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This paper describes SPHINX, an large-ve
independ; inuous speech gnition system. An carlicr ver-
sion of sPHINX was described in ICASSP '88. Wc have sinced made
several enh including g lized triphone models, word
duration modeling, function-phrase modeling, between-word coar-
ticulation modeling, and corrective training. On the 997-word
resource management task, SPHINX attained a word accuracy of 96%
with a grammar (pesplexity 60), and 82% without grammar
(perplexity 997).

1. Introduction

This paper describes SPHINX, a large-vocabulary speaker-
independent continuous speech recognition system. SPHINX is
based on discrete hidden Markov models (HMMs) with LPC-
derived parameters. In order to deal with the problem of
speaker independence, we added knowledge to these HMMs
in several ways. We represented additional knowledge
through the use of multiple codebooks. We also enhanced the
recognizer with word duration modeling. In order to model
co-articulation in continuous speech, we introduced the use of
function-word-dependent phone models, function-phrase-
dependent phone models, generalized triphone models, and
between-word coarticulation modeling. More recently, we
also modified the comective training algorithm [1] for con-
tinuous speech recognition.

In this paper, we will describe the above components of the
SPHINX System, with emphasis on the recent improvements.
Interested reader may refer to [2] or [3] for more details.

On the 997-word DARPA resource management task,
SPHINX achieved speaker-independent word recognition ac-
curacies of 82% and 96%, with grammars of perplexity 997
and 60, respectively. Results on new test speakers are also
presented.

2. Speech Representation

The speech is sampled at 16 KHz, and pre-emphasized
with a filter of 1 - 0.972° %, Then, a Hamming window with a
width of 20 msec is applied every 10 msec. Autocorrelation
analysis with order 14 is followed by LPC analysis with order
14. Finally, 12 LPC-derived cepstral coefficients are com-
puted from the LPC coefficients, and these LPC cepstral
coefficients are transformed to a mel-scale using a bilinear
transform.
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These 12 coefficients are vector quantized into a codebook
of 256 prototype vectors. In order to incorporate additional
speech parameters, we created two additional codebooks.
One codebook is vector quantized from differential
cocfficients. 'The differential coefficient of frame n is the
difference between the coefficient of frame n+2 and frame
n=2. This 40 msec. difference captures the slope of the
spectral envelope. The other codebook is vector quantized
from energy and differential energy values.

3. Context-Independent HMM Training

SPHINX is based on phonetic hidden Markov models. We
identified a set of 48 phones, and a hidden Markov model is
trained for each phone. Each phonetic HMM contains three
discrete output distributions of VQ symbols. Each distribu-
tion is the joint density of the three codebook pdf’s, which are
assumed to be independent. The use of multiple codebooks
was introduced by Gupta, et al. [4].

We initialize our training procedure with the TIMIT
phonetically labeled database. With this initialization, we use
the forward-backward algorithm to train the parameters of the
48 phonetic HMMs. The training corpus consists of 4200
task-domain sentences spoken by 105 speakers. For each
sentence, word HMMs are constructed by concatenating
phone HMMs. These word HMMs are then concatenated into
a large sentence HMM, and trained on the corresponding
speech. Because the initial estimates are quite good, only two
iterations of the forward-backward algorithm are run. This
training phase produces 48 context-independent phone
models. In the next two sections, we will discuss the second
training phase for context-dependent phone models.

4. Function Word/Phrase Dependent Models

One problem with continuous speech is the unclear ar-
ticulation of function words, such as a, the, in, of, etc. Since
the set of function words in English is limited and function
words occur frequently, it is possible to model each phone in
each function word separately. By explicitly modeling the
most difficult sub-vocabulary, recognition rate can be in-
creased substantially. We selected a set of 42 function words,
which contained 105 phones. We modeled each of these
phones separately.

We have found that function words are hardest to recog-
nize when they occur in clusters, such as that are in the. The
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words are even less clearly articulated, and have strong inter-
word coarticulatory effects. In view of this, we created a set
of phone models specific to function phrases, which are
phrases that consist of only function words. We identified 12
such phrases, modified the pronunciations of these phrases
according to phonological rules, and modeled the phones in
them separately. A few examples of these phrases are: is the,
that are, and of the.

5. Generalized Triphone Models

The function-word and function-phrase dependent phone
models provide betier representations of the function words.
However, simple phone models for the non-function words
are inadequate, because the realization of a phone crucially
depends on context. In order to model the most prominent
contextual effect, Schwartz, et al. [S] proposed the use of
triphone models. A different triphone model is used for each
left and right context. While triphone models are sensitive to
neighboring phonetic contexts, and have led to good results,
there are a very large number of them, which can only be
sparsely trained. Moreover, they do not take into account the
similarity of certain phones in their affect on other phones
(such as /b/ and /p/ on vowels).

In view of this, we introduce the generalized triphone
model. Generalized triphones are created from triphone
models using a clustering procedure:

1. An HMM is generated for every triphone context.

2. Clusters of triphones are created; initially, each
clusters consists of one triphone.

W

. Find the most similar pair of clusters which represent
the same phone, and merge them.

&

.For each pair of same-phone clusters, consider
moving every element from one to the other.
1. Move the element if the resulting con-
figuration is an improvement.

2. Repeat until no such moves are left.

5. Until some convergence criterion is met, go to step
2.

To determine the distance between two models, we use the
following distance metric:
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where D (a, b) is the distance between two models of the same
phone in context @ and b. P, (i) is the output probability of
codeword i in model a, and N (i) is the count of codeword i
in model a. m is the merged model by adding N, and N, In
measuring the distance between the two models, we only
consider the output probabilities, and ignore the transition
probabilities, which are of secondary importance.

Equation 1 measures the ratio between the probability that
the individual distributions generated the training data and the
probability that the combined distribution generated the train-
ing data. Thus, it is consistent with the maximum-likelihood
criterion used in the forward-backward algorithm. This dis-
tance metric is equivalent to, and was motivated by, entropy
clustering used in {6] and {7].

This context generalization algorithm provides the ideal
means for finding the equilibrium between trainability and
sensitivity. Given a fixed amount of training data, it is pos-
sible to find the largest number of trainable detailed models.
Armed with this technique, we could attack any problem and
find the "right” number of models that are as sensitive and
trainable as possible. This is illustrated in Figure 1, which
shows that the optimal number of models increases as the
training data is increased.
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Figure 1: Error rate as a function of the amount of
training and the number of models.

6. Between-Word Coarticulation Modeling

Triphone and generalized triphone models are powerful
subword modeling techniques because they account for the
left and right phonetic contexts, which are the principal causes
of phonetic variability. However, these phone-sized models
consider only intra-word context. A simple extension of
triphones to model between-word coarticulation is problem-
atic because the number of triphone models grows sharply
when between-word triphones are considered. For example,
there are 2381 within-word triphones in our 997-word task.
But thete are 7057 triphones when between-word triphones
are also considered.

Therefore, generalized triphones are particularly suitable



for modeling between-word coarticulation.  We first
generated 7057 triphone models that accounted for both intra-
word and inter-word triphones. These 7057 models were then
clustered into 1000 generalized triphone models. Few
program modifications were needed for training, since the
between-word context is always known. However, during
recognition, most words now have multiple initial and final
states. Care must be taken to to ensure that each legal sen-
tence has one and only one path in the search. Details of our
implementation can be found in [8].

7. Summary of Training Procedure

The SPHINX training procedure operates in two stages. In
the first stage, 48 context-independent phonetic models are
trained. In the second stage, the models from the first stage
are used to initialize the training of context-dependent phone
models, which could be generalized triphone models and/or
the function word/phrase dependent models.

Although we have 4200 sentences for training, this is still
not sufficient to estimate the 2.5 million parameters in our
models without smoothing. In order to estimate the
probabilities of the unobserved and rare symbols, we inter-
polate the context-dependent model parameters with the cor-
responding context-independent ones. We use deleted
interpolation (9] to derive appropriate weights in the inter-
polation.

The SPHINX training procedure is shown in Figure 2:
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Figure 2: The SPHINX Training Procedure.
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8. HMM Recognition with Word Duration

For recognition, we use a Viterbi search that finds the
optimal state sequence in a large HMM network. At the
highest level, this HMM is a network of word HMMs, ar-
ranged according to the grammar. Each word is instantiated
with its phonetic pronunciation network, and each phone is
instantiated with the corresponding phone model. Beam
search is used to reduce the amount of computation.

One problem with HMMs is that they do not provide very
good duration models. We incorporated word duration into
SPHINX as a part of the Viterbi search. The duration of a word
is modeled by a univariate Gaussian distribution, with the
mean and variance estimated from a supervised Viterbi seg-
mentation of the training set. By precomputing the duration
score for various durations, this duration model has essen-
tially no overhead.

9. Corrective Training

We have just completed several preliminary experiments
with the corrective training algorithm proposed by Bahl, et al.
[1]. The corrective training algorithm attempts to maximize
the recognition rate on the training set. The algorithm
proposed by Bahl, e al. was successfully applied to isolated-
word speaker-dependent recognition. We modified the algo-
rithm in several ways to deal with speaker-independent con-
tinuous speech recognition. This will be described in a
forthcoming paper [10].

10. Results

The SPHINX System was tested on 150 sentences from 15
speakers. These sentences were the official DARPA test data
for evaluations in March and October 1987. The word ac-
curacies for various versions of SPHINX with the word-pair
grammar (perplexity 60) and the null grammar (perplexity
997) are shown in Table 1. Word accuracy is defined as the
percent of words correct minus the percent of insertions.

Version No Grammar | Word Pair
1 Codebook 25.8% 58.1%
3 Codebooks 45.3% 84.4%
+Duration 49.6% 83.8%
+Fn-word 57.0% 87.9%
+Fn-phrase 59.2% 88.4%
+Gen-triphone 72.8% 94.2%
+Between-word 77.9% 95.5%
+Corrective 81.9% 96.2%

Table 1: Results of various versions of SPHINX.

We found duration modeling to be helpful when no gram-
mar was used. Modeling function words and generalized
triphones both led to substantial improv We also
found that generalized triphones outperformed triphones,
while saving 60% memory. More detailed descriptions and
results on contextual modeling can be found in 2] or {3].




The improvements from function-phrase dependent model-
ing encouraged us to implement between-word triphone
models. This led to substantial improvements with no in-
crease in the number of models. Finally, we have also shown
the effectiveness of our extension of the corrective training
algorithm to speaker-independent continuous speech.

SPHINX was evaluated on the June 1988 test set, which
contains 12 speakers, with 25 sentences per speaker. Thus
far, we have only run the version of SPHINX that corresponded
to the "Between-word 78.0% 95.7%" line in Table 1. We
obtained accuracies of 70.2% and 93.0% on the two gram-
mars. The reason for this degradation was that the first test
set contained one extremely good speaker, while the June
1988 test set contained two extremely poor speakers. If we
discard these three speakers, the performance of SPHINX on
the remaining 24 speakers is consistent. This suggests that
speaker-independent systems can work extremely well on a
great majority of speakers, but speaker adaptation may be
needed on atypical speakers.

11. Conclusion

This work addressed the problem of large-vocabulary
speaker-independent continuous speech recognition, At the
outset, we chose to use hidden Markov modeling, a powerful
mathematical learning paradigm. We also decided to use
vector quantization and discrete HMMs for expedience and
practicality. Then we attacked the problems of large
vocabulary, speaker independence, and continucus speech
within our discrete HMM framework.

It is well known that HMMs will perform better with
detailed models. It is also well known that HMMs need
considerable training. This need is accentvated in large-
vocabulary, speaker-independence, and discrete HMMs.
However, given a fixed amount of training, model specificity
and model trainability are two incompatible goals. More
specificity usually reduces trainability, and increased
trainability usually results in over-generality.

Thus, our work can be viewed as finding an equilibrium
between specificity and trainability. To improve trainability,
we used one of the largest speaker-independent speech
databases. To facilitate sharing between models, we used
deleted interpolation to combine robust models with detailed
ones. By combining poorly trained (within and between word
generalized triphone, function word and phrase dependent
phone) models with well-trained (context-independent,
uniform) models, we improved trainability through sharing.

To improve specificity, we used multiple codebooks of
various LPC-derived features, and integrated external
knowledge sources into the system. We also introduced the
use of function-word-dependent phone modeling, function-
phrase-dependent phone modeling, and generalized triphone
modeling, both within and between words.

Through these techniques we demonstrated that accurate
large-vocabulary speaker-independent continuous speech
recognition is feasible. We report recognition accuracies of

82% and 96% with grammars of perplexity 997 and 60.
These results were made possible by ample training data,
powerful learning paradigms, and detailed modeling tech-
niques.
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