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High-Resolution Terrain Map from Mulitiple Sensor Data

In So Kweon and Takeo Kanade

Abstract—This paper presents 3-D vision techniques for incrementally
building an accurate 3-D representation of rugged terrain using multiple
sensors. We have developed the locus method to model the rugged terrain.
The locus method exploits sensor geometry to efficiently build a terrain
representation from multiple sensor data.

Incrementally modeling the terrain from a seq of range imag
requires an accurate estimate of motion between successive images.
In rugged terrain, estimating motion accurately is difficult because of
occlusions and irregularities. We show how to extend the locus method
to pixel-based terrain matching, called the iconic matching method to
solve these problems. To achieve the required accuracy in the motion
estimate, our terrain matching method combines feature matching, iconic
matching, and inertial navigation data.

Over a long dist of robot , it is difficult to avoid error
accumulation in a composite terrain map that is the result of only local
observations. However, a prior digital elevation map (DEM) can reduce
this error accumulation if we estimate the vehicle position in the DEM.
We apply the locus method to estimate the vehicle position in the DEM
by matching a seq e of range i with the DEM.

Experimental results from large-scale real and synthetic terrains
demonstrate the feasibility and power of our 3-D mapping techniques for
rugged terrain. In real world experiments, we built a composite terrain
map by merging 125 real range images over a distance of 100 m. Using
synthetic range images, we produced a composite map of 150 m from
159 images.

In this work, we demonstrate a 3-D vision system for modeling rugged
terrain. With this system, mobile robots operating in rugged environments
can build accurate terrain models from multiple sensor data.

Index Terms— Autonomous robots, matching, range images, rugged
terrain, sensor fusion, terrain maps, 3-D vision.

I. INTRODUCTION

Robots operating in rugged terrain need to plan their actions,
safeguard their motions, and estimate their positions in both local and
global contexts. A priori maps and plans are insufficient for navigating
natural terrain because robots in real environments must cope with
contingencies and respond to changes: Robots require accurate and
reliable geometric terrain representations that are constantly updated
with current terrain data.

Sensors like range finders provide geometric information about
environments but not in a form needed for planning, safeguarding,
and navigating. For instance, 3-D range images acquired by a laser
scanner are given with respect to the sensor coordinate frame,
but robots must plan and operate in another coordinate frame:
the surface of the world. Traditional Cartesian-based approaches
use the geometric relationship between the sensor and the world
coordinate frame to transform between frames. The resulting terrain
map is sparse and nonuniform and creates two problems. First, the
interpolation required to fill in the map is prone to error. Second, the
algorithms required to access geometric information at arbitrary map
locations are complicated.
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In rugged terrain, geometric sensors are frequently unable to see
all the terrain within their field of view due to shadowing (occluding)
by terrain geometry, that is, some terrain areas are not visible
to the sensor. Identifying and representing invisible areas in the
terrain model is critical for planning. With traditional Cartesian-based
approaches, it is difficult to discern occluded areas due to sparseness
in the terrain representation. Furthermore, determining upper bounds
on terrain elevations within invisible areas is not possible. Finally,
every sensor has inherent error in its data. the conversion of error in
the sensor frame to a uncertainty model in the world reference frame
is a nontrivial problem.

Shadowing, data sparseness, and error, especially at large distances
from the sensor, limit the completeness of the data in a single image;
the geometry of large areas of terrain is unknown due to shadowing.
A forward-looking image alone may be insufficient for planning and
navigation. Robots operating in rough terrain may require knowledge
of terrain that has been observed but is currently out of the sensor
field of view such as terrain under and behind the robot. Therefore,
the need is to accurately merge successive images. For merging
images, an estimate of relative displacement is required. Existing
approaches, which estimate the displacement from dead reckoning or
feature-based matching, fail to accurately merge images. For example,
dead reckoning in rugged terrain has been shown to have 5% error
in distance measure. Alternately, feature-based matching that finds
correspondence between low-level features, such as points, lines, or
corners, is not suitable for amorphous rugged terrain. More accurate
displacement between images must be known before merging.

Even with good merging, some displacement error for each suc-
cessive image merge is foregone. After many images, the resulting
composite terrain map may accumulate a large error with respect
to a world reference coordinate frame. The error in estimated robot
position in the world coordinate frame may also be large. To solve this
problem, global terrain geometric data independent of robot sensed
local data is required. Error can be removed from the composite
terrain map (and robot world position) by matching the composite
map to the global elevation data.

In summary, the problems of modeling rugged terrain accurately
include the following:

* How to model the immediate environment from a single range

image

* how to estimate the incremental displacement between images

before merging

* how to remove error accumulated in a composite terrain map by

using global terrain data.

The goal of this work is to develop a 3-D vision system for building
accurate and reliable representations of rugged terrain that are suitable
for robot navigation.

II. BUILDING A GRID REPRESENTATION FROM A RANGE IMAGE

In developing any 3-D vision system, selecting good representa-
tions will determine the robustness and performance of the system.
The choice of representation should be based on the characteristics of
the environment and the specific applications. For the exploration of
Mars, the representation should be suitable for representing rugged
terrain and for extracting other information such as obstacles for
navigation or topographic features for sampling [1]. We then need
to select a sensor suitable for building the representation.

In this section, we first present our representations (elevation maps)
suitable for modeling 3-D rugged terrain. We then describe an active
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z = f(x,y)
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Fig. 1. Structure of an elevation map.

ranging sensor that creates range images. Finally, this section presents
the locus method for building an elevation map from a range image.

A. Grid-Based Representation: Elevation Maps

Our representation for rugged terrain is a grid-based representation:
an elevation map. Elevation maps represent the geometry of the
environment by the elevation at grid points on a reference plane. The
elevation is a vertical distance above or below the given reference
surface discretized into a regularly spaced grid. an elevation map is
then represented as = = f(r,y) and is shown in Fig. 1.

B. Active Ranging Sensor

Range or depth images can be created using active or passive
range sensing methods. Stereo vision is a typical example of pas-
sive sensing methods. It finds the corresponding points from two
images and computes the range by a triangulation. The fundamental
problems in stereo are the difficulty and the computational costs of
finding the corresponding points in the two images [6], [16]. Active
sensing methods are preferred for two main reasons: First, they
directly provide range data without the triangulation computation;
second, active methods are largely insensitive to outside illumination
conditions, simplifying considerably the image analysis problem.
This is especially important for images of outdoor scenes in which
illumination cannot be controlled or predicted. We have used a time-
of-flight laser scanner manufactured by the Environmental Research
Institute of Michigan (ERIM).

The ERIM laser scanner transmits a laser beam in the near-infrared
region (810 nm) generated by a laser diode. The amplitude of the
output of the laser diode is modulated by varying its drive current. It
scans the beam across the field of view using a nodding mirror and a
polygon mirror. The nodding mirror changes the elevation (tilts), and
the polygon mirror changes the azimuth (pans) of the emitted signal.

The infrared light is reflected off the target surface, gathered by
the receiver optics, and focused onto the detector, which is a silicon
avalanche photodiode. It filters the optical signal to pass only the
transmitted optical frequency and filters the electronic detector signal
to pass only the amplitude modulating frequency. An electronic phase
detector then measures the phase difference between the transmitted
signal and the received signal, which is proportional to the transit time
and, therefore, the range. Since relative phase differences can only
be determined modulo 2w, the measured range to a point is really
only determined to within a range ambiguity interval; for the ERIM,
it is 64 ft. In addition to range images, the sensor also produces
active reflectance images of the same format (64 x 256 x 8 b); the
reflectance at each pixel encodes the energy of the reflected laser
beam at each point.

Fig. 2 shows a pair of range and reflectance images of an outdoor
scene. The range is coded in 8-b gray levels from zero to 64 ft. The
reflectance at each pixel encodes the energy of the reflected laser
beam in 8 b.

(b)

Fig. 2. ERIM images of outdoor terrain:
(a) Range image; (b) reflectance image.

Fig. 3.

Geometry of the ERIM range sensor.

The position of a point in the Cartesian coordinate system can be
derived from the measured range and the direction of the beam at
that point. Fig. 3 shows the range measurement () and the direction
of the beam specified by the vertical (¢) and horizontal (#) scanning
angles. The two angles are derived from the row and column position
in the range image (7, c) by the equations

8 =0g+cx Ab
O =¢r+7 X A0 €Y

where 6o and ¢o are the staring horizontal vertical angels, respec-
tively. Af and A¢ are the angular step between two consecutive
columns and rows, respectively.

From a simple trigonometry, the coordinates of a point measured
by the ERIM range sensor are given by

r = psind
y = pcosocosl

z = psin¢cosb. 2)

C. From Range Image to Elevation Map: The Locus Method

We could compute a Cartesian elevation map (2. y, z) by applying
(2) to the measurements (¢, 8, p) in a range image; we call it the
traditional approach. This approach has a few problems, as depicted in
Fig. 4: First, this introduces nonuniform samples in Cartesian space.
Even though the range finder scans with equal-angle intervals, the
Cartesian map is progressively more sparse at points further from
the sensor.
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Uncertainty in sensor data

Uncertainty in elevation data

Fig. 4. Nonuniform samples, range shadows, and uncertainties in Cartesian
space.

Second, objects in the environment may cast range shadows (e.g.,
the shaded areas in Fig. 4) created by rugged terrain. Without explicit
information about the shadow areas, the surface would be smoothly
interpolated, possibly incorrectly, and once converted into Cartesian
space, it may be difficult to detect shadow areas.

Third, the uncertainty of range measurement is distributed across a
region in the elevation map (e.g., the ellipse A in Fig. 4 covers many
grid points in Cartesian space). Suppose that we want to compute an
elevation value at a grid point b in Fig. 4. In this particular example,
the elevation b may be determined by either one of two noisy range
measurements whose uncertainties are shown by the ellipse A and B,
respectively. In other words, uncertainty in the elevation is dependent
not on a single range measurement but on many neighboring sensor
measurements. To identify the uncertainty of the clevation value,
we transform the uncertainty on a sensor measurement so that it
is oriented along the = axis. This conversion is nontrivial for the
traditional approach since the range uncertainty is distributed across
a region in the elevation map.

The locus method uses a model of the sensor and works in image
space, solving these problems associated with the traditional method.
In the locus method, the elevation z at a point (. y) on the reference
plane is found by computing the intersection of the terrain with a
vertical line at (r.y). At a grid point (z.y) on the horizontal xy
plane, assume that we have nothing in the world but a vertical line
(e.g., a vertical line H(X) in the top figure of Fig. 5).

By computing the distance from the sensor to the scene points on
this vertical line, we can create a locus of this vertical line in image
space, which is labeled as Locus, in the bottom figure of Fig. 5.
We derive the equation of the locus as a function of ¢ from (2),

assuming r and y constant:
far= y? + 12 cos? o
Cos O

2
p=m(o)=\/ ‘1"2
€Os® O

L Cos

8 = 6;(0) = arctan

3)

Now, we take a range image of the real scene without the
hypothesized vertical line. The range image can be viewed as a
surface D = I(¢.4) in o, 6, D space. The basic idea of the
locus algorithm is to compute this intersection point in image space
rather than Cartesian space. A curve, labeled as DepthProfile in
the bottom of Fig. 5, represents 1-D range image of the terrain.
We find the intersection between the locus curve and the surface
D (the intersection point, labeled Intersection, in Fig. 5). With a
corresponding depth value of this intersection point, we can compute
the elevation = at (z,y) by (2).

1) Algorithm: To obtain a basic locus curve, we project a vertical
line onto the range image. The vertical line can be represented by

I=(u.v)= ([ur vy u:] for v, v:]") (4)

H(X)

IMAGE

X
Depth Profile

Locus

Intersection / (Projection of H(X) on image)

[

Fig. 5. Top figure shows imaging geometry: ¢ — p image plane, X — Z
Cartesian coordinate, and the terrain. H(.X') indicates a hypothesized line on
the terrain. The bottom figure shows the projection of the terrain and the
hypothesized line onto the image plane, noted as DepthProfile and Locus.

where u and v represent a point and a unit directional vector,
respectively. Such a line is parameterized in A by the relation
p = u + Av if p is a point on the line. The basic locus can be
obtained by projecting this vertical line onto the range image plane
with (2). The basic locus method uses the intersection point between
this basic locus and the surface observed by the sensor.

We now state the locus method algorithm for computing the

elevation z at a grid point (z,y):
1) Compute the locus pi(¢;) by (3).
2) Compute the corresponding 6:(¢;) by (3).
3) Obtain a sample data at (¢;. 61), pm(@;), from the range image.
4) Compute the difference between the locus and the sample of
data, A(¢;) = pi(9;) — pm(9;).
S) Find the two scanlines of the range image ¢: and ¢ be-
tween which the intersection is located when sgn A(¢:1) #
sgn A(¢2).
6) Apply a binary search between ¢, and ¢2, and find the
intersection point ¢,.
7) Compute p and 6 by (3) and then compute an elevation value
by (2).
Repeating the above procedures for vertical lines at every desired
(x.y) point yields a dense elevation map with a desired resolution.

In summary, the locus method computes an elevation value from
the intersection between the depth profile of image ¢ and the locus
of a line I = (u.v). Let f;(u,v) represent a 3-D coordinate point
computed from this intersection point:

filu.v) = &)

(SIS

where (z, y) is the horizontal position of the line, specified by u, and
z is the estimate of an elevation at (x, y) from the locus method.

2) Range Shadows: We observe that a range shadow occurs along
an occluding edge in the image. In Fig. 4, for example, a grid point
¢ in the map is in a shadow area if its locus intersects the image at
a pixel that lies on an occluding edge. We implement this idea by
first detecting edges in the range image by using the GNC algorithm
[2]. Then, in applying the locus algorithm, when the locus of a given
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depth from image di

Fig. 6. Detection of multiple heights in the locus method.

location intersects the image at an edge pixel, we mark that location
as lying in a range shadow.

In addition to detecting shadow areas, the locus method can
compute the upper bound of elevation values in the shadow area. In
Fig. 4, for example, an elevation value at a point ¢ cannot be greater
than H (c) because we have a range measurement p;, from the sensor.

3) Multiple Heights: One drawback of the elevation map is that
we cannot represent multiple heights at the same grid point. Such
representation is necessary to deal with vertical planes or overhung
objects. We solve this problem by simply computing the maximum
and minimum heights for the point.

Traditional approaches detect multiple heights by counting the
number of points in the range image that are mapped to the same grid
point on the elevation map. The locus method reports multiple heights
when there are multiple intersections between the depth profile of the
scene and the locus of a vertical line at a grid point (see Fig. 6). For
a perfectly vertical plane, the locus coincides with the depth profile
of the scene. Therefore, we are able to extract any vertical planes by
just observing the multiple intersection points. This capability is very
useful in segmenting range images for indoor scenes with vertical
walls or outdoors scenes with buildings.

4) Uncertainty: The range sensor returns values with a limited
resolution due to digitization. Those values are also corrupted by
random measurement noise. We have developed a probabilistic model
of the uncertainty on the sensor measurements. The uncertainty of
range measurements is modeled to normally distribute with standard
deviation proportional to the square of measured range [13] and to be
oriented along the direction of measurement (sce Fig. 4). To calculate
the uncertainty on the elevation value at each grid point (x.y), we
must transform the uncertainty of a range measurement so that the
uncertainty along the = axis [8] is represented.

We use the nature of the locus method for computing the elevation
uncertainty from the uncertainties of range measurements. Fig. 7
shows the principle of the uncertainty computation by considering
a locus curve that corresponds to a line in space and the depth profile
from the range image in the neighborhood of the intersection point.
Consider a hypothesized surface point p; = (x,y.hi(x,y)) along
the vertical line. The elevation h; corresponds to a measurement
direction o;(h) and a measured range m,(h). Let d,(h) be the
distance between the origin and the surface point p;. When we are
thinking of the sensor error model p(m|d) as a function of d, it is
called the likelihood function and given by [14]

I(d|m) = p(m|d). 6)

More specifically, the likelihood that this measurement m;(h)
resulted from the surface point p; can be described by our sensor

o X
¢ Measurement
uncertainty,
h P(m d,)
Elevation
‘d\\\ Uncertainty
PNNY, N\ — ]
1(h)
H b,
Tangent
planeath, ~—3} —'— Xy ~- -~~~ -1 — ~-
o
4
/A
Fig. 7. Computing the elevation uncertainty from the sensor error model.

error model p(m|d) as follows [21]:

I(h) = 1(dilm;) = p(mild;)

1 _ {dih)—m (n))?
— T T zemm)? (7)
V2ma(m;(h))

where o(m;(h)) is the variance of the measurement at the range
m;(h).

In order to determine the shape of I(h), we approximate (k)
around A, by replacing the surface by its tangent plane at h,. Let o be
the slope of the plane, and let H be the elevation of the intersection of
the plane with the z axis. Assuming o(d) ~ Kd? and using similar
triangles, we compute o(m;(h)) as

H?(a® 4+ 1?

a(mi(h)) = Km} = K(——)Q (8)
(atana + h)

where a is the distance between the line and the origin in the z — y

plane. Using (8), the exponent of (7) becomes

(di(h) — mi(h))* _ (h— ho)*(atan o + h)?

9
20 (m;(h))? 2K 2H4(a? + h?) O

By assuming that h is close to ho, that is h = h, + € with
€ < ho, and by using the fact that H = h, + a tan «, we have
the approximations

(10)

an

o(mi(h)) = K(a2 + hﬁ)
(dith) =mi(R))® _ (h—ho)
20(mi(h))?  2K?HZ?(a% + h2)’

In the neighborhood of h,, (11) shows that (d;(h) — mi(h,))2/20
(ml(h))2 is quadratic in h — h, and that o(m;(h)) is constant.
Therefore, I(h) can be approximated by a Gaussian distribution of
variance:

o} = K*H? (a2 + hﬁ) = R*H*@. (12)

Equation (12) provides us with a first-order model of the uncer-
tainty of A derived by the locus algorithm taking into account the
uncertainty of the sensor measurements.
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Fig. 8.

Result of the locus method.

5) Results on ERIM Range Images: We applied the locus method
to a real range image of rugged terrain. Fig. 8 shows an original
range image, the resulting elevation map, and the uncertainty map
computed by the locus method. The resolution of the map is 10 cm.

In summary, the locus method computes dense and uniform
elevation maps at a desired resolution and easily detects shadow
areas by working in image space rather than Cartesian space. The
locus method also provides a mechanism necessary to transform the
uncertainty of range measurements into the uncertainty of elevation
data. The locus method is also applicable to other sensors, such as a
dense stereo map and a light stripe range finder.

D. The Generalized Locus Method

We can generalize the locus method from the case of a vertical line
to the case of a general line in space. This generalization allows us to
use any reference plane instead of being restricted to the horizontal
plane in building an elevation map. This is important when, for
example, the sensor’s (z.y) plane is not orthogonal to the gravity
vector.

In Fig. 9, a line H(X) is a vertical line with respect to the
coordinate 1. In order to compute an elevation value at a grid point
X, we apply the basic locus method to the image captured at vehicle
position 1. Suppose that a new range image is captured at the location
2, and we want to estimate an elevation at the same map point. We
could project the line H(X') onto the new range image. However, the

X

Fig. 9 Generalized locus method for map matching. The method computes
an ¢levation at the same grid point by projecting the transformed line onto
range image 2. A coordinate transformation of H(X) by T. 21 gives the
transformed line.

line H(X) is not a vertical line with respect to the coordinate 2, At
the new sensor location, the line iz ._presented by a transformed line

(13)

where R and t denote the rotation and translation parts of the
transform between two viewing positions (e.g., 75 in Fig. 9).

A generalized locus can be obtained by projecting this general line
onto the range image. The generalized locus method computes an
elevation by the intersection between the generalized locus and the
depth profile.

A general line is still a curve in image space that can be parame-
terized in ¢. The equation of the curve becomes

(u', 'v/) = (Ru+t,Rv)

Du(6) = /(0 A@) + 4, + (1, M0) + 1,)” + (12 \(9) + u.)?
v AD) + U,
D
uytang — u;
v: —vytang

01(¢) = arcsin

Mo) = (14)
We can then compute the intersection between the curve and the
image surface by using the same locus algorithm as before except
that we have to use (14) instead of (3).

The representation of the line by (4) is not optimal since it uses
six parameters, whereas only four parameters are needed to represent
a line in space. This can be troublesome if we want to compute the
Jacobian of the intersection point with respect to the parameters of
the line. A better alternative [9] is to represent the line by its slopes
in z and y and by its intersection with the plane z = 0 (see [20]
for a complete survey of 3-D line representations). The equation of
the line then becomes

r=az+p
(15)

We can still use (14) to compute the locus because we can switch
between the (a,b,p.q) and (u,v) representations by using the
equations

y=bz+gq

a p
v=1{b]|, u=|gq
1 0
Uy Vg
a=—. p=-—-——1,
u, u,
b=t g= o, (16)
Uz U
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In the subsequent sections, we denote by f(a, b, p, ¢) the function that
maps a line in space to the intersection puint with the range image.
In summary, the terrain representation with e locus method is

* Simple, compact, and easy to use
* uniform for other sensor data
* able to represent more rugged terrain by simply increasing the
number of planar patches
* able to represent occluded areas explicitly
* able to compute elevation bounds for occluded areas
* able to represent the uncertainties of height values
the basis for computing other information when needed.

III. LocAL TERRAIN MATCHING

Merging maps into a composite map can a) increase the resolution
of those portions of the terrain map that were originally measured at
a distance from the vehicle and b) add information about previously
occluded areas. To build such a composite map from successive
images, we need to estimate the vehicle position by matching the
current terrain data with previous terrain data.

Recently there has been increasing interest in terrain matching for
outdoor mobile robots [19], [S]. Two terrain matching algorithms
(feature-based and pixel-based (iconic)) have been studied. Feature-
based methods that match low-level features, such as points, lines, or
corners, provides a good initial estimate of the vehicle position for
iconic matching but are not suitable for unstructured natural scenes
[5]. Iconic matching has been successfully applied to incremental
depth estimation [15] and map matching [22]. However, it requires a
good initial estimate of the vehicle position to reduce computational
complexity.

To circumvent these problems, we use feature and iconic matching
together. Our feature matching computes an estimate of the vehicle
motion by extracting 3-D features from the elevation maps and
identifying correspondences between them. This estimate is used
as an initial estimate for our iconci matching. The iconic matching
algorithm is based on the generalized locus methods and iteratively
adjusts the vehicle displacement to minimize the accumulated error
in the composite terrain map.

A. Feature Matching

Given two elevation maps, we compute an estimate 7r of the
transformation between the two using the correspondences between
3-D features, such as high curvature points and lines extracted from
the maps.

1) Feature Extraction: We use elevation map to calculate the
curvatures of the surface as follows [3]: 1) Smooth the elevation
map, 2) compute the first and second directional derivatives of the
surface, and 3) compute the two principal curvatures by solving the
first and second fundamental form. We use thresholding to find points
of high surface curvature F! and F' ]2 from the elevation map 1 and 2,
respectively. Fig. 10 shows the high curvature points extracted from
an elevation map. The two images correspond to the two principal
curvatures. Then, we group the extracted points and classify each
group as a point, line segment, or region, according to its size,
elongation, and curvature distribution (e.g., see Fig. 11).

2) Feature Correspondence: Given two sets of features (F ,-1) and
(Ff) extracted from elevation maps 1 and 2, we compute the
displacement between the two maps by finding corresponding features
from each map. The best correspondence determines the transforma-
tion Tp such that 7 ~ Tr(Fj).

We identify candidate matches based on the similarity of the length
of the lines and the similarity of the curvature values of the points.
Each candidate is a set of pairs Sy = (Fj,, F7;), and each of the

Fig. 10. Results of geometric terrain
feature extraction. High curvature points.

Fig. 11.

Results of feature matching.

Sy induces a rigid transformation Tr,. We evaluate each candidate
transformation T by computing the distance D between the features
by

D= Z d(F). Trv(FL)) a”n
x

where the distance d(-) depends on the feature type.

The search in the space of candidate matches begins with Tpy =
To and continues in a depth-first fashion considering all of the
pairings Si and transformations Tr;. The pairing that minimizes
D, say Sk, is the final match between the two maps, and Try, is the
best transformation.

Fig. 11 shows the result of the feature matching on a pair of
elevation maps. Fig. 11(a) shows the correspondences between the
point and line features in the two maps. Fig. 11(b) shows the



284 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 14, NO. 2, FEBRUARY 1992

superposition of the contours and features of the two maps using
the estimated displacement (the left map is transformed by Tk with
respect to the right map).

B. Iconic Matching

The feature matching method described above computes a motion
estimate using correspondences between features. However, in 3-D
rugged terrain, determining correspondences may be difficult because
of occlusions and amorphous terrain. To solve this correspondence
problem, we have developed an iconic matching method based on
the generalized locus method.

Let fi(u,v) be the function that represents the locus method (i.e.,
computes an elevation value from the intersection between depth
profile of image 1 and the locus of a line ! = (u,v)). The vector
fi(u. v) denotes the coordinates of a particular point

T
f,‘('ll,U): Yy

z

(18)

where (z. y) is the horizontal position of the line, specified by u, and
2 is the estimate of an elevation at (x,y) from the locus method.

The function f;(u,v), for example, computes an elevation from
the intersection of a line passing through a grid point u with image 1.
The function fa(u',v') computes the elevation in map 2 of the same
grid location for which the elevation had been computed in map 1.
The transformed line (u',v"), can intersect anywhere in image 2 and
is not a vertical line. Since the generalized locus algorithm computes
f2(u’.v") by finding this intersection point, we can directly compare
the two elevations without determining correspondences.

To compare two elevation estimates, we transform f, to the
coordinate of image 1 by a transform 7. We can represent the
transformed function as follows:

g(u. v.Tgl) = T;_l (fz(u’. v’)) =R (fg(u'.,v/)) + ¢t

where

19)

T = (R.¢)= (R -R't), and
(u'.l") = (Ru+t Rv).

1) Error Function: Given the starting estimate T+ from either a
feature matching or an on-board position sensor and a pair of range
images, the iconic matching algorithm computes the transformation
T; that minimizes a cost function E by iterative gradient descent

[7):
E=3%" i) = guv. )|

where the summation is taken over all grid points where both f; and ¢
are defined. The error function weighted by uncertainty is discussed
in [10].

2) Gradient Descent: The error E reaches a minimum when % =
0, where n = [a.3.7,t,.t,.1.] represent the transformation pa-
rameters of which the first three are the rotation angles, and the
last three are the translation vector. Assuming a reasonably accurate
initial estimate of 7 by T, the minimum error can be achieved by
an iterative gradient descent of the form

(20)

(21)

where 7' is the estimate of 7 at iteration 7.

At each iteration, the algorithm a) computes g(u', ') by applying
the updated transformation to the measurements in range image 2,
b) computes the error between the first and second measurements
by (20), c) computes the partial derivative of the error function with

respect to each of the transformation parameters, and d) updates the
transformation parameters by (21).

Iteration continues until either the variation of error AE' is small
enough (convergence) or E itself is small enough.

3) Derivative of the Error Function: We compute the derivative
of E from (20):

% =-2Y (Aluv) -g(u,u,T;))g%(u,v,T;). (22)
From (19), the derivative of g is
g—f’,(u,/u,:r;) = R'aa—f;(u',v')
+ 661:, f2(u',v) + %tn—l. (23)

We can compute analytically the derivatives appearing in the last two
terms in (23). We can also compute the derivative of fo(u',v’) with
respect to 7 by the chain rule.

4) Problem with the Iconic Matching: The iconic matching meth-
od is computationally very expensive. To improve the computational
efficiency, we employ coarse-to-fine-matching. The motion estimate
from a coarser resolution is used to compute a more accurate motion
for the next finer level of resolution.

We use three levels of resolution (coarse, medium, and fine) in
which the resolution is halved successively. We first build a fine-
level representation and simply subsample the representation to obtain
representations at the coarser levels assuming that the coarse level
grids are a subset of the fine-level grids. In the locus method,
the implementation of building this multiresolution representation is
almost trivial since the locus method can build a representation at
any arbitrary resolution.

There are many sophisticated strategies to coordinate interactions
between coarse and fine levels [23]. We use a simple coarse-to-fine
algorithm: The motion estimate from a coarser resolution is used as
the initial estimate to compute a more accurate motion for the next
finer level of resolution.

IV. BUILDING A COMPOSITE TERRAIN MAP

We now present a method for building a composite terrain map
from a sequence of range images by combining the terrain matching
method and the locus method that we described in the previous
sections. The locus method constructs an elevation map from a
single range image and the terrain matching algorithm computes the
transformation between two images. The terrain matching algorithm
consists of the two steps: the initial estimate of the transformation by
either feature matching or inertial navigation system (INS) data and
the refinement of the initial estimate by the iconic matching method.

We first extract the relative motion between two successive images
using the INS data, which is represented with respect to an absolute
reference frame. Large error is avoided because there is no large
INS drift between successive images, even though the INS data does
drift over long distance. However, an error in the motion estimate
for any particular pair of successive images affects all the subsequent
mapping results because the error in the resulting composite terrain
map is propagated through this erroneous motion estimate.

The detailed algorithm proceeds in the following steps (Fig. 12
shows the overall structure of the algorithm):

1) Construct an elevation map from image k — 1 using the locus

method.

2) Compute a transform 7}, between images k — 1 and & by

the iconic matching method using the initial estimate of the
transform from INS.
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Fig. 12. Terrain mapping system flowchart.
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3) Compute a global transform T¢ with respect to a reference
frame by compounding transforms computed up to the image
k—1.

4) Apply the generalized locus method with Ty to the current
image k, producing an elevation map.

5) Combine this elevation map with the a priori (or previous)
composite terrain by

¢ adding nonoverlapping points to the composite map, or
« for overlapping points, replacing the elevation by the max-
imum likelihood estimate
2 2
oifitaifs
U ) - 24
filu.v) pprp; (24)
where f; and f. indicate the old and new elevation, and
o1 and o2 are the standard deviations of the uncertainty
distributions on the two elevation estimates
* updating the variance by
2_ 0 %‘7 22)
gy, = S 2-
oy +o3

A. Experimental Results

In this section, we present two sets of experimental results of
building a composite terrain map: one by feature and iconic matching
and the other by INS data and iconic matching.

We have tested our terrain mapping system using sequences of both
real and synthetic range images. For feature and iconic matching, we
have used a set of real range images obtained at a construction site
at Carnegie Mellon University (CMU). For INS and iconic matching,
we have used two sets of real range images: one obtained at a
slag pile area near CMU and the other taken at the Martin Marietta
(MM) autonomous land vehicle (ALV) test site. All test sites were
unstructured rugged outdoor terrain.

Using real range images poses many difficulties in verifying the
results due to the lack of ground truth in terrain and vehicle motion
data. Therefore, we use a terrain simulator to create synthetic range
images and digital elevation maps (DEM’s). These synthetic data are
used for evaluating the accuracy of our terrain mapping system.

1) Terrain Mapping: Feature and Iconic Matching: In this sec-
tion, we present the experimental results from our terrain matching
method that combines the two complementary terrain matching
methods: feature and iconic matching. As described in Section III-
A, we compute the initial transforms between successive range
images by a feature matching method. These transforms become
initial estimates for the next iconic terrain matching step. The iconic
matching method iteratively computes a least-squares solution of the
transform starting with the given initial motion estimate.

(i

¢ il -

(b)

Fig. 13. Results for the construction test site.

The experiment to verify this terrain matching method has been
done using a sequence of five range images from a construction site
at CMU [11]. Fig. 13(a) shows the composite terrain map obtained
by feature matching. We observe a large error especially along the
boundaries between elevation maps. The iconic matching method
creates a much more accurate terrain map, as shown in Fig. 13(b).
From these experiments, we demonstrate that combining the two
complementary matching methods into one terrain matching method
is a feasible and robust approach for rugged terrain.

2) Terrain Mapping: INS Data and Iconic Matching: We have
done three different sets of experiments to evaluate our terrain
mapping system that combines INS data and iconic matching. First,
we captured a short sequence of 40 range images and measured
the robot’s position at each image using a surveying instrument. To
estimate the accuracy of our terrain mapping system, we compared the
robot’s positions computed by our iconic matching method with the
measured ones. Second, we tested our system using a long sequence
of 122 range images over the distance of 150 m. Lastly, we also
tested our system with synthetic range images for which ground truth
terrain data are available.

3) A Real World Experiment with Ground Truth Vehicle Positions:
We have tested the accuracy of our system using a slag pile area near
CMU. We captured 40 range images using CMU Navlab equipped
with an INS system. For each image, we also measured the vehicle
position by using a surveying instrument. The accuracy of this
instrument is better than 1 cm at 100 m, and we used these measured
positions as the ground truth vehicle positions.

Fig. 14 shows the result of combining 40 real range images as
a composite elevation map at 20 cm resolution. Fig. 14(a) shows
the resulting composite map from the generalized locus method with
INS data. This map shows a kind of random elevations that cannot
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Fig. 14. Composite terrain maps for a slag heap area.

be true for the test site. Using the iconic matching method in which
INS data are used as an initial estimate of vehicle position, we were
able to obtain a coherent terrain map that looks more reasonable in
its appearance. Fig. 14(b) shows the resulting composite map by the
iconic matching method.

Since we do not know the ground truth elevation data, we use the
previous composite terrain map as ground truth to examine the error
in the elevation data. We compute the mean-squared (MS) elevation
error between the previous and current composite terrain map by

o T i f)

3 (26)

where f1 and f, indicate the previous and current elevation data, and
N is the number of data of the overlapped area.

Fig. 15(a) shows the MS elevation error E of the composite
elevation map from our iconic matching method and INS data.
Fig. 15(b) shows the resulting robot positions from a surveying
instrument, the iconic matching method, and INS data. Using a
surveying instrument, we measure the ground truth vehicle positions
with the accuracy of 10 mm, and they are shown as plus symbols in
the figure. Each diamond and black dot indicates an estimated robot
position by the iconic matching method and INS data, respectively.
We observe the large discrepancies between the estimated robot
positions and the ground truth data starting from the 11th vehicle
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Fig. 15. Results for slag heap data.

position. This is due to large error in the initial estimate of the robot
positions by the INS data.!

The results of this experiment demonstrate the power of our terrain
mapping system. Even though the INS data drift relative to the
reference coordinate, the relative motion between two successive
images is still sufficient for the iconic matching method to refine
the motion estimate.

4) A Large-Scale Real World Experiment: To evaluate the perfor-
mance of the terrain mapping system for a large number of images
covering a much larger area, we tested our iconic matching algorithm
by building a composite elevation map from a long sequence of real
range images of the MM ALV test site. Over the travel distance of 150
m, we captured a sequence of 122 range images using MM ALV that
also provided INS data. For comparison, we built a composite terrain
map by merging range images based on only INS data. Fig. 16(a)
shows the resulting terrain map. We do not observe large errors in
the elevations up to the middle of the robot path. However, large
discrepancies between the new map and the previously built map are
observed around the end of the test run. This is due to the drift of
INS data over the long distance of travel and the inaccuracy of INS
in rugged terrain.

1 For this particular experiment, we have used the vehicle positioning system
(VPS), which is specifically designed for high speed navigation. Therefore, we
have observed large fluctuations in both distance and angular displacements
while acquiring range images by a stop-and-go method with a very slow
vehicle speed.
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Composite terrain maps of combining 122 real range images from
the ALV test site.

Fig. 16.

Fig. 16(b) shows the resulting composite terrain map of combining
122 real range images by the iconic matching method. For these
experiments, the INS data are used as the initial estimate of the
unknown motion for the iconic matching method. This composite
map shows a smooth terrain without any abrupt changes in elevations
and paths of water flow, which qualitatively correspond to what we
observed from the experimental site.

Fig. 17(a) shows the MS elevation error of the composite elevation
map by our iconic matching method and INS data. The error is
evaluated using the previous composite terrain map as ground truth
using (26). Black dots and plus symbols indicate the error resulted
from INS data and the iconic matching method, respectively. We
observe that the iconic matching method remarkably reduced the
error in the elevation values.

Fig. 17(b) shows the resulting robot positions from the iconic
matching method and INS data. Each diamond and black dot indicates
an estimated robot position by the iconic matching method and INS
data, respectively. The discrepancies between the two robot paths
are because estimates of initial vehicle roll are not available or range
images are bad. For diamond symbols in Fig. 17(b), a few occasional
jumps in the estimated vehicle positions are due to these problems.
In those cases, we have used the estimate of motion from INS as our
best estimate. Therefore, even a small angle error at those positions
can cause a large error in the resulting composite terrain map since
it is represented with respect to the starting vehicle position. This
evaluation is verified in Section IV-A-2 by the results of experiments
with synthetic data.

5) Large-Scale Synthetic World Experiments: A Terrain Simulator:
Quantitative analysis of terrain mapping algorithms is a difficult
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Fig. 17. Results for MM ALV test site.

process because of the difficulty in recovering ground truth data. To
overcome this problem, we have developed a range sensor simulation
tool and coupled it with a geometric modeling system [24]. Using
this system, we can generate realistic 3-D terrain including additional
features, such as rock distributions, and then generate a sequence of
range images as we move the sensor through the environment. We
can simulate the process of a vehicle moving through rugged terrain
and compare the output of the sensor algorithms with the true terrain
data used in the modeling system.

Terrain is modeled using a triangular mesh representation. Data for
the mesh comes from a 5-m resolution DEM, which is scaled up to
50-cm resolution for the purposes of our experiments.

In order to efficiently simulate the range sensor, we have attempted
to map much of its image formation process into available graphics
hardware. Depth-cued images are produced using a hardware z buffer,
and a Cartesian depth map is produced. This map is then transformed
into spherical coordinates to simulate the ERIM’s projection process.
We oversample in the original perspective images to accomplish this
transformation without loss of information.

With the terrain simulator, we created a sequence of 159 range
images along a circular path with a radius of 50 m. It provides two
sets of motion estimates between successive range images: the true
motion estimate and the noise contaminated estimate. The error in
motion is modeled as Gaussian noise and is added to the true motion.
For this particular set of images, we contaminated the motion with
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Fig. 18. Ground truth data for circular motion.

5% error® as follows:
oM

Mioise = M + T00° (27)
where M denotes the true distance or angular displacement along
the x, y, and = axes and x ~ N'(0, 1). Fig. 18(a) shows the vehicle
trajectories for the experiments. The ground truth vehicle path is a
perfect circle with the radius of 50 m. Over the distance of travel of
157 m, the simulator created a sequence of 159 range images. Black
dots indicate the noise contaminated robot positions that simulate the
INS data.

To evaluate the accuracy of the map produced by the iconic match-
ing method, we first build the ground truth composite terrain map
using the ground truth motion obtained from the terrain simulator.

The ground truth composite map is shown in Fig. 18(b). This
true map is compared with a composite map obtained by the iconic
matching method.

To determine the accuracy of the initial noisy motion estimate,
we also built a composite terrain map using the noise-contaminated
motion estimates. Fig. 19(a) shows the resulting terrain map. The
composite terrain map shows false elevation data. Fig. 19(b) shows
a composite terrain map computed using the iconic matching method.
The iconic matching method used the noisy motion estimate from the
simulator as an initial estimate. The resolution of the map is 20 cm.

Fig. 20(a) shows the MS elevation error of the composite elevation
map by the iconic matching method and INS data.

2Inertial navigation systems (INS’s) typically have 0.2% error in distance
measure on hard surface and 5% error on natural terrain.
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Fig. 19. Composite terrain maps computed from synthetic range images.

Fig. 20(b) shows the estimated vehicle positions on the ground
plane (zy plane) for the circular trajectory. Dots and diamonds indi-
cates the initial vehicle positions from the simulator and the estimated
vehicle positions by the iconic matching method, respectively. The
circle drawn with solid curve indicates the ground truth path. We can
observe small errors between the true path and the computed path
by the terrain matching method. For example, the error of the final
position is 3 m, which is within 1% of the traveled distance. These
errors are due to bad initial estimates of displacements for range
images from 30 to 50 and from 110 to 125. We can observe large
errors (~ 3 m) between the starting INS data and the true path for
images from 30 to 50 and from 110 to 125.

From the results of experiments with real and synthetic range
images, we conclude that the terrain mapping system using INS data
and the iconic matching method creates an accurate composite terrain
map from a long sequence of range images acquired over a large
area of rugged terrain.

V. GLOBAL TERRAIN MATCHING

Global terrain matching estimates the vehicle position by matching
the current terrain data from local observation with a DEM. Matching
local observations with a DEM can also be used for improving the
resolution and accuracy of the DEM. Over a long distance of robot
motion, the error accumulates in a resulting composite terrain map if
only local observations are used. However, a prior DEM can solve
this error accumulation problem if we estimate the vehicle position
in the DEM.
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Fig. 20. Results from synthetic range images.

DEM’s have been used for many years by geographers and
cartographers for the measurement and analysis of the earth’s surface.
Recently, there has been considerable interest in using the DEM for
3-D terrain matching, that is, matching the local data obtained from
stereo vision or laser range finder to a prior DEM, which we call the
local-global matching. There are very few research works reported for
the local-global matching method. Gennery [5] described an iconic
matching method for height maps from a robot using stereo vision
and orbital imagery. His terrain matching system assumes that the
orientation of the vehicle is accurate and computes only the translation
between height maps.

In this work, we present a terrain matching method to solve the
local-global matching problem.

A. Digital Elevation Maps (DEM)

A DEM is a 2-D array of uniformly spaced terrain elevation
measurements. In aerial photogrammetry, a DEM is constructed
from aerial stereo photography either manually by using a plotting
instrument or automatically by using stereo matching algorithms
[18]. The elevations measured by most plotter systems have varying
degrees of accuracy, depending on the precision of the system and
the flying height, typically ranging from 1/1000 to 1/10000 times
the flying height [17].

We have used a DEM compiled by the U.S. Army Engineer
Topographic Laboratories (USAETL) for an ALV test site in Colorado

Fig. 21. DEM from the ALV test site in Colorado.

covering approximately 12 km?® [4]. Elevations for terrain were
collected with the resolution of 5 m using stereo photos at a scale
of 1:12000. Different areas were sampled at a variable range of
sampling densities. For rugged areas, elevation data were collected at
a wider spacing and were interpolated to a 5-m spacing. The accuracy
of elevations ranges approximately from 1.5 to 5 m, depending on
this spacing in the original elevation data. Edwards [4] explains that
the error in elevations are observed at the region edges for the sparse
posting density and at slopes for the dense posting density.

Fig. 21 shows the DEM where the darker pixels indicate lower
elevations. We observe two large ridge lines across the terrain.

B. Terrain Matching Using a DEM

Matching the terrain data obtained from local observation with a
DEM benefits us in two ways. First, we can compute the global
position of the robot. Therefore, we can eliminate some of the
systematic error, such as error due to bad calibration and the error
accumulated while building a composite terrain map from local
observations. Second, we can use local observations for improving
the resolution and accuracy of the DEM.

In matching local observations with a DEM, we have two diffi-
culties: 1) the accuracy of elevations (ranging 1.5 to 5 m) from the
DEM s inferior to that of elevations maps (~ 10 cm) built from
range images, and 2) the DEM has a relatively poor resolution (5 m)
compared with the local observations.

The poor resolution of the DEM makes the global matching
difficult because too few corresponding points for matching are
available. To solve this problem, we use a sequence of range images
instead of single image and estimate the transform between images
by the iconic matching method.

In the following sections, we first describe how to use multiple
images for our global terrain matching method. Then, we extend the
generalized locus method into the box locus method to combine two
different sensor data with very different error characteristics. Finally,
we present the result of experiments on real range images and a DEM.

1) The Problem: Fig. 22 illustrates the global terrain matching
problem. Let rectangles indicate the sequence of robot positions at
which images are acquired. We want to estimate the current vehicle
position, which is drawn as a rectangle & in Fig. 22, in a DEM. In
other words, global terrain matching estimates the transform de”"
from the coordinate of the position & to the DEM coordinate dem.

A single image acquired at k can only cover a small area (the
area shaded by deviant lines in Fig. 22) and provides only a few
corresponding points between the DEM and the image. However, a
sequence of images k---m covers a larger area (the shaded area
in the figure) and can provide enough data points for the iconic
matching. To use a sequence of images, we need to estimate all the
transforms T occurring between viewing positions k - - - m. This can

m
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Fig. 22.  Global terrain matching between range images and the DEM.

be done by using the iconic matching method described in Section I1I-
B. The range images with the estimated transforms and a DEM are
used to compute a transform Tge™.

2) The Box Locus Method: The locus algorithm computes an
elevation from the intersection of the surface observed by the sensor
and a vertical line passing through a grid point. For each grid point
of the DEM, imagine a rectangle window whose size is the same
as the resolution of the DEM. We compute four intersection points
corresponding to four corner points of the window. Using all points
inside four intersection points in the image space, we compute a
mean elevation value.

In Fig. 23, all range measurements in shaded areas are used to
compute an elevation value at a map point A. Shaded areas are
bounded by two locus curves that are projections of the two vertical
lines H; and H; onto the range image. Two vertical lines H; and H-
are located at the distance of half the resolution from A. We obtain
two locus curves in image space Locusl and Locus2, as shown in the
left half of Fig. 23. Two intersections between the depth profile and
locus curves defines a region, which is marked by shaded area in the
figure. We use depth data inside this region to estimate the elevation
at A. Since the local map and the DEM now have a comparable
resolution, we can compare the data by directly applying the iconic
matching method.

We still need an initial estimate of the transform between the
coordinate of the robot and the DEM (7%“™ in Fig. 22) to obtain the
faster convergence with the iconic matching method. In this work,
we assume that an initial estimation of the robot position relative to
the DEM coordinate is given.

3) Algorithm for Global Terrain Matching: In the preceding sec-
tions, we described the two key concepts for matching the local terrain
data from range images with the global terrain data. In this section,
we present the detailed algorithm of global terrain matching.

We first derive the compound transforms necessary for the iconic
matching method. For simplicity, we describe the global terrain
matching algorithm for two successive range images denoted as image
1 and image 2. However, the same algorithm can be easily extended
to the case of n range images. Let the subscript 0 refer to the origin
of the DEM.

We want to estimate the transform Mo = (R10.t10) from the
image 1 coordinate to the DEM coordinate O. Using the iconic
matching method described in Section I1I-B, we can obtain an
accurate estimate of the transform My, = (R»,, tz1) from the image
2 coordinate onto the image 1 coordinate. We can transform a point
p, in the coordinate 1 to a point p, in the coordinate 2 by

Raip, +t1 =p,. (28)

z
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Fig. 23. Locus method for matching high-resolution local observations

(range images) with the poor resolution DEM.

Now, we are ready to apply the locus method to global terrain
matching. For the image 2, we need to compound the two transforms
Mo and M, for the iconic matching method as follows:

Py = Ra1Riopy + Roitio + t21 (29)

where p, and p, refer to 3-D coordinates of points in the coordinates
2 and 0, respectively. We abbreviate it
Mz() = (RQO-, tZO)

= (R21Ry0, Ry1t10 + to1). (30)

The inverse matrices of the compounded transforms are given by
M‘Z_Dl = (Rlzo-tlzo)
= (Rig Ry)'. Ry tro + Rig By tan). (31)
We compute the derivative of E from (20) with respect to #:
17
%‘:i = =23 (Alw) —glw e Tl e T (2)

where fi(u,v) is the DEM, T refers to the transform M for image
2 or Mo for image 1, and the summation is over images 1 and 2.
From (32), the derivative of g is

8 a ’ !
%(u.luTy) = R’goa—{f(u v )
IRy I Oty
v —-—. 33
+ o f2(u',n )+ an (33)

Using (31) and the fact that Ry, and ¢»; are a constant matrix and
vector provided by the iconic matching method, we can modify the
about equation as

3 ! 0 1o 6R;1 — ’ ’
o0 T1) = Ry L2 (0 0!) + 280 R ()
-1
+ aRlo t10 _ Rl—ol aatlo
n
—1
LT R)to). (34)
an

We can compute analytically all the derivatives appearing in
(34) except the dertivative of f2(u',v'). However, we can actually
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Fig. 24. Digital elevation map.

compute the derivative of f(u',v") with respect to n by the chain
rule from the range image 2 as described in Section III-B.
At each iteration, the algorithm

1) computes g(u’,v") with the generalized locus method
* for range image 1, by applying the updated transformation

M, to the range measurements

» for range image 2 by applying the updated transformation
Mo to the range measurements

2) computes the error between the elevation of DEM and the two
measurements from range images 1 and 2 by (20)

3) computes the partial derivative of the error function with
respect to each of the transformation parameters by (32) in
which we substitute 77 by
* M, for range image 1
* My, for range image 2

4) updates the transformation parameters for M1, by (21) and
computes the transform M, by compounding the updated
transform M, with the constant transform Mo, .

As in the local iconic matching method, iteration stops when the
variation of error AE' is small enough (convergence) or F itself is
small enough.

4) Experimental Results: We have tested our algorithm for match-
ing range images with a DEM using data collected by Hughes Al
group on the ALV test site (multiple range images and a DEM) [19].
The DEM has 64 by 64 samples covering approximately 0.1 km?.

Fig. 24 shows the DEM used in the experiments. A sequence of
ERIM range images is independently obtained by using a mobile
robot. Fig. 25 shows a composite terrain map built from those range
images by using the local terrain matching methods described in
Section III.

Fig. 26 shows the result of DEM matching with the range images.
Fig. 26(a) shows the entire DEM overlaid with the composite terrain
map from 30 range images. The resulting (or refined) DEM consists
of two areas with different resolution: a) areas scanned by 30
range images, as shown in the upper left corner of Fig. 26, cover
approximately 20 by 60 m with the resolution of 20 cm and b) areas
covered by the original DEM has the resolution of 5 m. Fig. 26(b)
shows the portion of DEM along the vehicle path. At the boundary
between the DEM and the composite terrain map, we do not see any
large discrepancies between elevations of the two maps.

However, as we increase the number of range images beyond 30,
we have observed substantial discrepancies between the elevation
values from range images and the DEM. We found that this was
due to an invalid assumption that the DEM is perfectly reliable.
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Fig. 25. Composite terrain map from multiple range images.
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Fig. 26. Results for DEM matching.

When a human operator built a DEM from stereo pairs of aerial
photographs, he introduced error in elevations for slopes due to his
misperception when compiling slopes in alternating directions [4].
In the current DEM, we observe slopes after 30 images, and the
error in elevations for those slopes is approximately 5 m. Since the
average feature size in real terrain is smaller than 5 m error values,
we simply cannot have any meaningful comparisons between the
DEM and range images. Moreover, the estimates of vehicle roll were
unavailable for this set of range images. We expect that this problem
can be solved by improving the DEM as well as the initial estimate
of robot position in the DEM.
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VI. CONCLUSIONS

This work demonstrates the feasibility of a 3-D vision system
for modeling rugged terrain. With such a system, mobile robots
operating in rugged environments will be able to build accurate terrain
models and confidently plan and execute appropriate actions. We
have developed the locus method for perceiving and modeling rugged
terrain from multiple sensor data.

Since the locus method operates directly in image space, it is much
more straightforward than methods that operate in Cartesian space.
Significant advantages include 1) creating elevation maps of arbitrary
resolution, 2) converting sensor uncertainty into elevation map uncer-
tainty, 3) easily and explicitly identifying shadow (occluded) areas,
and 4) computing the upper bound of elevation in shadow areas.

Elevation values are computed using dense and uniform range
measurements in image space instead of sparse range measurements
in Cartesian space. Furthermore, shadow areas are easily identified by
finding areas in image space where depth (range) discontinuities exist
between neighboring pixels. In a similar manner, the locus method
can compute upper bounds on terrain elevation within invisible
(shadow) areas. It is not possible to compute these upper bounds
using Cartesian-based approaches.

Beyond inherent simplifications from operation in image space,
we have shown that the locus method can be applied to 1) building
an accurate elevation map from a single range image, 2) estimating
the incremental displacement between successive images, 3) building
a composite terrain map for a large area from a long sequence of
images, and 4) merging images from different sensors.

The locus method is a single general and powerful method that
accepts data from various sensors and acquisition resolutions and
efficiently builds terrain maps at any desired mapping resolution.
Experimental results on real and synthetic data demonstrate that the
locus method accurately merges data such as long sequences of range
images. Furthermore, results indicate that the locus method can be
used to merge a composite terrain map to a DEM. Using these various
terrain models, mobile robots should be able to plan more confidently
than with existing terrain models.

The locus method has been extensively applied to the analysis of
range images acquired by a 3-D range finder. Future work can extend
the locus method to various sensors such as 1-D laser scanners,
dense stereo depth maps, light stripe range finders, color images,
and thermal images. The locus method will be able to build an
intermediate representation (e.g., an elevation map) from any depth
maps and fuse any nondepth data into the representation. We expect
that this extension would eventually provide a framework for low-
level sensor fusion as we have already shown in fusing range and
color data [12].
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