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Underground coal mining is one of the most dangerous occupations. Years of effort have been dedicated to
researching methods of characterizing mine roof and floor for improving the mining environment. This
research investigates using a neural network to classify rock strata based on the physical parameters of a roof
bolting drill. This paper presents our methodology, as well as early results based on drilling experiments
conducted in the laboratory using a custom poured concrete test block.  We have classified, with a trained
network, the five layers of the test block with less than 5% error.
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1 INTRODUCTION

Underground coal mining is one of the most
dangerous occupations. The failure of structural
supports accounts for approximately 400 injuries and
10 deaths each year. One method of increasing mine
stability is to drill and bolt the weak mine roof after
a portion of the coal seam has been removed. Mine
ground control has been thoroughly researched for
the last several decades. Yet, mine stability
problems, such as roof falls and rock bursts, continue
to kill or injure people every year. Over half of the
most recent fatalities have occurred under supported
roof [8].

Mine workers have limited information about the
lithology of the rock surrounding the coal seam. If a
local and detailed lithology of the surrounding rock
could be determined, mines could better assess the
effectiveness of the roof bolts, alert miners to local
hazards, augment ground control plans, and thus,
greatly improve mine safety. Years of effort have
been dedicated to researching methods of
characterizing the mine strata in order to improve
safety.

This research investigates using the physical
parameters of a roof bolt drill, such as torque, thrust,
rotary speed and penetration rate, to train a neural
network to classify rock. Section 2 discusses relevant
coal mining background, defines the problem and
reviews research that uses a similar approach to
ours. Section 3 presents a detailed description of the
method in which the drill information is used to
classify materials while section 4 presents the
experiments and results. Then we present our latest
experimental tests and results. Finally, future
research plans are outlined in section 5.

2 BACKGROUND

The most common means of attaining lithological
information before mining begins is with pre-mine
exploratory drilling. However, this is expensive and
therefore, sparsely spaced. Core logs give limited
information about the coal bed and surrounding
strata and with limited accuracy. Drill cores miss
local geologic anomalies that pose a hazard to
miners. Furthermore, the process of mining
continuously changes a mine’s structural conditions.
The overall safety of a mine could be greatly
enhanced with real-time monitoring of local
structural conditions as the mining progresses.
Figure 1 shows the cross-section of a typical coal
mine corridor.

Figure 1. Underground Coal Mine Cross-Section

One hazard is severely fractured or delaminated roof
layers that cannot support their own weight. Often,
weak strata cannot withstand the stresses produced
by large overburden, and as a result, the roof and
floor heave and the ribs bulge, constricting the mine
opening.

The most common hazard detection techniques are
reactive in nature, such as extensometers, and sense
changes that signal a hazard is imminent. Often, the
experienced mine worker is the best hazard detector,
because of his familiarity with the feel and sound of
the machines. But the mine worker is also the most
vulnerable of all detectors. There has been little
success in an effective pro-active measurement
device of local ground conditions in situ such as



ground penetrating radar, ultrasonic sensors, and
instrumented roof bolts.

In contrast, there has been extensive research into all
types of precision drilling. This research has
provided valuable insights into drilling analysis.
Ramirez and Thornhill [5] monitored printed circuit
board drill wear using drill force spectrum analysis
and a sensor fusion technique to combine this data
and reported that in some cases, cutting forces are
related to chip segmentation frequency, which
depends on the physical properties of a material.
Kaburlasos et al. [2] used learning techniques to
associate drilling thrust and torque recorded during
surgery with the thickness of an inner ear bone being
drilled, in order to predict drill breakthrough and
prevent damage to other ear tissue.

There have been only a handful of groups that have
researched intelligent drilling for mining and
construction applications using rotary drills.
Leighton et al [4] used an instrumented rotary
blasthole drill to correlate drill performance and
strata with blasting variables to plan open pit
blasting. They were able to discover an empirical
relationship between drill thrust, penetration rate
and a material’s resistance to breakage. Scoble et al
[6] used drill monitoring to verify coal-rock
boundaries in a surface coal mine using a rotary
blasthole drill. They calculated the specific energy of
drilling (SED)—an estimate of the rotational and
linear energy used to drill—and compared it to
known strata strength and delineation.

King and Signer [3] have interpreted data from a
coal mine drill using learning techniques. They used
unsupervised learning to classify underground coal
mine roof drill data into clusters and then used the
classifications to train a neural network on other
drill data. Similarly, Utt [11] used a neural network
to classify rock based on SED. His work assigned a
soft, medium, or hard to the quantified drill
information so that a miner could be warned of weak
strata when bolting up the mine roof. Both King and
Signer and Utt chose an automated approach to
characterizing coal mine strata, but they made
assumptions that differentiate their work from this
research. Both categorized strata by relative strength
estimated from the drill parameters. Each group had
positive results, but primarily for the cases in which
two layers of strata had widely differing compressive
strengths.

Many researchers have used SED as a way of
characterizing strata. This is acceptable if one wants
to estimate the relative strength between the layers
and other geological features. However, SED
depends on how finely the rock is ground at the bit.

Using SED to estimate the relative strength between
materials could be misleading, particularly if the
manner of drilling is not constant. Furthermore,
SED alone cannot be relied upon to distinguish
between two materials because there are cases where
different strength materials are similar in strength
(coal and shale have overlapping ranges of
compressive strength) or seem similar in strength
(such as a strong material being fractured or drilling
at different rates for each material). By
differentiating between materials in addition to
providing an estimation of some physical
characteristics in situ, one can classify a material
with a higher degree of confidence.

3. APPROACH

In this research, we intend to use data from an
instrumented mine drill to classify a small set of
materials that are typically found around a coal
seam. This must be done as mining takes place,
without requiring a mine worker to perform
classification, and regardless of the drill, operator or
local conditions. Our approach is motivated by the
fact that drill response is known to be correlated with
the properties of the material being drilled. For
example, researchers have verified that material
properties such as abrasiveness, hardness, and
strength directly affect the drilling process [10].

The physical properties of a material include
mechanical properties (such as strength, hardness,
abrasiveness, and porosity), electrical properties, and
molecular structure to name a few. Physical
properties can have subtle or pronounced effects on
the bit-rock interaction. For example, two materials
can have similar compressive strengths and require a
similar amount of drilling energy, but have very
different grain sizes and wear the drill bit at different
rates. A material’s properties are also affected by in-
situ conditions such as confining pressure,
temperature, moisture content,  the presence of gases
and the process of mining itself.

The process of drilling is complicated to physically
model.  There are a large number of variables that
influence the drilling process. The factors that affect
drilling originate from the drill, the material, and the
environment in which the drilling takes place.
Variables such as drill string stiffness, drill bit
geometry and wear, method of flushing, and
machine condition can significantly affect the
performance of the drill and the bit-rock interaction
[9]. These variables also differ between drills and
operators.

Considering all of the geologic, environmental, and
mechanical variables, drilling quickly becomes a



very large, real-valued, multivariate data set. Often,
the complex relationships between these dynamic
variables are not well-understood or even known.
For these reasons, this drilling application is a good
candidate for machine learning. An early survey of
these methods suggested that a neural network is an
appropriate learning algorithm to use.

A neural network is composed of layers of
interconnecting nodes as shown in Figure 2 [7]. The
drill sensor values are the input layer and the
material identity (shown in binary form) is the
output layer. Every node is conneced by a constant
real-valued number, or weight, to all the nodes in the
succeeding layer. The number of hidden layers and
nodes in the layer determines the complexity of the
network and the functions it can represent. The goal
of training the network is to minimize the error of
classifying the material. Therefore, training is an
iterative process: propagate inputs through the
network, calculate the error between network output
and actual output (or target), and adjust weights by
backpropagating a function of the network error. The
cycle continues until a minimum error is attained or
a user-defined number of training iterations is
reached.

Figure 2.  Neural Network Configuration

To help the neural network make use of the complex
relationships between all of these variables, we have
augmented the drill sensors with additional “virtual”
sensors. These sensors are not physical sensors, but
functions of the drill’s sensors. They can represent
complex relationships between drill behavior and
material properties. The information from the virtual
sensor is another drill parameter and another
variable for a neural network to use.

The following sections present an iterative approach
of gathering laboratory and coal mine drill data,
establishing a set of real and virtual sensors, training
a neural network to classify the drilled materials,
and evaluating the classification results.

4. EXPERIMENTS

4.1 Experimental Apparatus.

Our drilling apparatus consists of a portable,
hydraulically-powered, manually-operated, water-
cooled coal mine drill instrumented with sensors,
data acquisition hardware, and a laptop computer
(see Figure 3 below). The electronic hardware is
isolated from the drill so that it can operate in a real
mine environment. The data acquisition system is in
a waterproof box, with one cable running to the
sensors and another cable connecting to the laptop
which can be taken several feet away from the actual
drilling site.

Figure 3. Laboratory Drill Apparatus and Setup

The drill parameters that are recorded are torque,
thrust, rotary speed, hydraulic pressures and drill
position. A highly accurate six-axis, decoupled
force-torque sensor is connected in-line between the
drill motor and the drill carriage. Hydraulic
pressures of the thrust and rotation motors inlet and
outlet are recorded. The reason for this is to assess
the feasibility of measuring thrust and torque values
from less expensive sensors for a real-world system.
The rotary speed is measured using a magnetic
sensor and a collar with four embedded magnets
attached to the spinning drill chuck. Using
LabVIEW the sensor readings are captured at a
constant rate, and drill penetration rate is calculated
off line, using the drill bit position readings at
known, fixed time steps.

Our laboratory drilling set-up includes an adjustable
frame to support the drill as it drills horizontally
through layered concrete test blocks. The drill is
supported vertically with cables. When a hole is
drilled, the drill mast is expanded between the steel
frame and the concrete test block. The linear and
rotary movement of drilling is controlled manually
while the computer controls the data acquisition.
The thrust motor valve is held fully opened, while a
hydraulic restrictor valve is used to keep the flow
rate at a maximum value if with the goal is to keep
the penetration rate constant. The rotation motor
valve is held fully opened, but the flow is not
controlled. To keep the drill hole as clean as possible
from drill fines, the water is turned on full-flow each



time a hole is drilled to minimize unintended
regrinding.

4.2 Data Collection and Processing.

We have gathered data on about 40 holes drilled into
a three foot thick concrete test block. The 3’x3’x5’,
8,000 lb test block has five layers of concrete of
different strengths and materials. Each concrete mix
was tested for compressive strength. The physical
characteristics of each layer are given in Table 1. We
drilled holes into the concrete test block  in a rough
grid pattern. We also drilled and recorded about 30
holes at the Bruceton Coal Mine in Pittsburgh.

Layer 1 2 3 4 5
Concrete

 Mix
Grout Lime

stone
Fly-
ash

H.E.S H.E.S

Comp.
Str. (psi) 1,900 5,600 1,300 4,500 4,300
Thick-

ness (in) 11 5 9 4 7

Table 1. Concrete Test Block Characteristics (H.E.S. is
High Early Strength concrete)

It took, on average, 90 seconds to drill a hole into
the concrete test block. A typical data file has
between 60,000 and 100,000 data points, each with
seven real-valued sensor readings: force and torque
from the force-torque sensor, hydraulic pressures at
the thrust and rotation motor inlets and outlets, drill
position and rotary speed. Figure 4 is an example of
sensor data recorded while drilling a hole through
five layers of concrete (abscissa is drill position,
ordinate is sensor readings)

Thrust

Torque

 Layers   1                   2                3           4      5

Pressures

time

Figure 4. Concrete Drill Hole Sensor Recordings for
One Drill Hole.

The drill sensor data used in these experiments is
post-processed. The output of the string
potentiometer is filtered with a capacitor, while the
force-torque sensor uses a low-pass filter. The
conversion of magnet pulses to rotary speed uses
software filtering. The size of each drill data file is
reduced for training the neural network and to
facilitate in the analysis of real and virtual sensors.

After calculating the drill penetration rate, each drill
data file is sub-sampled by 1% (a plot of the sub-
sampled file is very acceptable when visually
compared to it’s parent file).  These files are further
processed by choosing data points from clean
segments of each material and leaving out areas of
material transition or drill start or stop points. The
cleaned files have between 500 and 1500 data points
comprising a segment of sensor values for each
material that was drilled in that particular hole. Each
is labeled by hand and normalized over the range of
sensor values. Finally, each segment of data is
collapsed into a single data point in N-dimensional
space, where N is the number of fields. The fields of
a data point are, for example, average thrust over the
drill segment, and N is different for each
experiment.

4.3 Neural Network Training and Testing

We are using Netlab’s [1] back propagation
algorithm with a two-layer feed forward neural
network. The class labels are converted to binary
numbers for neural network training and testing, and
then converted back to an integer classification using
a best-of-N voting scheme.

The following experiments have been designed to
determine if simplified drill data from concrete
blocks can be classified into the 5 hand-labeled
materials, and to do a sensitivity analysis of drill
parameters. A neural network with no hidden units
was trained and the poor results, averaging 80%
classification error, indicate that there are non-linear
relationships in the drill sensor data. Subsequent
networks used 4 hidden units and were trained over
a range of iterations.

We used several sets of attributes as inputs to the
neural network (see Table 2) including
measurements from the physical sensors (labeled p)
as well as virtual sensors (labeled v). To prevent the
network from learning material class solely based on
position of the drill (since every hole was drilled in
the same concrete test block), the drill bit position
was not used as an input to the neural network.

Attributes Experiment

1 2 3 4 5 6 7 8 9 10 11 12
Mean

Thrust  (p)
Torque (p)
RPM (p)
Penetration (p)
Rotary In (p)
Rotary Out (p)
Thrust In (p)



Thrust Out (p)
Thrust Diff. (v)
Rotary Diff. (v)

Std. Dev.
Thrust (v)
Torque (v)
Penetration (v)
Thrust Diff. (v)
Rotary Diff. (v)

Table 2.  Attribute Sets Used in the Experiments.

There are 14 drill hole data files used for the
experiments. Each data set is generated by randomly
choosing 11 of the 14 files for training and the
remaining 3 for testing. Each experiment begins
with training and testing 100 unique data sets on a
neural network. An average test error rate is
computed from the test error rates of the 100 data
sets. This is repeated with a range of values for the
‘number of iterations’ parameter. The iteration value
with the lowest average error rate is reported.

4.4 Experiment Results

The average error rates for each experiment, and a
breakdown of the error rates by material are shown
in Table 3.

Error Rates by Material (%)
Experiment 1 2 3 4 5 Avg

1 0 0 1.5 15.1 5.8 4.5

2 4.2 4.1 13.9 33.3 27.5 15.2

3 48.9 21.3 60.5 83.6 84.4 59.8

4 12.7 6.8 32.2 11.1 48.6 22.3

5 0.2 0.9 9.9 25.8 37.1 14.8

6 0.1 0.8 6.3 29.8 32.3 13.8

7 44.8 31.7 63.2 61.7 68.3 54.0

8 0.0 14.5 5.8 34.7 66.7 24.3

9 14.0 8.6 8.6 87.2 91.8 42.0

10 57.6 16.2 43.4 93.9 90.5 60.3

11 76.8 62.6 63.8 86.0 97.2 77.3

12 54.8 47.7 77.2 92.3 97.1 73.8

Table 3. Error Rates by Material for Each Experiment

Experiment 1 used all of the physical sensor
values—thrust, torque, rotary speed, penetration rate
and motor inlet and outlet pressures—as well as a
number of the virtual sensors in its attribute set. This
‘base’ set of attributes had the lowest average
classification error rate of the 12 experiments, with
4.5% error. This result verifies that a neural network
can classify the five materials and it also serves as a
value with which to compare results of the other
experiments.

Figure 4 shows the classification error rates for a
range of iterations. Increasing the number of
iterations improves the classification accuracy until
about 90 iterations, where it levels off. Material 5
consistently has the highest error rates. This is true
for all of the experiments which are described later.

Increasing Iterations
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Figure 4. Network Classification Error Rates vs.
Number of Iterations Using Experiment Group 1. Each
line represents a material.

Figure 5 below is an image representation of the
network’s confusion matrix. The confusion matrix is
a measure of how well the network performed on
each material class and shows where the mis-
classifications occurred. The ordinate axis is the
network’s classification of the data sets in
experiment 1. The columns show the percentages of
the material classes they actually are. For example,
materials 1 and 2 were correctly classified 100% of
the time, and material 3 was misclassified as
material 4 about 10% of the time.

1        2         3         4         5

1

2

3

4

5

Figure 5. Experiment 1 Confusion Matrix (lighter
colors represent higher numbers).

The purpose of experiments 2 through 6 was to
evaluate the the relative discriminatory power of the
classic drill parameters, thrust, torque, rotation rate
and penetration rate. The network classification
error rates for experiments 2 through 6 are shown in
Table 3.  Experiment 2 used all four drill
parameters, while the next four experiments
removed thrust, torque, rpm, and penetration rate,
one at a time. Removing the rotary speed or
penetration rate caused the classification error to
increase mildly. Removing drill thrust significantly
impairs the network’s ability to classify the
materials. This may be due to the fact that rotation



rate and penetration rate were relatively constant
compared to thrust and torque, so that these two
parameters became even more critical in classifying
the materials

Experiments 7 and 8 replaced the sensor values from
the highly-accurate force-torque sensor with the
sensor values from the less expensive pressure
transducers installed at the inlet and outlet ports of
both hydraulic motors. Experiment 7 achieved a poor
classification rate with 54% error. Experiment 8,
however, trained the network using 5 additional
virtual sensors and the average error rate dropped to
24%, less than half that of experiment 7. This
suggests that the addition of virtual sensors to the
sensor suite may make it possible to use the
inexpensive and robust pressure sensors in lieu of the
expensive and delicate strain gauge sensor to classify
mine roof rock.

A single drill parameter (force, torque, rotary speed
and penetration rate) was used to train a network in
Experiments 9 through 12. Training the network
with only drill thrust measurements produced the
lowest error rate. This result agrees with the results
of Experiment 3 which showed that of the four same
parameters, removing drill thrust from the training
caused the most increase in error. Closer
examination of the results of Experiments 9 through
12 reveals that although drill thrust is the most
important parameter in classifying materials 1, 2 and
3, all four drill parameters—thrust, torque, rotary
speed and penetration rate—appear to be equally
poor at classifying materials 4 and 5.  This is
additional evidence that there is probably some other
drill parameter that can better distinguish these two
materials.

Experiments 1,7 and 8 indicate that the standard
deviations of the drill parameters are useful in
increasing the degree of accuracy in the
classification of the concrete test materials. One
explanation may be that the concrete mixes range in
the size and concentration of aggregate, causing the
drill vibrations to be different for each material. This
effect is better represented in the larger, unsampled
data files, and may prove to be even more useful
where changes in the vibrations over time can be
tracked. Experiments 7 and 8 also highly suggest
that virtual sensors are useful and that they improve
the classification accuracy of similar materials.

5. FUTURE WORK

In the experiments presented in this paper, the data
files used to train and test the neural network were
reduced to a few points. This gave the network very
clean data to train with. The next step is to test the

network on the larger data sets. It is likely that for
the larger datasets we will need to discover and use
additional virtual sensors. These experiments also
used a single network architecture and did not vary
the error function or search algorithm used to tune
the weights. Subsequent experiments should apply
model selection, so that the best network architecture
and training algorithms can be determined prior to
exploring virtual sensors. Future experiments will
focus on classification with noisy drill data and
understanding relationships between drill and
material. Future research also includes classifying
materials with data gathered at an underground coal
mine.
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