans-
formation from the model coordinate frame to the
world coordinate frame is obtained by a least squares
method. As a result of sensing error, the transfor-
mation contains inaccuracies. Therefore, we need a
method for estimating uncertainty in determining the
pose of an object. Using an error analysis based on
the convergence properties of the least squares fit, we
obtain a relationship between the covariance matrix of
the line segments’ endpoint positions and the covari-
ance matrix of the position of each object vertex. The
pose uncertainty of the object can then be estimated
from this relationship.

Related work

Our object recognition method is based on the use
of simple light-stripe range finders. Though many 3-
D object recognition systems using range image in-
formation have been reported [2], ?5], 11] and some
range imaging techniques are very fast [1], the recog-
nition processes of these systems are still very slow,
making such techniques impractical for industrial ap-
plications. Recognition is slow because these systems
extract many surfaces and/or edges from raw, dense
range images; this process is time-consuming and
sometimes generates incorrect features, which cause
difficulty when matching the features to object mod-
els. While a dense range image is appropriate to de-
scribe a complex scene precisely, scenes in industrial
applications can usually be simplified by modifying
the environment to enable object recognition using
only simple sensors such as light-stripe range finders.

It has already been shown that light-stripe range
finders are effective in determining the pose of poly-
hedral objects in controlled environments where some
information about the object’s pose is already known.
Gordon and Seering [6] showed that object pose can
be determined precisely with one simple light-stripe
range finder providing that the a priori pose of the
object is known approximately. Chen [3] proposed a



pose determination method with three known corre-
spondences between line segments and model faces.

Before we determine the pose of an object, we must
first determine feature correspondences. To find cor-
respondences between sensed features and model fea-
tures, an interpretation tree search method with ge-
ometric constraints is used. Grimson and Lozano-
Pérez [7) demonstrated that local geometric con-
straints for the position and local surface orientation
of a small set of points on the object are very effective
in reducing the size of an interpretation tree. However,
since a light-stripe range finder provides the position
and direction of a 3-D line segment that lies on an ob-
ject face, different geometric constraints are required.

A least squares method is usually used to determine
the pose of an object, that is, to obtain the rotation
and translation components of a transformation [5],
[9]. Grimson [8] suggested that uncertainty bounds on
the object pose can be tightened by propagating ini-
tial errors algebraically through interpretation equa-
tions. Ellis [4] showed that the uncertainty bounds
can be tightened by considering the cross-coupling be-
tweenrotational and translational uncertainties. Since
the pose uncertainty of an object can be represented
by the covariance matrix of the position of each ob-
ject vertex, we explore a pose uncertainty estimation
method that uses the covariance matrix of the end-
point positions of sensed line segments.

In this section, we introduced the research objec-
tive, and reviewed related work. In Section 2 an inter-
pretation tree search technique with geometric con-
straints suitable for line segments is discussed. In
Section 3 we focus on the error analysis for object
pose determination and describe a pose uncertainty
estimation technique. In Section 4, experiments with
three light-stripe range finders show that our object
recognition method successfully determines the pose
of an object and that our pose uncertainty estimation
method provides a useful tool for estimating how ac-
curately the position and orientation of an object can
be determined.

2 Fast object recognition with three
light-stripe range measurements

The task of model-based object recognition is to
match sensed features to model features and to deter-
mine the object pose in a 3-D world coordinate frame.
We begin with an example of recognizing an object. A
simple light-stripe range finder projects a light plane
onto the faces of an object and measures the 3-D line
segments created by the light-stripe as shown in Fig-
ure 1. Three identical range finders are placed in the
world coordinate frame as shown in Figure 2. We as-
sume that the light source and viewpoint of each range
finder are coincident. Our matching scheme by an in-
terpretation tree search assigns sensed line segments
to the corresponding model faces and uses geomet-
ric constraints to eliminate inconsistent segment-face
pairings. The object’s pose is successfully determined
as shown in Figure 3. In this section, we describe our
object recognition and pose determination technique.
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Figure 1: A simple light-stripe range finder.

2.1 Interpretation tree search by geomet-

ric constraints

Let 81, 82, ..., S denote sensed line segments
and My, M, ..., M,, denote model faces. In gen-
eral, there are m* ways of matching the line segments
to the model faces assuming that each line segment
must match to one model face. Though such assign-
ments can be represented by an interpretation tree, it
is not feasible to explore the entire tree to find con-
sistent interpretations. Rather, geometric constraints
are used to discard inconsistent pairings while search-
ing the tree in a depth-first and backtracking manner.

Grimson and Lozano-Pérez [7] showed that the in-
terpretation tree search technique with local unary
and binary geometric constraints is a useful method to
find a consistent set of pairings (51, M, ), (52, My, ),
- oo (Sk, My, ) where M, is the model face which cor-
responds to line segment S;. The unary constraints
check the consistency of a pairing between a line seg-
ment and a model face and the binary constraints
check the consistency of two pairings.

These unary and binary constraints used in our
method are weaker than those in [7] which are based
on face matching, since line segments carry less in-
formation than faces. Therefore, after applying the
unary and binary constraints, we apply a triplet con-
straint which checks a triplet of pairings between line
segments and model faces to prune the interpretation
tree more efficiently.

As deeper nodes are reached in the interpretation
tree, more possible triplet pairings exist making a
triplet constraint check appear to be time-consuming.
To speed the process, we choose three line segments
and three model faces under the condition that two of
the line segments must intersect each other. Since the
two line segments are therefore coplanar, two of the
three model faces must be the same. The intersect-
ing line segments can define the normal of the model
face on which the line segments lie. The normal of
the other model face can be obtained by solving a
quadratic equation since the normal must be perpen-
dicular to the direction vector of the third line seg-
ment. Further details of the triplet constraint may be
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Figure 2: Sensor placement for object recognition.
Sensors 0 and 1 are placed on the z axis, directed
toward the origin. Their sensing planes, which are
displayed as triangles, perpendicularly intersect. Sen-
sor 2 is placed on the x axis and its sensing plane lies
on the z-y plane.

found in the Appendix.

2.2 Computing transformations
2.21

We compute the rotation matrix R of the transfor-
mation from the model coordinate frame to the world
coordinate frame in the triplet constraint check.

If there are no intersecting line segments, a numer-
ical polynomial-based technique is used to calculate
the transformation after at least three consistent pair-
ings between line segments and model faces are found.
Chen [3] has presented a similar polynomial approach
to solve the same problem through a canonical config-
uration to reduce the number of unknowns to two.

Unfortunately, these general polynomial-based
methods are very semsitive to noise as well as com-
putationally expensive since an eighth-degree equation
must be solved. On the other hand, our method which
uses intersecting line segments is very fast and robust.
Polynomial-based methods are therefore used only in
the rare cases in which no intersecting line segments
exist.

Rotation component

2.2.2 Translation component

Next, we solve the translation component ¢ of the
transformation. A point p in the world coordinate
frame is related to a corresponding point P in the
model coordinate frame

p=RP +1t. (1)

Suppose that a line segment S;, whose endpoints are
b; and e, corresponds to a model face M,,. Any point
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Interpretation No. 0 -- SUCCESS
Rxe 13628 tx= -6€48 Re= 000
Ry= -74.64 ty= -9.65

Rz= 6192 2= -133 Ti= 030

Figure 3: Obtained 3-D line segments and the object
recognition result. Estimated transformations w(R;),
#(Ry) and x(R,) are given in degrees and 1, ty and t,
are given in millimeters. R, is the standard deviation
of the distances between the endpoints of the line seg-
ments and the corresponding object faces. T; shows
the elapsed time in seconds (Sun SPARCstation IPC).

X =(X,Y,Z)T on the model face satisfies the equa-
tion
(2)

T —
N X+Dp,, =0
where N, and D,, are the unit normal and offset of
the model face Il{,;'. respectively. If the point p is on
the line segment S;, the squared distance from the
point to the corresponding model face is given by

(ad) = (NI (R —1)+D,) . ()

The translation component ¢ is therefore obtained by
minimizing the sum of the integral of the squared
distance along each line segment over all pairings
of an obtz.ined feasible interpretation (S, M,,) for
1=1,...,

k e;
FE = Ad; 2ds; 4
> /b (Ady) (4)

where ds; is an element of line segment ;.
2.2.3 Refining the transformation

After an interpretation is deemed globally consis-
tent, the rotation and translation components of the
transformation are improved by another least squares
process. Both initial rotation and translation values
are used simultaneously to refine the fit of the sensed
line segments to the model faces.



2.3 Simulation

We run simulation to test the effectiveness of our
object recognition method. We use a polyhedral ob-
ject as shown in Figure 1. Three hypothetical light-
stripe range finders are placed in the world coordinate
frame as shown in Figure 2. The object is then ran-
domly located in the world coordinate frame.

As input data for the recognition program, a range
finder simulator calculates the line segments which the
three light-stripe range finders would get from view-
ing the object. We obtain feasible interpretations by
performing the interpretation tree search with the ge-
ometric constraints. Each feasible interpretation is
verified by comparing object vertices found using the
recognition algorithm with the correct values. If all
estimated positions of the vertices are near enough to
corresponding correct positions, the interpretation is
regarded as correct.

Table 1: Recognition results for 1000 trials.

. Successful | Failed | Time
Condition trials trials [ (sec)
No triplet constraint 395 105 10.1
Triplet constraint 949 51 0.1

The results of 1000 trials are shown in Table 1.
All failed trials correspond to multiple interpretations
which include some correct and some incorrect inter-
pretations. The triplet constraint is very efficient not
only in pruning the interpretation tree, but in improv-
ing recognition performance.

One problem with this recognition technique is that
it takes a long time to recognize an object if there
are no intersecting line segments. In most trials, how-
ever, intersecting line segments appear on object faces,
which is a characteristic when using multiple range
finders. As a result, the average computation time for
object recognition is about 0.1 second.

3 Geometric uncertainties in pose de-
termination

Now we can determine the pose of an object. This
section describes our technique for estimating pose un-
certainty.

3.1 TUncertainty

The object pose itself is obtained by minimizing
the sum of the squared distances between sensed line
segments and corresponding object faces, and hence
the transformation error is defined as a perturbation
around the correct transformation with respect to the
sensing error.

Let the rotation component R and translation com-
ponent ¢ of the transformation be denoted by

1 o] 0 coswy O sing
R=| 0 cosw -sinw 0 1 0
0 sinw cosw —sing 0 cosg
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cosk -—-sink O tr
x{ sinkx cosx O |, t=1| ¢ty (5)
0 0 1 t,

where w, ¢ and x are rotation angles around =z,
y and z axes in the world coordinate frame. If
T = (s ly,t,w, 0, k)T denotes the six transforma-
tion variables, the transformation error is defined by

Az = (At,, Aty, At,, Aw, Ap, Ax)T.

In addition, we define the sensing error of the end-
points (z2i-1, y2i-1, 22i-1) and (z2i, y2i, 22i) of line
segment S; as

As = (Axlv Aylv AZI, ey Ax?k? Ay?ky AZ?’C)T'

3.2 Relationship between sensing error
and transformation error

Our object recognition technique finds pairings
(Si, M;,) between line segments and model faces. Due
to sensing error, a point p on a line segment S; lies
off the corresponding object face M,, by a distance
Ad; given by equation (3). The pose of the object is
determined minimizing the residual E of equation (4)
in terms of . The necessary condition for E to reach
an extremum is given as

O0E 8E O0E _9E _O0E JE _ (6)
ot, 9, 9t, dw d¢ O

Now to examine the uncertainty in the transfor-
mation caused by sensing error, we linearize these
non-linear equations around the approximate solution

(zo, 80) which corresponds to the correct transforma-
tion and endpoints,

AAz >~ —BAs (7N
where A is the Hessian matrix of £/ with respect to x
and B is the Jacobian matrix of % with respect to
3.

Then we relate the object vertex position error to
the transformation error Azx. The position of a vertex
v; in the world coordinate frame is related to a vertex
Vg— in the model coordinate frame by

v; = RV + t. (8)

The position error A v; is then given by

Av; > DAz (9)
where D; is the Jacobian matrix of v; with respect
to x. By substituting equation (7) into equation (9),
the relationship between the position error and the
sensing error becomes

A’Uj

> _D;A"*BAs. (10)



The covariance matrix C,; of the vertex v; is given
by

C,;

3

E(AvjAv;-r)

D;(AT*B)C,(A™*B)'D] (11)
where C; is the covariance matrix of the line segments’
endpoint positions. The elements of the covariance
matrix C,; show how uncertain the vertex position is,
and hence the z, y and 2 components of the position
error of each vertex can be approximated as

(Av;,, Avj,, 89;,) = (\/Co; |, \/Cripyr fCrigy)- (12)

3.3 Examples

Interpretation No. 0 -- SUCCESS

Rx= 13628 txe -648 Res 000
Ry= -7464 ty= -965 Er= 075
Rz= 6192 tz= -133 Ti= 030

Figure 4: An uncertainty estimation result after rec-
ognizing the object. Three bars on each vertex show
the uncertainty in pose determination. E,(mm) is the
average position error of all vertices.

The following is an example of estimating the un-
certainty in pose determination. Given the shape of
an object, a transformation = for the object and a
placement of three light-stripe range finders, a range
finder simulator calculates line segments which would
appear on the object. We assume that all endpoints
of obtained line segments have the same error (zero
mean Gaussian white noise N(0, 1)) and that any two
endpoints are independently measured and their re-
spective errors are not related (though the mechanism
of the sensing error of a range finder is complex in
practice [10]). Thus, the covariance matrix C, of the
endpoint positions of the line segments becomes the
identity matrix. We can estimate the uncertainty of
each vertex of the object with equation (11).

Given a model as shown in Figure 1, a sensor place-
ment as in Figure 2, and the same transformation as
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in Figure 3, an estimated uncertainty on each vertex
of the object is shown in Figure 4. In this figure, the
lengths of three bars on each vertex along z, y and z
directions are given by equation (12), and show how
uncertain the position of each vertex is.!

4 Experiments

This section presents experimental results in recog-
nizing an object and estimating pose uncertainty.

Each light-stripe range finder is composed of a TV
camera with a 16mm lens and a laser diode projec-
tor whose wavelength is 670 nm. The laser beam is
spread by a cylindrical lens to generate a light plane.
The baseline length between the TV camera and the
laser projector is about 100 mm. We place three iden-
tical range finders above the workspace as shown in
Figure 5. The distance between each range finder and
the workspace center is about 350 mm and each range
finder’s absolute accuracy of measuring 3-D coordi-
nates is £ 0.5 mm within the workspace.

4.1

An object like the one depicted in Figure 1 is placed
at an arbitrary pose in the workspace. Each range
finder takes two images (one with the laser diode on,
one with the diode off) and obtains 3-D line segments.
Figure 6 shows the 3-D line segments and object recog-
nition and position error estimation results. Note that
the line segments No. 0 and No. 1 and the line seg-
ments No. 6 and No. 7 in Figure 6 are not connected.
Edge tracking often fails to detect a correct junction
of two line segments on a concave object edge as a
result of interreflection of the light plane. Neverthe-
less, recognition succeeded because our matching tech-
nique uses assignments of line segments to model faces
instead of relying on exact matching of line segment
endpoints to model edges.

Experimental results

4.2 Absolute accuracy

We estimated the absolute accuracy in pose deter-
mination with the sensor placement shown in Figure 5.
The object is located with a known transformation
$Case 1 ~ 6), and the object pose is estimated 10 times
or each transformation. The mean and standard de-
viation of position errors (equation (12)) of each ver-
tex are calculated. Table 2 shows the averages of the
means and standard deviations of the position errors
for all vertices. For all cases, the standard deviations
of vertex position errors are within 0.6 mm. These
values are consistent with the simulation results for
the same transformations.?

5 Conclusion

We have presented a method for estimating uncer-
tainty in determining the pose of a polyhedral object
when using multiple light-stripe range finders.

!For display purpose, those lengths equal 124v;,, 124v;,,
and 12Av;, respectively.

2In the simulation the standard deviations of vertex position
errors are about 0.5 mm assuming the measurement error of the
range finder to be o = 0.3 mm.



Figure 5: Sensor placement for experiments.

Interpretation No. 0 -- SUCCESS
Rxs -9348 tx= -223 Re= 029
Ry= 3458 ty-= 458 EBr= 0.92

0.67

Rz= -6146 tz= -1401 Ti-=

Figure 6: Experimented 3-D line segments and object
recognition and position error estimation results for
an arbitrary pose.

An object recognition method based on an inter-
pretation tree search has been used to determine the
object pose. In this method, 3-D line segments ob-
tained by the range finders are consistently matched
to model faces based on the geometric constraints. We
have introduced a triplet constraint to dramatically
speed pruning of the interpretation tree.

We have determined the relationship between un-
certainty in object pose determination and sensing er-
ror. The pose error of an object can be estimated
from the covariance matrix of the endpoint positions
of sensed line segments.
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Table 2: Absolute accuracy in pose determination.
The object pose is estimated for the object with a
known transformation. In all cases, w = 0°, ¢ = 0°,
and t, = -6.75 mm.

¢ ) Avg Avy Av,
Transformation (mm) | (mm) | (mm)
tr,ty)=(5,-5)mm | Mean || -0.46 | -0.10 | -0.04

1 v
k=0° Std 052 | 030 | 0.15
(tz119)=(5,0)mm | Mean || -0.35 | -0.34 | 0.06
E £=0° Std || 049 | 038 | 0.13
(te,ty)=(5,0)mm Mean -0.31 | -0.39 0.24
3 £=30° Std || 020 | 0.14 | 007
(tz,ty)=(0,-5)mm | Mean 0.66 0.22 0.34
4 £=30° Std || 032 | 0.18 | 0.0
tr,ty)=(10,0)mm Mean -0.11 0.04 0.11

v
5 £=60° Std 0.16 | 0.13 | 0.15
(te,ty)=(10,-5)mm | Mean {{ -0.32 0.06 0.12
6 x=60° Sed || 027 | 024 | 0.16

Experiments with simple light-stripe range finders
show that our method makes it possible to estimate
how accurately the pose of an object can be deter-
mined.
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Appendix

In the appendix, we present the triplet constraint
used in our object recognition method.

Intersecting line segments can define the normal of
the face on which the line segments lie. In Figure 7,
let 3, and s, denote the unit direction vectors of inter-
secting line segments S; and S5 respectively. The unit
normal of a plane w3, on which those line segments
lie, is represented by

8, X 8,

Ny = +—m——.
P e xsll

(13)

Let m, be the unit normal of a model face, M;, which
is assigned to the two line segments, and let R denote
the rotation component of the transformation from
the model coordinate frame to the world coordinate
frame. The unit normal of model face M; in the world
coordinate frame, which is given by Rm,, is set to
equal the unit normal n,, of the plane 75 or —n,,.
One direction is chosen such that the normal of the
plane 7, is directed toward the range finders from
which the line segments $; and S, were obtained.

Let S; denote another line segment which does
not lie on the plane 712. A possible model face Mj,
matched to the line segment S3, must satisfy the fol-
lowing conditions:

o The angle between the two model faces is in-
variant under a rigid transformation, that is,
L(Rm,, Rm,) = Lm,,my) = o3

e The direction vector of the third line segment
is perpendicular to the normal of the assigned
model face, that is, 3, L Rm,.

134

Consequently, the unit normal Rm, of the trans-
formed model face M3 can be obtained by solving a
quadratic equation. If no real root exists to the equa-
tion, the chosen triplet [(SI,MI),(Sg,Ml),(S3,M3)]
is inconsistent, and this interpretation is discarded.
Since the surface normals Rm, and Rm, in Figure 7
correspond to two unit surface normals, m, and m,,
in the model coordinate frame, the rotation matrix h
can be computed [7].
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