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Abstract

The pose (position and orientation) of a polyhedral
object can be determined with range data obtained from
simple light-stripe range finders. However, localiza-
tion resulls are sensilive to where those range finders
are placed in the workspace, that is, sensor placement.
It is advantageous for vision tasks in a factory en-
vironment to plan optimal sensing positions off-line
all at once rather than on-line sequentially. This pa-
per presents a method for finding an optimal sensor
placement off-line to accurately determine the pose of
an object when using three light-siripe range finders.
We evaluate a sensor placement on the basis of av-
erage performance measures such as an error rate of
object recognition, recognition speed and pose uncer-
tainty over the state space of object pose by a Monte
Carlo method. An optimal sensor placement which is
gwven a mazimal score by a scalar function of the per-
formance measures is selected by another Monte Carlo
method. We emphasize that the ezpected performance
of our system under an optimal sensor placement can
be characterized completely via simulation.

1 Introduction

Recognizing the pose of a three-dimensional (3-D)
object in a workspace is a fundamental task in many
computer vision applications, including automated as-
sembly, inspection, and bin picking. Multiple range
finders viewing an object from different perspectives
can usually provide enough constraints to determine
the pose of a polyhedral object [11]. One important
issue for a system with multiple sensors is that sys-
tem performance is sensitive to the location of sensors
in a workspace, that is, sensor placement. There are
two sensing strategies: on-line planning and off-line
planning. On-line planning selects the best sensing
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position sequentially and requires planning and execu-
tion time between measurements. On the other hand,
off-line planning is desirable for industrial vision tasks
because sensing positions are determined all at once
before performing the tasks.

In this paper, we present an off-line method for se-
lecting an optimal sensor placement of three simple
light-stripe range finders which are used to determine
the pose of a polyhedral object. Our method consists
of three techniques: object recognition, pose uncer-
tainty estimation and sensor placement evaluation. A
method for recognizing an object and estimating the
geometric uncertainty of the object’s pose was previ-
ously described in [10]. In brief, the pose of an ob-
Jject was recognized by matching 3-D line segments
obtained by the range finders to model faces based on
an interpretation tree search technique with geometric
constraints. Then, the pose uncertainty was estimated
by using a relationship between sensing error and ob-
ject position error.

By combining these methods, we evaluate the good-
ness of a sensor placement. The state space of the
pose of a 3-D object has six degrees of freedom with
a uniform probability distribution. Given an object
model and a sensor placement of three range finders,
an average error rate of object recognition, average
recognition time and average position error over the
state space are estimated by a Monte Carlo method.
The given sensor placement can be evaluated by such
expected average performance measures.

It is not feasible to explore the entire configuration
space which represents an arbitrary sensor placement
to find an optimal sensor placement. Therefore, an-
other Monte Carlo method is used to select an optimal
sensor placement from a configuration space which
consists of a finite set of randomly generated sensor
placements. Note that the expected average perfor-
mance of our object recognition and pose determina-
tion method under an optimal sensor placement can
be characterized completely via the Monte Carlo sim-
ulation.

Related Work

The related work on object recognition and pose
determination with sparse range data was reviewed
in [10]. In brief, Grimson and Lozano-Pérez [5] demon-
strated that local unary and binary geometric con-



straints are very effective in reducing the size of an
interpretation tree which represents correspondences
between sensed features and model features. A least
squares method is usually used to determine the pose
of an object [3], [8]. Uncertainty bounds on the ob-
Jject position were obtained geometrically {1}, and al-
gebraically [6].

Work on planning sensing strategies has been re-
ported [2],[6],[ A, 12],[13],[&4]. Most of the research,
however, has addressed the problem of selecting the
next optimal sensing position for object recognition
and localization, that is, on-line sequential planning.
During initialization, some sensory measurements are
necessary to reasonably reduce the number of consis-
tent interpretations of object pose. Then, selection
of the next optimal sensing position is achieved by
evaluating which sensing position would minimize the
ambiguity of the feasible interpretations. The require-
ments of the initialization were not considered. Com-
pared with on-line sequential planning, off-line batch
mode planning for sensing positions is very advanta-
geous. This is because moving a sensor on-line is un-
acceptable for many industrial applications which re-
quire high speed and low cost system configuration.

Goldberg [4] proposed a stochastic framework for
manipulation planning where plans are ranked on the
basis of expected cost and demonstrated a stochas-
tically optimal plan for orienting planar parts with
a programmable part feeder. He suggested that the
stochastic planning can be used to treat the problem
of finding an optimal sensor plan for recognizing an
object. Stochastic planning requires a probabilistic
model to evaluate average performance. However, the
difficulty is that we must explicitly describe the effect
of a sensing operation with a probability distribution
over the state space of a 3-D object. Alternatively,
we search for an optimal sensor placement based on
the expected average performance of object recogni-
tion and pose determination by a Monte Carlo method
assuming that the state space of a 3-D object has a
uniform probability distribution.

In this section, we introduced the research objec-
tive and reviewed related work. Section 2 summarizes
our object recognition and pose uncertainty estima-
tion techniques. In Section 3 we define some measures
which reflect the system performance of object recog-
nition and pose determination under a sensor place-
ment. Section 4 introduces a method for ranking sen-
sor placements on the basis of expected average perfor-
mance of object recognition and pose determination,
and also design an optimal sensor placement through
simulation. In Section 5, we briefly show experimen-
tal results with three light-stripe range finders. The
complete experiments on pose uncertainty under a de-
signed optimal sensor placement are presented in [10].

2 Object Recognition and Pose Uncer-
tainty Estimation

We begin with an object pose determination exam-
ple. A simple light-stripe range finder projects a light
plane onto the faces of an object and measures 3-D
line segments created by the light-stripe as shown in
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Figure 1: A simple light-stripe range finder.
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Figure 2: Sensor placement for object recognition.
Sensors 0 and 1 are placed on the z axis, directed
toward the origin. Their light planes, which are dis-
played as triangles, are orthogonal. Sensor 2 is placed
on the z axis and its light plane lies on the z-y plane.

Figure 1. Three identical range finders are placed in
the world coordinate frame as shown in Figure 2. The
object’s pose is successfully determined and the pose
uncertainty is estimated as shown in Figure 3. In this
section, we briefly describe our object recognition and
pose uncertainty estimation technique. Further details
are found in [10].

2.1 Interpretation Tree Search by Geo-
metric Constraints

The interpretation tree search technique with lo-
cal unary and binary geometric constraints finds a
consistent set of pairings (S1, M,,), (S2,Mp,), ...,
(Sk, My, ) where M, is a model face which corre-
sponds to line segment S;. The unary constraints
check the consistency of a segment-face pairing and
the binary constraints check the consistency of two
segment-face pairings.

Our unary and binary constraints for segment-face



Interpretation No. 0 -- SUCCESS

Rx= 13628 tx= -648 Re= 000
Ry= -7464 ty= -965 Er= 075
Rz= 6192 tz= -133 Ti= 030

Figure 3: An object recognition and pose uncertainty
estimation result. Estimated transformations w(R;),
¢(Ry) and k(R,) are given in degrees and t,, ¢y and ¢,
are given in millimeters. R, is the standard deviation
of the distances between the endpoints of the line seg-
ments and the corresponding object faces. E,(mm) is
the average position error of all vertices. T;(sec) shows
the elapsed time (Sun SPARCstation 2). Three bars
on each vertex along z, y and z directions show the
uncertainty in pose determination.

matching are weaker than those for face-face and edge-
edge matching in Grimson’s work [7] since line seg-
ments carry less information than faces and edges.
Therefore, after applying the unary and binary con-
straints, we apply triplet constraints which check three
segment-face pairings to prune the interpretation tree
more efficiently. We choose three line segments and
three model faces under the condition that two of the
line segments must intersect each other. Since the
two line segments are therefore coplanar, two of the
three model faces must be the same. The intersecting
line segments can be used to calculate the normal of
the model face on which the line segments lie. The
normal of the other model face can be obtained by
solving a quadratic equation since the normal must
be perpendicular to the direction vector of the third
line segment.

2.2 Computing Transformations

Next, we solve for the rotation matrix R and the
translation vector ¢ of the transformation which maps
points in the model coordinate frame into the world
coordinate frame in such a manner that each line seg-
ment lies on the corresponding model face. A point
p in the world coordinate frame is related to a corre-
sponding point P in the model coordinate frame

p=RP+t. (1)

Suppose that a line segment S;, whose endpoints are b;
and e;, corresponds to a model face M,,. If the point
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p is on the line segment S;, the squared distance from
the point to the corresponding model face is given by

2

where N, and D, are the unit normal and offset
of the model face X/[p, respectively. The rotation and
translation components are therefore obtained by min-
imizing the sum of the integral of the squared distance
along each line segment over all pairings of an obtained
feasible interpretation (S;, My,) for i =1,...,k

k €;
E= E/b_ (Ad;)2ds;
i=1 R

where ds; is an element of line segment S;. An initial
rotation component for minimization is obtained by
using a geometric relationship among three segment-
face pairings which include intersecting line segments.
In the event that the three pairings do not include
intersecting line segments, a numerical polynomial-
based technique is used to obtain a rotation compo-
nent. Unfortunately, the polynomial-based method
is very sensitive to noise and is also computation-
ally expensive since an eighth-degree equation must be
solved. On the other hand, the method which uses in-
tersecting line segments is very fast and robust since a
rotation component is obtained by solving a quadratic
equation in the triplet constraint check.

(8d)? = (NI (R (0 =) +Dy.)”

3)

2.3 Estimating Pose Uncertainty

Now we can determine the pose of an object. How-
ever, due to sensing error inherent in measuring line
segments, the obtained transformation contains some
error which causes uncertainty in the position estimate
of the object.

Let @=(tz,ty,t,w,p,k)T be transformation vari-
ables, and let s=(z1,y1,21,. - -,L2k,Y2k,22k)7 be a vector
of endpoint pairs (Zgi—1,Y2i—1,22i—1) and (Z2i,y2i,22:)
of line segments S; for ¢ = 1,...,k. The pose of an
object is determined by minimizing the residual £ of
equation (3) with respect to . The necessary condi-
tion for E to reach an extremum is given as

OE _OE _OE _OE _O0E _OF
dt, ot, Oot, 0w 8¢ Ok
Now to examine the transformation error Az caused
by the sensing error As, we linearize these non-linear

equations around the approximate solution (z0, 80)
which corresponds to the correct transformation and

endpoints,
AAz = —BAs (5)

where A is the Hessian matrix of E with respect to =
and B is the Jacobian matrix of % with respect to
8

(4)

Furthermore, a relationship between the transfor-
mation error Az and the position error Av; of a ver-
tex v; is given by

A‘Uj = D]' Ax (6)



where D; is the Jacobian matrix of v; with respect to
x. By substituting equation (5) into equation (6), the
covariance matrix C,, of the vertex v; is given by

C,, E(Av; Ava)

D;(A™*B)C,(A™*B)T DT

(7

where C, is the covariance matrix of the line segments’
endpoint positions. The elements of the covariance
matrix Cy; describe the uncertainty in vertex position,
and hence the z, y and z components of the position
error of each vertex can be approximated as

(Bvj,, Avyy, Ay, ) = (\/C“Jn’ \/C"Jn’ \/C"J'sa) - (8)

The lengths of three bars on each vertex along z, y
and z directions as shown in Figure 3 are given by
equation (8) assuming that the covariance matrix C,
is the identity matrix, and show the uncertainty asso-

ciated with the position of each vertex.!

3 Measures for

Placements

Evaluating Sensor

Given the shape and pose of an object and a sensor
placement of three light-stripe range finders, we can
decide whether or not the object is recognizable and
also we can estimate the uncertainty in the object’s
pose. In this section, we show that the goodness of a
sensor placement can be evaluated through simulation
using measures which reflect the performance of object
recognition and pose determination.

3.1 Performance Measure in Object

Recognition

We test our object recognition method using simu-
lations. Three hypothetical light-stripe range finders
are placed in the world coordinate frame as shown in
Figure 2. A polyhedral object as shown in Figure 1 is
then placed in the world coordinate frame with a ran-
domly generated transformation (R;,t;) for the i th
object recognition trial.

As input data for the recognition program, a range
finder simulator calculates 3-D line segments which
the three light-stripe range finders would get from
viewing the object. We obtain feasible interpretations
by performing the interpretation tree search with the
geometric constraints. If all the estimated vertex po-
sitions of each feasible interpretation are near enough
to the corresponding correct positions, the interpre-
tation is regarded as correct. The simulation reports
that 949 of 1000 trials are successful and that the av-
erage recognition time is 0.06 seconds. All failed trials
correspond to multiple interpretations which include
some correct and some incorrect interpretations.

This simulation suggests that an arbitrary sensor

placement can be evaluated with many recognition tri-
als using a Monte Carlo method. The percentage of

1For display purpose, those lengths equal 124v,,, 124v;,
and 12Av;, respectively.
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Table 1: The percentage of failed trails Pj,;(%) and
the average computation time T'(sec) for N =1000,
5000 and 10000 under five different sensor placements.

N = 1000 N = 5000 N = 10000
Case Praiy T Prail T Pyt T
No.1 5.1 0.059 4.9 0.062 4.9 0.061
No.2 31.1 0.067 31.8 0.071 31.7 0.071
No.3 4.9 0.087 5.1 0.072 4.8 0.070
No.4 14.5 0.070 15.2 0.071 15.0 0.069
No.5 11.1 0.254 10.5 0.225 104 0.229

failed recognition trials and the average computation
time per trial indicate how good the sensor placement
is for object recognition. One problem is how many
trials should be done to evaluate a sensor placement.
Simulation results of 1000, 5000 and 10000 trials un-
der five different sensor placements are shown in Ta-
ble 1. The percentage of failed recognition trials and
the recognition time are almost the same regardless of
the number of trials. Thus, 1000 trials are sufficient for
sensor placement evaluation since the improvements
gained by using additional trials are not considered
crucial.

3.2 Performance Measure in Pose Deter-
mination

Our method can estimate the position error of an
object when the object’s pose has been determined.
Therefore, a Monte Carlo method is used here again
to estimate the average position error of the vertices
of an object under a sensor placement with a set of
randomly generated transformations.

For the ¢ th transformation, a maximal position
error e; over all vertices of the object is defined as

’ ’ ’
{\/C":'u’ \/C”J 22’ \/C“jaa}
where C{,] is a diagonalized matrix of the covariance
matrix C,, given by equation(7) and n is the number

of the vertices. The average position error E for a set
of transformations (R;,¢;) fori = 1,..., N is obtained

as
53
E=— €;.
N:':l

The probable error AE of the position error estimate

FE 18 defined as
1 /{1
N\N

(9)

e; = max
1<j<n

(10)

AF = ,| = (11)

Zef—Ez).

i=1

The probable error AE is inversely proportional to
the square root of the number of trials N, which is
regarded as a characteristic of a Monte Carlo method.



Table 2: The average position error E(mm) and its
probable error AE(mm) under five different sensor
placements.

N = 1000 N = 5000 N = 10000
Case "™ T AE || E | AE | E | AE
No. 1 1.61 0.024 1.63 | 0.009 1.63 0.007
No. 2 3.37 0.067 3.47 | 0.031 3.49 0.023
No. 3 2.04 0.031 2.07 0.015 2.08 0.011
No. 4 2.46 0.051 2.52 0.026 2.51 0.019
No. 5 2.30 0.036 2.30 0.017 2.30 0.012

Given an object as shown in Figure 1, and a set of
transformations, an estimated average position error
and its probable error under the five sensor placements
from Table 1 are reported in Table 2. The results
show that the average position error varies depending
on a sensor placement, and hence the value can be
used as a performance measure for evaluating a sensor
placement. Judging from the ratio AE/E, 1000 trials
are sufficient to estimate an average position error.

In summary, a sensor placement can be evalu-
ated with 1000 randomly generated transformations
in terms of the following performance measures:

o Percentage of failed recognition trials Pyai
e Average recognition time T'

o Average position error E.

4 Sensor Placement Design for Object
Pose Determination

A sensor placement is assigned a triplet of per-
formance measures (Pyqi1,T, E) using a Monte Carlo
method. Our problem is to find a good sensor place-
ment with which an object in an arbitrary pose would
be always recognizable with minimal computation
time and with minimal pose uncertainty. Therefore,
sensor placements must be ranked on the basis of
the performance measures to select an optimal sensor
placement. In this section, we define a configuration
space which represents all possible sensor placements,
introduce a scalar function to rank the sensor place-
ments, and then design an optimal sensor placement
through simulation.

4.1 Configuration Space of Sensor Place-

ments

Suppose that we place three light-stripe range find-
ers on the surface of a sphere whose center is located
at the origin of the world coordinate frame. The loca-
tion of each range finder is specified by a light source
position, a light plane and a viewpoint which corre-
sponds to a TV camera position. Since there are many
degrees of freedom to specify a sensor placement, we
assume the following conditions to make computation
tractable:
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Figure 4: The definition of a light plane. The light

plane is defined by three Euler angles (o, 3, 7) and a
radius r (constant).

The range finders can be placed only on the upper
hemisphere in practice.

The radius of the sphere is constant according to
the size of a workspace.

One range finder is placed at the north pole of
the sphere, directing to the sphere center and its
light plane is aligned with the z-z plane without
loss of generality.

The light planes of the other range finders also
pass through the sphere center.

The light source and viewpoint of each range
finder are coincident.?

We use three Euler angles a, 8 and 7 to represent
a sensor placement 6§ as shown in Figure 4. The light
plane is given by

lx+my+nz=0 (12)
where
| = —cosacosfsiny —sinacosy
m = —sinacosfBsiny+cosacosy (13)

n sin f#sin v.

The llght source L, 1s (rcosasing,rsin asing,rcos8)T,
where r is the radius of the sphere. The ranges of
the Euler angles are given by 0 < a < 27, 0 <8<
7/2, 0 < v < m. Accordingly, a sensor placement ¢
is described with two sets of Euler angles (a1, 81,71)
and (az, B2, 72) corresponding to the two movable sen-
sors. Since a sensor placement is represented by the
continuous spaces of such Euler angles, we must parti-
tion these spaces into a finite set of sensor placements,
which is called the configuration space ©.

2 A non-zero baseline complicates simulation by adding oc-
cluded line segments to the data. In simulation, however, we
can avoid this problem by assuming a zero baseline. Range is
computed by intersecting the light plane with the model.



4.2 Ranking Sensor Placements

It is not always possible to find an optimal sen-
sor placement which has the best performance with
respect to all the measures simultaneously. Thus, we
introduce a scalar function which combines the perfor-
mance measures to give a score to each sensor place-
ment. Let z; (i = 1 ~ 3) be values of a triplet of a
sensor placement 8,,, and let #; and o; be the mean
and the standard deviation of z; over the configuration
space. We define a score S, for the sensor placement

#,, as
T; —
g;

where w; are weights. This equation expresses how
far the performance measure z; of a sensor placement
deviates from the mean #;. The weight w; decides
how each performance measure contributes to the to-
tal score S,,.

Over all sensor placements, the maximal score is

(15)

3

Sm:z:wi

i=1

(14)

S* = mea.xSm.

Hence an optimal sensor placement is defined as a sen-
sor placement with maximal score S* among the con-
figuration space.

4.3 Sensor Placement Design

We are now ready to design an optimal sensor place-
ment for three light-stripe range finders. However, ex-
ploring the entire configuration space of sensor place-
ments 1s computationally too expensive. Therefore, we
introduce another Monte Carlo approach as a strategy
of selecting an optimal sensor placement. The proce-
dure is as follows:

e Generate a set of M sensor placements at random
with two sets of Euler angles (a1, 81,71)m and

(a2,P2,72)m form=1,...,

o Estimate the performance measures of each sen-
sor placement and combine them to give a score
to the sensor placement.

e Select an optimal sensor placement which has a
maximal score among all the sensor placements.

4.4 Simulation Results

We use the object model as shown in Figure 1,
and select an optimal sensor placement from 1000 ran-
domly generated sensor placements. The simulation of
the m th sensor placement takes as input 1000 differ-
ent poses of the object model with randomly generated
transformations, estimates the performance measures,
and computes the score S,,,. The sensor placement
which has the highest score S* = 13.1 is shown in Fig-
ure 5 (The second highest score is 12.5). The triplet
for the sensor placement is (Pfqi1, T, E) = (1.6 %, 0.08
sec, 1.66 mm). Here, the weights w; are set as (4, 2,
4). The same simulation with a different object model

0. 2 as shown in Figure 6 finds the optimal sensor
placement as shown in Figure 7. The triplet values for
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Figure 5: The sensor placement with the highest score
for the model No. 1.

g’

Figure 6: Another object model No.2. The model
consists of 12 faces.

Figure 7: The sensor placement with the highest score
for the model No. 2.



Table 3: The triplet values for the optimal sensor
placements and the statistics of the performance mea-
sures for the two models.

[ Measures [ Prait(%) | T (sec) [ E (mm) | Sm_|
Optimal 16 0.08 166 | 13.1
Mean 10.7 0.19 2.28 0.0
No. 1 Std 6.0 0.23 0.42 7.9
Median 9.7 0.09 2.22 16
Optimal 0.2 0.10 167 | 10.3
Mean 2.1 0.30 2.34 0.0
No. 2 Std 2.9 0.51 0.51 83
Median 1.0 2.23 2.23 2.0

the optimal sensor placements and the statistics of es-
timated performance measures are shown in Table 3.
Object recognition for the model No. 1 is more difficult
since the mean and median of Py, are much larger
than those of the model No. 2. Note that ranking of
sensor placements changes according to the weights
w;. The weights w; must be set by requirements of a
vision task.

The tendency of ranking of the randomly gener-
ated sensor placements is similar for the two models,
though the optimal sensor placement is different be-
tween them. Relatively good sensor placements for
one model are relatively good for the other model.
The characteristics of such good sensor placements are
summarized as follows:

o Two range finders are closely located, and the as-
sociated light planes are almost perpendicular.

o The other range finder is far from the others.

These observations can be supported not only from
the point of view of pose uncertainty, but also from
a characteristic of our object recognition technique;
computation time for recognition with intersecting line
segments is absolutely shorter than that without inter-
secting line segments [11]. Under such a sensor place-
ment, intersecting line segments would more often ap-
pear on an object face.

5 Experimental Results

This section briefly presents experimental results of
recognizing an object and estimating pose uncertainty
under the designed optimal sensor placement. The
complete experiments are presented in [10].

Each light-stripe range finder is composed of a TV
camera with a 16 mm lens and a laser diode projec-
tor whose wavelength is 670 nm. The laser beam is
spread by a cylindrical lens to generate a light plane.
The baseline length between the TV camera and the
laser projector is about 100 mm. We place three iden-
tical range finders above the workspace according to
the configuration of the designed optimal sensor place-
ment for the model No. 1 as shown in Figure 5. The
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Interpretation No. © -- SUCCESS
Rx= -9348 tx= -223 Re=
Ry= M58 ty= 458 Er=
Ri= -6146 tz= -1401 Ti=
Figure 8: Experimented 3-D line segments and object
recognition and position error estimation results for
an arbitrary pose.

distance between each range finder and the workspace
center is about 350 mm.

An object like the one depicted in Figure 1 is placed
at an arbitrary pose in the workspace. Each range
finder obtains 3-D line segments. Figure 8 shows ob-
tained 3-D line segments and object recognition and
position error estimation results. For comparison, Fig-
ure 9 shows a simulation result with the same object
pose under the same sensor placement as the experi-
ment shown in Figure 8. The recognition time in the
experiment is 0.67 sec, while only 0.05 sec in the sim-
ulation. In the experiment, the geometric constraints
used in the interpretation tree search were weakened
to allow for error in the measurement, thus, increasing
the number of visited nodes. We tried similar exper-
iments with several different poses. A few 3-D line
segments were occluded in some experimental results,
while the line segments appeared on object faces in
corresponding simulation results. This is because the
range finder simulator regards the light source and the
viewpoint as the same point. Throughout the trials,
the experimental results are consistent with the sim-
ulation results except for recognition time and occlu-
sion.

6 Conclusion

An object recognition system with simple sensors
has two advantages: a simple sensor like a light-
stripe range finder is very fast, cheap, reliable and yet
provides very accurate data; sensory data are sparse
but have enough constraints to determine the pose of
a polyhedral object. Finding an appropriate sensor
placement is a central problem for such a multi-sensor
system. Off-line batch mode planning is indispensable
for many industrial vision tasks which require quick-
ness and low cost system configuration.

In this paper, we have presented a method for de-



Interpretation No. ¢ -- SUCCESS

Rx= -9348 tx= -223 Re= 000
Ry= 3458 ty= 458 Er= 081
Rz= -6146 tz= -1401 Ti= 005

Figure 9: Simulated 3-D line segments and object
recognition and position error estimation results for
the object’s pose shown in Figure 8.

signing an optimal sensor placement when using three
light-stripe range finders to determine the pose of a
polyhedral object. We evaluate the goodness of a
sensor placement with performance measures: an er-
ror rate of object recognition, recognition time and
pose uncertainty. An optimal sensor placement is se-
lected by ranking randomly generated sensor place-
ments with a Monte Carlo method. Experimental re-
sults are in agreement with simulation results. An
emphasized point is that the expected average perfor-
mance of object recognition and pose determination
under an optimal sensor placement can be character-
ized completely via simulation. Our method is apphi-
cable to object pose determination tasks as a designing
tool for a sensor placement.
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