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Abstract

In this paper, we describe practical, effective approaches to
outdoor mapping and positioning, and present results from
systems implemented for a prototype lunar rover. For map-
ping, we have developed a binocular head and mounted it
on a motion-averaging mast. This head provides images to
a normalized correlation matcher, that intelligently selects
what part of the image to process (saving time), and sub-
samples the images (again saving time) without subsam-
pling disparities (which would reduce accuracy). The
mapping system has operated successfully during long-du-
ration field exercises, processing streams of thousands of
images. The positioning system employs encoders, incli-
nometers, a compass, and a turn-rate sensor to maintain the
position and orientation of the rover as it traverses. The sys-
tem succeeds in the face of significant sensor noise by vir-
tue of sensor modelling, plus extensive filtering and data
screening.

1 Introduction

Carnegie Mellon University has undertaken a research, de-
velopment, and demonstration program to enable a robotic
lunar mission. The two-year mission scenario is to traverse
1,000 kilometers, revisiting historic sites, and returning
continuous live video. During that traverse, control will be
traded between the rover and users who will be provided
with rich visual feedback. The resulting experience is in-
tended to attract mass participation and evoke strong public
interest in lunar exploration [11]. To enable such a lunar
mission, we are developing and testing key mobile robot
navigation technologijes, including mapping and position-
ing.

The current terrestrial platform is the Ratler, a four-
wheeled vehicle developed by Sandia National Laboratory.
This skid-steered vehicle features an articulated chassis in
which the body is divided into two halves, with two wheels
on each side. Control of the Ratler may be directed from a
local pendant, a remote command station, or on-board pro-
CEessOrs.

The goal of the work reported here is to develop and dem-
onstrate lunar-relevant mapping and position estimation ca-
pabilities. Various elements of these capabilities have been
developed in theory and reported elsewhere. The principal
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contributions of the work reported here are in (1) the ad-
vanced development of a number of existing but disparate
approaches into practical algorithms that are effective in
natural terrain; and (2) the real-world demonstration and
evaluation of these algorithms in field trials processing
thousands of image pairs and millions of state sensor read-
ings.

In the next section we review related work. In the following
sections, we describe the mapping and position estimation
approaches that have been implemented, and present quan-
titative experimental results. In the final section we summa-
rize the results, and look toward the future.

2 Related Work

The problems of mapping and positioning for planetary
rovers have attracted significant attention around the world.

A majority of the efforts to navigate mobile robots in natu-
ral terrain has employed laser rangefinders [3][7][8][12] or
proximity sensors [2] rather than stereo. There have been
notable exceptions. Matthies [13] developed a near-real-
time system using Datacube hardware, and demonstrated
100 m traverses with a planetary rover prototype. Faugeras
etal. [1][4] developed a real-time system using Digital Sig-
nal Processors. Ross [16] developed a trinocular stereo sys-
tem for the Dante walking robot.

Each of these stereo systems has its virtues, and each exhib-
its great promise. What has not been reported in the litera-
ture is an approach that achieves good performance without
either special-purpose hardware or stringent requirements
for alignment.

Virtually all efforts to navigate mobile robots face the posi-
tion estimation problem in one form or another. Some
choose to ignore it, others choose to water it down, and oth-
ers attack it with Kalman filters and exotic sensors. Qur ap-
proach applies aggressive filtering to readings from a suite
of simple sensors.

3 Mapping

The mapping system consists of a stereo module that de-
rives terrain information from binocular images. The hard-
ware consists of two CCD cameras, with auto-iris 8 mm
lenses, mounted on a motion-averaging mast, a video link,
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and off-board frame grabbers and processors. The mapping
software takes as input a stereo pair and outputs arrays of
the three coordinates X, ¥, and Z of the image pixels.

The sets of points measured by stereo are accumulated over
time into a terrain map centered at the vehicle which is used
by the navigation system to drive the vehicle. Since all the
data is accumulated in the terrain map, this system does not
deal with dynamic scenes which would require explicit
identification of moving objects.

3.1 Image Acquisition

We mounted the cameras on a mast to satisfy a number of
imaging requirements. Here we describe three of the more
important requirements.

1) Lookahead distance: The cameras must look far enough
ahead to allow the robot enough time to stop or maneuver
around an obstacle. The stopping distance is the sum of the
distance traveled before braking and the distance traveled
while braking:

2 -1
dsmp = tstopv+v (2une)

where ty,, is the braking time, vis the velocity of travel, 1
is the coefficient of sliding friction, and g is gravitational
acceleration. We estimate the braking time to be about 2 sec
by summing the times required to acquire stereo imagery,
compute stereo disparities from the images, and detect an
obstacle from the stereo disparities. Assuming that the ve-
hicle travels at the maximum velocity of 0.7 m/s, and a co-
efficient of sliding friction of 0.25, the stopping distance is
1.5 m from the front wheels. This constrains the camera
height to be at least 66 cm, the height at which the line of
sight just grazes the top of the wheels.

2) Width of field of view: The cameras must see at least 3 ve-
hicle widths (about 400 cm), at all distances beyond the
lookahead distance, so that the Ratler can maneuver around
obstacles one vehicle width in size.

3) Resolution: An obstacle 20 cm tall must subtend at least
6 pixels in order to be reliably detected.

Given these requirements, we identified the key variables
to be camera height, camera baseline, width of field of
view, and tilt angle. We performed trade-offs on these vari-
ables. The analysis is complicated due to conflicting re-
quirements. For example, raising the cameras increases the
width of field of view (good), but decreases the resolution
(bad). After extensive simulation and experimentation, we
converged on a camera height of 1.5 m, a baseline of 0.9 m,
and a tilt angle of 25 deg down from horizontal.

To maximize image stability as the rover traverses surface
irregularities, we designed and built a motion-smoothing
four-bar linkage that averages the pitch of the two Ratler

bodies. This linkage has proven to be extremely valuable in
providing reasonably overlapped images while traversing
extreme terrain.

3.2 Stereo Matching

We denote by x and y the axis of coordinates of the image
plane, y being vertical. We assume in the stereo matching
that the epipolar lines are the scanlines of the images so
that, given a pixel (x,y,) in the right image, we need to
search for the best matching pixel (x;y,) in the left image
such that x; = x, + d(x,,y,) and y; = y,, where d(x,.y,) is the
disparity at (x,,y,). In order to ensure that the epipolar lines
are correctly aligned with the scanlines, we use a rectifica-
tion procedure developed by Robert [14]. The rectification
is applied to the input images and all the algorithms de-
scribed below are applied to the rectified images.

The best disparity d(x,y) is computed by finding the maxi-
mum over 4 of the normalized correlation C(x,y,d) [5]:
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In this expression, W is the window [x-w,x+w,][y-
wyy+wyl, 6(x,y) is the standard deviation of the intensity
values in W and n is the number of pixels in the window, n
= (2w, +1)(2wy+1). Since all the computations are refer-
enced to the right image, we will simplify the notations by
dropping the index » and by denoting the pixel position
simply by (x,y). We will denote by C(x,y) the correlation
value for the best disparity d(x,y).

In order to have disparity resolution better than the image
resolution we use a parabolic interpolation that uses the
correlation values of the two closest disparities.

We chose to use the normalized correlation criterion over
the sum of squared differences (SSD) for two reasons.
First, the normalized correlation enables us to avoid the use
of a LOG filter to remove photometric differences between
the images. Second, the normalized correlation C(x,y) pro-
vides a natural measure of confidence of the disparity value
at pixel (x,y). Moreover, the increase in computation time
compared to the SSD criterion is minimal.

Area-based stereo is a well-established technique but it is
known to produce a potentially large number of false
matches due to lack of texture, occlusions, and repetitive
patterns. It is especially important to be able to filter out
those false matches in the context of navigation applica-
tions because even a few erroneous points out of hundreds
of images may have catastrophic consequences.

— 2914 —



Figure 1: Typical input stereo pair (top); Rectified images
(middle); Disparity map (bottom)

In order to achieve the level of reliability required for nav-
igation, we use four types of filtering. The first two types
use thresholds G,,;,(x,y) and C,,;,(x,y) on the standard de-
viation of the distribution of intensity in the neighborhood
of (x,y) and on the best correlation at (x,y), respectively.
These classical filters eliminate the low-textured areas and
part of the occluded areas.

The third filter is designed to eliminate ambiguous match-
es. It uses a threshold M on the relative difference between
the global maximum of correlation and the second best
peak in the correlation peak, C’(x,y). Specifically, a point is
rejected if (C(x,y) - C’(x,y))/C(x.,y) is lower than M. This
test is effective in discarding pixels at occlusion boundaries
and ambiguous matches due to repetitive patterns. The last
filter is a median filter on the disparity map.

Figure 1 shows a typical stereo pair from our test site, the
corresponding rectified pair, and the disparity map. The
disparity map is computed from 2m to 14m at full resolu-
tion although we will show a more efficient use of the ste-
reo matcher below. Except for the resolution, the
parameters used for this result and for all the navigation ex-
periments are as follows: 640 columns, 480 rows, w, = 25,
wy =17, Oy = 2, Cppyy, = 0.5, and M = 10 percent.

After the stereo matching, d(x,y) is converted to a 3-D point
P = (X(x,y),Y(x,y),Z(x,y)) by using the projective transfor-
mations P and P, between the two images and a coordinate
system referenced to the vehicle. P; and P, are computed by

combining the rectification matrices with the calibration
matrices computed using a standard calibration procedure
[15]. This coordinate system in which the points are ex-
pressed is set up so that the Z axis is up, the Y axis is the di-
rection of travel of the vehicle, and the origin is at the base
of the mast supporting the cameras. In the remainder of the
paper, Cartesian coordinates are expressed with respect to
this vehicle-based coordinate system.

We predicted the Cartesian coordinate errors based on a one
pixel error in disparity using the current camera configura-
tion. For targets from O to 20 meters, the Y error increases
quadratically to almost 60 cm at 20 m, while the errors in X
and Z do not exceed 6cm. This suggests that our stereo
gives a precision level that is comparable with the precision
of laser range finders used for navigation.

3.3 Window Selection

In the previous section we briefly described the stereo
matching and filtering techniques that we selected. In this
and the following section, we describe in detail the im-
provements that we added to the basic stereo algorithms in
order to make them usable in a practical navigation appli-
cation requiring computational efficiency, robustness, and
precision.

In order to apply correlation-based stereo to a practical nav-
igation system, we are faced with a difficult challenge. We
need to process the images at a speed high enough to sus-
tain continuous motion of the vehicle while retaining max-
imum precision on the disparity estimates. Two ways of
addressing this challenge have been proposed in the past.
First, the image can be processed at a coarser resolution
[13][16]. In this case, the processing time can be reduced
arbitrarily by decreasing the resolution of the images until
it matches the needs of the application. However, the qual-
ity of the resulting maps is degraded because the resolution
of the disparity values decreases with the resolution of the
image.

A second approach is to use special-purpose hardware in
order to perform the correlations. This solution has led to
several “real-time” stereo systems using DSP [4] or
Datacube systems [13]. However, for our application, con-
siderations of cost, power, and availability limit us to con-
ventional computing. Moreover, even though the stereo
processing itself is fast in this approach, it produces mas-
sive amount of data, the processing of which introduces un-
necessary overhead. Although some of the shortcomings of
those solutions are specific to our applications, we believe
that they do apply to some extend to any practical vision
system for which cost, speed, and precision are all issues of
equal importance.
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A better way of approaching the problem is based on the
observation that an autonomous driving system needs to
process a small subset of the image, as long as that subset
is selected judiciously as function of the speed of the vehi-
cle and of the geometry of the camera system. Intuitively,
the vision system needs to process only the subimage that
adds information to the map built from all the previous im-
ages. As we will see, the size of the subimage is quite small,
assuming that the system is in steady state and that the
speed is approximately constant. A complete theory sup-
porting this observation was developed by Kelly [10].

We exploit this property in the following way: the planner
computes the interval Iy = [Y,,:,Y ,n4,] Of distance from the
vehicle within which it needs data in order to expand its
map. Iy is computed from the speed of the vehicle and from
the anticipated delay in getting the result from stereo. The
algorithm for computing /y was introduced by Kelly [9].

After receiving a new value of Iy from the planning mod-
ule, the stereo module computes the bounds of a subimage,
YminYmax)» and the corresponding bounds in disparity
(dpinGmar)- This computation requires some assumptions
about the geometry of the environment because Iy con-
strains only the region of interest in the (X,Y) plane but not
along the Z axis. Specifically, we assume maximum and
minimum heights of the objects in the scene, Z,,;, and Z,,, ..
That is not to say that objects of larger size cannot be de-
tected but that only the parts of the objects between Z,,;,
and Z,,,. are computed, which is sufficient for navigation
purposes.

The bounds are computed by first finding the y coordinates
of the pixels in the right image such that x=0 or x = dim, and
Y = Yinmax) @04 Z = Zpyin max- These points are at the
boundary of the region of interest. The y coordinates can
clearly be computed by solving for y and X at each of the
boundary points. The minimum and maximum values of
the y coordinates are the vertical bounds of the subimage.
Once their y and X coordinates are computed, the boundary
points are also projected in the left image and the min and
max differences between the x coordinates of their projec-
tions in the left and right images are d,,;, and d,,,,,.

Figure 2 shows the stereo computation time as a function of
AY =Y 0 - Y fOr Y, = 5m. The computation times are
normalized with respect to the largest value. The reduction
in computation time compounds two effects: first, the size
of the subimage is reduced, thus decreasing the number of
pixels processed; second, the disparity interval is reduced
and, correspondingly, the number of steps in the correlation
search.

Figure 3 shows the average of the min and max value of the
requested image rows, the disparity, and the corresponding
Y coordinates. These values were computed by averaging
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Figure 2: Stereo computation time as function of the width in
Y of the desired interval for Ymin = 5m
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Figure 3: Average values of disparity range, subimage size
and distance interval recorded during typical run

the values in the planning requests recorded during a 150m
(310 images) run of the system with the vehicle moving at
0.15m/s.

After an initial adjustment phase, the values in the planning
requests remain within 10% of the average values shown in
Figure 3. These values confirm that only a small fraction of
the image needs to be processed once the navigation system
is in a steady state.

3.4 Partial Subsampling

Further reduction of the computation time may be achieved
by observing that it is not necessary to process the data at
full resolution. More precisely, the resolution on the ground
of the data points obtained after transformation is too high
compared to what is actually needed for evaluating terrain
traversability. For example, the distance in X between con-
secutive points on a scanline at full resolution at 10m is on
the order of Scm, whereas a 25cm grid is typically sufficient
for evaluating navigability. This suggests that it is advanta-
geous to subsample the image in order to process fewer pix-
els while retaining enough data density for navigability
evaluation.

This idea has been used successfully in navigation systems
using laser range finders [5][9]. In the case of stereo, we
have to be more cautious because simple subsampling will
automatically degrade the resolution of the disparity. In
other words, we want less data but not at the cost of less ac-
curate data.
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We modified the correlation algorithm to get the best com-
promise between speed and precision by using a partial
subsampling in which the disparity is evaluated on a sub-
sampled set of pixels but in which the disparity at a given
pixel is searched by using the maximum resolution. We call
this approach partial subsampling.

Let &x and 8y be the sampling steps in columns and rows
respectively, i.e., the disparity is computed only at the pix-
els (x,, y,) such that x, = k&x and y, = k8y. We assume that
the window sizes w, and wy, are multiples of 8, and 8, re-
spectively. The window W over which the sums are taken
in C(x,,y,.d) is now defined as:

W= {(xy)€ Wf[ (x=x,+kdx),(y =y, +k8y)}

where Wfis the full resolution window:
Wf =[x, —wx +w X[y, — Wy, + Wy]

In the expression of C(x,,y,.d), only the sum of products has
to be recomputed for each disparity since the mean and
standard deviation at each pixel do not depend on 4 and
therefore can be computed only once. For each disparity d
in [d,pjsd eyl the products Ij(x,+d,y,)I(x,y,) are comput-
ed for all the subsampled values of (x,.y,). Let us denote the
sum of products at (x,,y,) over Wyby S(x.y,), and the sum
of products over column x, only by S,(x,.y,):

SGxpy) = Y, L@NL(x+dy)
(x,y)e W
S, (xpy,) = > I(x, )1 (x,+d )

ye [y, ~wpy,+wl

Then S(x,+6x,y,) is computed recursively from S(x,.y,),
Sy(x,-Wy.yy), and Sy(xr+wx+6x,yr) as
S(x,+0x,y,) =

S(x,¥,) +Sy(xr+ w,+0x,y,) —Sy (x,=w,y,)

This shows that, for a given disparity d, the map C(x,,y,.d)
can be computed recursively at the reduced resolutions
(8x,8y), thus reducing the computation required by dx.8y.
At the same time, the resolution in disparity is maintained
by computing the C(x,.y,,d) for all the values of d, without
subsampling it. Therefore, the partial subsampling, that is,
subsampling the image without subsampling the disparity,
does achieve our goal of more efficient stereo matching
without loss of precision.

We conducted a series of experiments in order to verify that
the precision is not affected by the subsampling. In those
experiments, we placed boxes at distances ranging from 2m
to 8m from the center of the vehicle by increments of 1m.
The front faces of the boxes are parallel to the X axis. We
then measured the RMS difference, Ey , between the mea-
sured Y values on the boxes and the true value for different
values of x and &y.
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Figure 5: Correlation curves at one pixel for different levels

of subsampling 8x = {1,3,5} and 8y = {1,2,4}; the left plot is

the complete correlation curve; the right plot is a magnified
subset of the complete curve around the maximum

Figure 4 shows the plots of Ey as a function of ¥ for 8x =
{1,3,5} and &y = {1,2,4} and for Y ranging from 1m to 8m
by increments of 1m. These plots show that the error in Y'is
independent of 8x and Jy. They also show that the error in
Y computed from experimental data is consistent with the
theoretical error derived in Section 3.2. For example, the
theoretical error at 8m is 10cm, while the actual error is
15cm.

Figure 5 shows the correlation values at one pixel plotted
as a function of disparity for nine different combinations of
(&x,8y) for & ={1,3,5} and 8y = {1,2,4}. The right part of
Figure 5 shows the same curves in the vicinity of the max-
imum correlation. This figure shows that the best disparity
is the same at all resolutions and that there is little variation
of the correlation values across resolution levels. In con-
trast, for 8x = 5, the disparity computed using a convention-
al subsampling technique can be in error by as much as 5
pixels.

In practice we use fixed subsampling factors of 8x = 5 and
8y = 4. With these values, the stereo matching takes 0.7s on
average on a Sparc10 workstation using the parameters of
Figure 3.

— 2917 —



3.5 Performance

The combination of selective windowing and partial sub-
sampling allows us to achieve both the computational
speed and the precision required for continuous motion at
low speeds using a general-purpose workstation (with no
special-purpose hardware).

The longest stereo run took place over 6 hours of intermit-
tent operation (interrupted by rain and battery recharges) as
Ratler traversed 1,078 m over the rough terrain of a slag
heap. During this trial, the stereo module processed at least
3,000 image pairs, and computed at least 1.5 million three-
dimensional points (based on the average values reported
in Figure 3).

It is difficult to quantify the accuracy of the maps over the
course of kilometer-long runs, because we do not know
ground truth. Whenever we performed spot checks of the
computed coordinates, they were correct within the preci-
sion of our evaluation of ground truth using a tape measure
and a large-scale protractor.

The only failures we observed were due to transient effects
caused by disconnection of video cables, and by abrupt
lighting changes that overwhelm the auto-iris lenses.

4 Positioning

We have formulated and implemented a suite of algorithms
for maintaining an estimate of the robot’s position and ori-
entation in a fixed, external reference frame.

4.1 Sensors

Ratler includes four types of state sensors:
1. Encoders on the 4 drive motors
2. A flux-gate compass
3. Inclinometers (3) measuring the pitch of the left body,
the pitch of the right body, and vehicle roll
4. A turn-rate gyro

The outputs of the sensors are digitized to 10 bits, although
historically, telemetry from Ratler has included only 7-bit
values.

The raw data from each of the four types of sensor is biased
and noisy and sometimes corrupt. Thus, we have found it
necessary to develop filters for preprocessing the sensor da-
ta. As an example, consider the compass data.

In steady state, the compass signals are corrupted by ran-
dom noise. We performed a spectral analysis of the data,
and observed a cut-off frequency of 0.25 Hz. We imple-
mented several low-pass filters, including Butterworth and
Bessel filters. These were extremely effective in suppress-
ing the noise, but also introduced a 2-3 cycle delay between
the filtered value and the signal.
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Figure 6: Raw data (left) and Kalman filtered data (right)

When the Ratler accelerates, the compass signals are cor-
rupted not only by random noise, but also by transients
caused by the dynamic effects. We implemented a Kalman
filter:

%,,, = A% +K(z-A%)

with a sensor model in the ‘A’ matrix that heavily weights
the previous compass reading if the turn-rate sensor indi-
cates that the robot is accelerating. Essentially, this filter
does not believe the compass when Ratler turns. Figure 6
illustrates the results of applying this filter to the compass
(yaw) and turn-rate (yaw-rate) sensors. The improvement
is dramatic.

4.2 Position Estimation

Given the previous state and the new state sensor readings,
the position estimation algorithm computes the current
state of the robot. Let 8 represent the filtered heading, let
¢ represent the mean of the filtered readings from the left
and right pitch inclinometers, and let A represent the mean
of the differences between the current and previous encoder
readings. Then the new position is given by

x, +AcosBcos@ y, . | =y, +AsinBcospz

nel = 2, FAsing

Figure 7 tabulates the results of tests in which we repeated-
ly commanded Ratler motions, and logged computed and
true positions and orientations. Trial A uses the earliest,
simplest generation of the Ratler positioning system at an
outdoor slag heap, with straight-line motion only. The po-
sitional accuracy is poor, as indicated by the average 17
percent error. The heading accuracy is excellent, and the
positional and heading precisions are moderate. Trial B
uses (again at the slag heap) an intermediate version of the
developed positioning system, for which a number of low-
level motion control constants were tuned. The results
show that the accuracy in both position and heading is ex-
cellent. The precision of the heading estimate appears to
have decreased; we believe this is an artifact of limitations
in our ability to obtain the ground truth orientation mea-
surements. Trial C uses the positioning system with filtered
compass data on a flat, grassy field, and motion along
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Figure 7: Statistics of position and orient. errors (percent)

curved arcs. The results show moderate accuracy improve-
ments and moderate precision degradations with respect to
Trial B.

5 Discussion

In this paper we have presented the mapping and position-
ing systems for a prototype lunar rover.

The mapping system consists of a camera head on a mo-
tion-averaging mast, which provides image pairs to a nor-
malized correlation matcher. This matcher intelligently
selects what part of the image to process (saving time), and
subsamples the intensities (saving time) without subsam-
pling disparities (which would reduce accuracy). The map-
ping system has operated successfully during long-duration
field exercises, processing thousands of image pairs.

The positioning system employs encoders, inclinometers, a
compass, and a turn-rate sensor to maintain the position and
orientation of the rover as it traverses. The system succeeds
in the face of significant sensor noise by virtue of sensor
modelling, plus extensive filtering and data screening.

Although both the mapping and positioning systems use
classical sensors and previously discovered algorithms,
they have achieved unprecedented results, enabling long-
duration (6 hours) and long-distance (1 km) outdoor
traverses. The key contributions are in tailoring the general
ideas to a specific robot performing a specific task, and in
demonstrating practical and unprecedented performance.

Future work will continue to concentrate on robust, reliable
operation in the face of occasionally abysmal sensor data.
To enable better performance in avoiding obstacles, we will
achieve a wider stereo field of view by replacing the binoc-
ular rig with a four-camera setup. To improve position esti-
mation performance we will port all of the preprocessing
and processing onto the on-board system. In addition, we
will mount an Inertial Measurement Unit on Ratler, and de-
rive position and attitude from the measured accelerations.
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