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Abstract

In rugged terrain, walking robots that select footholds
can be more mobile and more energy efficient than
machines that roll on wheels or crawl on tracks. To
achieve these footholds requires calibration of the ter-
rain sensors with respect to the walking mechanism.
We present an implemented tochnique to calibrate scan-
ning laser rangefinders to legged robots. The proce-
dure accommodates two scanners, one manufactured by
Erim and the other by Perceptron, and two walkers, a
one-legged robot and a six-legged robot. The technique
acquires two sets of corresponding three-dimensional
points and identifies the rigid transformation that maps
one onto the other with least squared error, i.e., it
solves the absolute orientation problem. We report ex-
perimental results with the two different scanners and
vehicles. For the Erim and the one-legged robot, the
technique achieves an accuracy of 6-12 cm with a pre-
cision no lower than 2-5 cmi. For the Perceptron and
the Ambler, the accuracy is 2-7 cm with a precision
no lower than 2-5 cm. These results have proven to
be satisfactory for constructing terrain raaps and us-
ing them to select footholds during our rough terrain
walking expcriments.

1 Introduction

In order to act autonomously and intelligently, mobile
robots must le able to sense their environment, and to
relate the sensor readings to their actions. For exam-
ple, threading a needle requires coordination of the eye,
or whatever senses the relative positions of needle and
thread, and the hand, or whatever acts on them. Sim-
ilarly, walking requires coordination of the eye, which
senses where on the terrain to place the foot, and the
leg, or whatever supports and propels the robot. This
paper presents a technique to establish such “leg-eye”
coordination for a six-legged robot (Figure 1, the Am-
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bler planetary rover [1]), and for a one-legged robot
(Figure 2).

Recently, researchers have questioned the need for
calibration, and techniques to avoid it have gained fa-
vor. In the case of the Ambler, it is likely that we too
could survive without calibration; because the machine
is big, rugged, and heavy, many objects that are obsta-
cles before the Ambler steps on them are planar after-
wards. But for missions to distant, rugged regions like
planetary surfaces, Antarctica, and the ocean floor, sur-
vival is not enough. Energy-efficient locomotion is es-
sential. With a calibrated sensor, the Ambler can select
where to step, and thus can prevent spending signifi-
cant fractions of the total power budget on stumbling
rather than productive advance. This ability to select
footholds is central to the fundamental advantages of
high mobility and energy efficiency that walkers enjoy
over rolling and crawling machines. Achieving those
footholds requires calibration.

Other walking robots face the same requirements.
However, walkers that rely on a human operator to
designate footholds, such as the Adaptive Suspension
Vehicle [6], do not require an automated solution.

In this paper we present a single calibration proce-
dure that works for multiple scenarios; the same code
calibrates the Erim scanner with respect to a one-legged
robot, and calibrates the Perceptron scanner with re-
spect to the six-legged Ambler. In Section 2 we de-
fine the problem. Next, we describe in detail how
to acquire two three-dimensional point sets, one in a
vehicle-centered reference frame (Section 3), the other
in a sensor-centered reference frame (Section 4). Then
we show how to identify the rigid transformation that
best relates the two point sets, i.e., we present a solu-
tion to the absolute orientation problem. In Section 6
we report experimental results on accuracy, precision,
and execution time. We conclude by discussing possible
improvements and extensions.
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Figure 1: Six-legged robot
The figure shows the Ambler, and the Perceptron laser scan-
ner mounted ou the bridge betwcen the two leg stacks.

2 Problem Definition

The overall problem is to identify the rigid transfor-
mation relating a vehicle-centered reference frame to
a sensor-cenicred reference frame. The origin of the
scanner frame S is attached to the scanner and lies
somewhere ncarby it. The origin of the body frame B
is attached to the walking robot.

We attach a number T of targets to the legs. Then,
we move the legs to a number L of different stations.
At each, we identify the position 7 of each target in
the body frame (by reading joint positions and using
known kinematics, see Section 3), and we identify the
position 7 of cach target in the scanner frame (by im-
age analysis, sce Section 4). After acquiring a sufficient
number of pairs of measurenients, we seek the rotation
R and translation 7 that refer a vector in S to B:

Fpi=Ris;+1, 1<i<LxT ,

(1)
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Figure 2: One-legged robot
The figure shows the prototype leg, the calibration target
on the upper leg, and the Erim laser scanner mounted above
the leg.

where © = [ts,1y,t,]T is the translation vector relat-
ing the two origins, and R is a 3 x 3 rotation matrix
(detR=+1,RTR =1I). )

In practice, it is unlikely that R and ¢ exist that
satisfy Equation 1, because measurements are not exact
and may be contaminated by noise. Instead, we seek R
and { that best satisfy Equation 1 in the least-squares
sense: Find R and ¢ minimizing the sum of squares of

€ITOrS
LxT

12
E=) &l
i=1

where ||#||* = Z - # is the square of the length of the
vector #, and the error of the i** pair of measurements

@)

is € = 7g; — RPg; — t.
This problem is closely related to a number of other
problems that arise in photogrammetry and computer



vision. Given the pairs of measurements, the problem is
equivalent to the absolute orientation problem in pho-
togrammetry, and to the ewlcrior orientation part of
the camera calibration problem in computer vision (see
Chapter 13 of [3], and references therein).

3 Target in Body Frame

For the one-legged prototype, the origin of B coincides
with the shoulder joint. Calibration targets (pieces of
reflective tape) are attached to the upper leg at fixed
and manually measurable positions.

For the six-legged Ambler, the origin of B lies at the
center of the downward-facing surface of the structural
bridge that connects the two leg stacks and supports
the scanner. Calibration targets (pieces of brown pa-
per) are attached to the top of the vertical links.

In both cases, the joint angles and link lengths are
known, so elementary kinenatics suffice to determine
the target coordinates with respect to B.

4 Target in Sensor Frame

We consider two scanning laser rangefinders, one man-
ufactured by Erim, and the other by Perceptron. The
devices digitize two images: a range image, with pixel
values proportional to object distance modulo a known
constant; and a reflectance image, with pixel values
proportional to reflected encrgy.

The Erim acquires data in 64 x 256 pixel images at a
rate of 2 I1z [7]. The scanner digitizes to 8 bits over ap-
proximately 20 meters, which provides a nominal range
resolution of 7.62 cm. The nicasurements cover 80 de-
grees in the horizontal direction (azimuth) and 30 de-
grees in the vertical direction (elevation).

The Perceptron acquires data in 256 x 256 pixel im-
ages at a rate of 2 Hz. The scanner digitizes to 12 bits
over approximately 40 meters, which provides a nom-
inal range resolution of 0.98 cm. The measurements
cover 60 degrees in azimuth and 60 degrees in eleva-
tion.

Given a pair of reflectance and range images a(u,v)
and B(u,v), as in Figure 3, the task is to compute the
image coordinates of the target. The four following
steps perform this task [5].

1. Register the range and reflectance images.

2. Locate the leg in image space.

2a. Threshold the range image (Figure 4), removing
pixels with ranges that are either too close or too far
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Figure 3: Erim images of prototype leg
The leg appears in the left-hand side of the reflectance (top)
and range images as a tapered cylinder. The bump on its
lower left side is a cable reel; the cable appears faintly below

the reel. In the reflectance image, the calibration target
appears as a bright band below the reel.

~

Figure 4: Thresholded Erim range image of leg
The output contains regions that do not belong to the leg,
and is noisy.

to lie on the upper leg in the vicinity of the target(s):

[ 1 if Inear < B(w,v) < Ifar,
Benresn(u, v) = { 0 otherwise. ()
2b. Filter the thresholded range image by first
shrinking and then growing, in order to eliminate re-
gions that are too small to be the target (Figure 5). To
eliminate small regions, threshold (shrink) the output

of the Grassfire transform as follows:

ﬁshrink(“y U) = G(ﬂthresh(uy v)a I(grass) s (4)

where G is the forward Grassfire transform [5]. To re-
store (grow) the target region to its original size, apply
the reverse Grassfire transform as follows:

Breg(u,v) = G_l(ﬁshrink(uy v), I{grasa) . (5)

3. Identify target pixels on the leg to be those that
both belong to the leg, and exceed an intensity thresh-
old that is characteristic of the calibration target.

4. Compute the centroid (@, ?) of the target pixels.

The method for Perceptron imagery is similar. For
brevity, we refer readers interested in the differences to
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Figure 5: Grassfire, forward (top) and reverse.

Figure 6: Perceptron images of Ambler leg
The contrast of the reflectance (left) and range images has
been enhanced. The extensional link of the leg appears in
the bottom left, and the vertical link appears in the center.
In the center of the reflectance inage, the calibration target
is visible as a white patch at the top of the vertical link.

[5], and illustrate typical inputs in Figure 6 and inter-
mediate results in Figure 7.

The completed image analysis yields row &, column
9, and sensed range A(@, v) of the target. The trans-
formation to spherical-polar coordinates [5] is

¢=1_LA¢-I—¢0,9=5Ag+90,p:kﬂ(ﬂ,f)), (6)

where Ay and Ay are angular increments, ¢o and by
are initial orientations, and & is the scanner range reso-
lution in meters/bit. The transformation to Cartesian
coordinates is given by

z=psing . y=pcosfcoss , z=pcosfsing . (7)

5 Solution

There are a number of approaches to solving the least-
squares absolute orientation problem, which we review
elsewhere [5]. We implement the technique in [2] (re-
lated to [4]). which is an cxact closed-form solution

Figure 7: Perceptron range images of leg
The left panel illustrates the result of rangethresholding.
This typical result includes pixels that do not belong to
the leg, and does not include some pixels that do belong
to the leg. The right panel shows the result of intensity
thresholding, prior to executing the Grassfire transform.

that uses unit quaternions to represent the rotation.
The quaternion representation affords two advantages:
simplicity — it is simpler to enforce a unit norm for
a quaternion than it is to ensure that a matrix is or-
thonormal; and closed-form solution — no iteration is
required.

The solution for the desired quaternion is the eigen-
vector associated with the smallest eigenvalue of a
symmetric matrix, whose elements are combinations of
sums of products of corresponding coordinates from #g
and 7g. For convenience in the physical interpretation
of the solution rotation, we do not use the solution
quaternion ¢ itself. Instead, we first express gmin as an
orthonormal matrix R, and then parameterize R under
the roll-pitch-yaw convention.

6 Results

To state the experimental procedure, let i and j be
counters, B and S be sets of target position vectors, L
be the number of leg stations, and T' be the number of
targets on each leg.

l.i—=1,B—0,S0
2. while ¢ < L do
(a) Move leg to station i
(b) Compute 75 , 1 < j < T, as in Section 3
(¢) B—BU{ip;}, 1<j<T
(d) Acquire reflectance and range images

(e) Compute 7s;; , 1 < j < T, as in Section 4
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(f) § —SU{Fsij}, 1<j<T
(8) i —i+1

3. Compute R and ¢ from B and S, as in Section 5

We have automated this procedure entirely, and have
executed it hundreds of times, perhaps a thousand
times. Over the course of these trials, we have tested
the procedure under a wide variety of conditions, in-
cluding 50°F differences in temperature, ambient illu-
minations ranging from bright sunlight to night-time
fluorescent lighting, and background materials ranging
from sand to people to heavy machinery. The time re-
quired to execute the calibration procedure with 10-20
points totals approximately 15 minutes for either scan-
ner. The procedure spends roughly 70 percent of this
time moving the legs, and roughly 20 percent acquir-
ing and filtering images. Computing the rigid motion
parameters accounts for most of the remaining 10 per-
cent.

6.1 Accuracy

One basis for evaluating the accuracy of the computed
parameter values is the distance d;? = & - & between
corresponding points after applying the transforma-
tion, where & = 7g; — R¥¢; — i Figure 8 shows d
(the mean of the distribution of the d;) for ten Erim
trials., We observe that the mean varies from 5.5 to 11.2
cm, and that it varies significantly between data sets of
different sizes, and between data sets of the same size.
This range of values and variations is typical of other
trials. We conclude that the accuracy of the calibration
procedure for the Erim is 6-12 cm.

Figure 8 also shows d for ten Perceptron trials. The
results show that the mean values range from 1.8 to
6.7 cm, and vary significantly between data sets. This
range of values and variations is typical of other tri-
als. We conclude that the accuracy of the calibration
procedure for the Perceptron is 2-7 cm, or two times
greater than for the Erim. This difference in accuracy
may be due to better leg position sensing with the Am-
bler, or superior accuracy on the part of the Perceptron
scanner, or hoth.

6.2 Precision

To evaluate the precision of the computed rigid mo-
tion parameters, we execute the calibration procedure
several consecutive times, and observe the difference in
the computed parameters. Between data sets, we do
not move the scanner or alter any settings.
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Trial Trial | N d

N sp sp

(cm) | (em) (cm) | (em)
1 8 5.5 2.4 11 12 2.5 1.0
2 8 5.7 2.4 12 12 2.2 1.3
3 8 6.4 1.5 13 12 | 6.7 4.3
4 8 5.8 1.9 14 12| 2.9 1.6
5 18 9.6 4.3 15 12 | 6.7 3.8
6 18 | 10.1 3.1 16 12 | 6.0 3.2
7 18 8.6 3.8 17 12} 4.0 3.0
8 50 | 11.2 3.6 18 121 2.7 1.5
9 50 8.9 2.9 19 12| 1.8 1.9
10 50 | 10.7 4.3 20 12 2.9 1.5

Figure 8: Statistics of error distributions
Trials 1-10 use the Erim, trials 11-20 use the Perceptron.

Trial | At, | At, | At, | A¢| A6| Ay

(em) | (em) | (cm) | (deg) | (deg) | (deg)
AB | 161] 73] 65| 04| 20| -08
BC | 34| 106] -02] 01| -05]| 14
AC | 127] -32| 67| 06| 15| 06
DE| 74| 35| 21| 16| 08/ -07
EF | -38| -36| -57| 07| -05]| 16
DF | 36| -01| -36| 08| 03| 07

Figure 9: Variation of the computed parameters
Trials A~C use the Erim with N = 18. Trials D-F use the
Perceptron with N = 12.

Figure 9 shows by how much the estimated param-
eters change between three data sets for each sensor.
Some parameters change by significant amounts; the
largest observed differences are 16.1 cm and 2.0° for
the Erim and 7.4 ecm and 1.6° for the Perceptron.

The variations in the rigid motion parameters are not
due to numerical instability of our computations, be-
cause we observe condition numbers between 1 and 120
for the symmetric matrix mentioned in Section 5. The
variations in the rigid motion parameters may be due
to poor leg position sensing, or poor image analysis, or
both. If poor leg position sensing reported target lo-
cations imprecisely, then the rigid motion parameters
would vary, even with perfect image analysis. Simi-
larly, the parameters would vary if poor image analy-
sis reported target locations imprecisely, even with in-
finitely repeatable leg position sensing. For the Erim
trials, both factors are conflated, making it difficult to



identify their relative magnitudes. For the Perceptron
trials, sensing the position of the stiff Ambler legs is
highly repeatable, so the dominant cause of poor cali-
bration precision is image acquisition and analysis. We
observe the range variations to correlate with ambient
temperature; the higher the temperature, the greater
the variations. We have not been able to eliminate
the variations, but can achieve acceptable precision by
conducting calibration duriug cool conditions, where
inferior to 75° is our heuristic measure of cool.

To assess the precision of the points transformed into
B, we evaluate the standard deviation sp of the distri-
bution of the d;. This statistic quantifies the scatter of
the points mapped into B. Figure 8 shows sp for ten
Erim trials. We observe that the values of sp range
from 1.5 to 4.3 cm, and that they vary significantly
between data sets of different sizes, and between data
sets of the saine size. This range of values is somewhat
better than for other trials, where it is not uncommon
to observe standard deviations of 10 cm. We conclude
that the precision of the calibration procedure for the
Erim is no better than 2-5 c. Figure 8 shows sp for
ten Perceptron trials. The results show that the preci-
sion ranges {rom 1.0 to 4.3, which is commensurate to
that of the Frim, and several times worse than the res-
olution of tlic Perceptron. s in the case of the Erim,
the reported range of values is somewhat better than
for other trials.

7 Discussion

In this paper we have presented an implemented tech-
nique to calibrate scanning laser rangefinders to a
vehicle-centered reference frame. We reported results
for two differcnt sensors and two different vehicles. For
the Erim and the prototype leg, the procedure achieves
an accuracy of 6-12 cm with a precision no lower than
2-5 ¢cm. For the Perceptron and the Ambler, the ac-
curacy is 2-7 ¢m with a precision no lower than 2-
5 c¢m. These results have proven to be satisfactory
for construciing terrain muaps and using them to se-
lect footholds during our rough terrain walking exper-
1ments.

We have also successfully calibrated the Perceptron
scanner to a lixed reference frame. The techniques and
results are very similar to those reported for the vehicle-
centered reference frames, so we have not treated them
separately. \We note that this success provides further
evidence for the generality of the approach.

One promising direction for future research is toward
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more comprehensive sensor calibration. This would in-
volve identification of intrinsic sensor parameters such
as the relationship between range grey level and abso-
lute distance, the mirror starting angles, and the an-
gular increments, in addition to the six rigid motion
parameters.
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