
Sensor Resetting Localization for Poorly Modelled Mobile Robots

Scott Lenser Manuela Veloso

School of Computer Science

Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

We present a new localization algorithm called Sensor
Resetting Localization which is an extension of Monte
Carlo Localization. The algorithm adds sensor based
resampling to Monte Carlo Localization when the robot
is lost. The new algorithm is robust to modelling er-
rors including unmodelled movements and systematic
errors. The algorithm can be used in real time on sys-
tems with limited computational power. The algorithm
has been used successfully on autonomous legged robots
in the Sony legged league of the robotic soccer com-
petition RoboCup '99. We present results from the
real robots demonstrating the success of the algorithm
and results from simulation comparing the algorithm
to Monte Carlo Localization.

1 Introduction

This paper describes a new localization algorithm
called Sensor Resetting Localization(SRL) which is
an extension of Monte Carlo Localization. This lo-
calization algorithm was developed for use in the
Sony legged league of the robotic soccer competition
RoboCup '99. The algorithm has been tested in this
domain, in separate tests with the same hardware and
environment, and in simulation. The �rst part of this
introduction is devoted to detailing the environment
in which the localization algorithm operates. We start
with a description of the robot and software and fol-
low with a description of the soccer �eld on which
the robot plays. The rest of the introduction explains
what features of this domain make the localization
problem especially challenging.

1.1 Hardware

The robots used in the competition and tests were
generously provided by Sony [5]. The robots are a
excellent platform for research and development and
provide us exceptional hardware that is commercially
viable. The robot consists of a quadraped designed
to look like a small dog. The robot is approximately
20cm long plus another 10cm due to the head. The
neck and four legs each have 3 degrees of freedom.
The neck can pan almost 90� to each side, allowing

the robot to scan around the �eld for markers. The
robot stands 20cm high at the shoulder with the head
extending another 10cm.

1.2 Vision

Vision is provided by a color CCD camera which a
resolution of 88x60. The robot's �eld of view is about
60� horizontally and 40� vertically. The input from
the camera is processed by color separation hardware
and analyzed by the vision system to return distance
and angle to any markers seen. Distance is estimated
based on distance between color blob centers. Dis-
tance estimates vary by about �15% when the robot is
standing still. The mean value is usually within about
10% for distance and 7� for angle. Markers which are
partially o� of the camera look like noise to the vision
system. The sides and edges of markers are commonly
missed by the vision system. Because of these e�ects,
sensor readings occasionally have much larger errors
than usual. The vision system subtracts out the neck
angle before passing the result to the localization al-
gorithm. The neck angle is sensed using an on-board
sensor that is very accurate but has a high granularity.

1.3 Locomotion

The locomotion used in all our tests was developed by
Sony. Due to the complexities of legged locomotion,
there is a lot of variability in the motion performed by
the robot for the same motion commands. Repeatedly
executing a path of approximately 5m in length with
two turns results in �nal positions of the robot that
vary by about 1m. As the robot moves, its feet slip
randomly on the surface of the �eld contributing to
the large movement error. The robot can transition
among di�erent types of motion such as forward, for-
ward right, right forward, turn right, backward, etc.,
each in di�erent gaits. The robot slips randomly on
the �eld surface when transitioning from one motion
to another. Slippage from transitions can be as much
as 5� but does not tend to a�ect x,y position much.
Additional errors in movement are introduced by dif-
ferent results for the same robot behavior under slight
changes to the environment such as slightly di�erent
�eld surface or somewhat lower battery charge. These

day to day variations in robot behavior are too ex-
pensive to model because of the time it takes to de-
termine model parameters. Systematic errors of up to
25% have been observed in our lab.

1.4 The Field

The �eld on which the robot operates is 2.8m in length
by 1.8m in width. The �eld is surrounded by low
sloped walls that keep the robots and the ball on the
�eld. There is a color coded goal at each end of the
�eld, one cyan and one yellow, that were not used as
input to the localization. The surface of the �eld is a
short carpeting except in the goals where the surface
is a smooth plastic.

The �eld is surrounded by 6 markers, 3 on each of
the long sides of the �eld. There is a marker in each
corner, and one at each end of the center line. Each
marker is a color coded cylinder mounted 20cm from
the surface of the �eld which is about eye level to
the robot. Each cylinder is 20cm high and 10cm in
diameter. The cylinder is divided vertically into two
equal sized colored patches, one pink and either cyan,
green, or yellow to indicate position along the long
axis of the �eld (which we refer to as the x axis).
Whether the pink is on the top or bottom indicates
which side of the �eld the marker is on. Thus, there
are 6 uniquely distinguishable markers to which the
robot can estimate distance and angle.

1.5 Challenges

The Sony legged league of the robotic soccer compe-
tition RoboCup '99 provides a challenging domain in
which to do localization. Due to the nature of legged
locomotion, signi�cant errors in odometry occur as
the robot moves about. Further noise is introduced
into odometry readings by frequent extended collisions
with the walls and other robots. Since we are unable to
detect collisions and are unable to locate other robots,
we cannot model collisions with other robots introduc-
ing error in our system. Noise in the vision processing
also makes localization more di�cult. An additional
complication is introduced by the rules which specify
that under certain circumstances the robot is to be
moved by the referee without telling the robot. The
following challenges must be addressed by the local-
ization system:

� errors(occasionally large) in sensor readings
� systematic errors in sensor readings
� large amounts of noise in odometry
� systematic errors in odometry
� collision induced unmodelled movements
� referee induced large unmodelled movements

2 Localization

This section gives a brief overview of the Bayesian
approach to localization we used last year followed by
a description of Monte Carlo Localization and Sensor
Resetting Localization.

2.1 Previous Localization Approach

In previous work with the Sony dogs for the CMTrio-
98 RoboCup-98 team, a vision-based navigation sys-
tem was developed based on a Bayesian localization
algorithm [8]. To be able to use the landmarks ef-
fectively, the CMTrio-98 robots used a probabilistic
method of localization based on triangulation from
two landmarks.

As described in [8], following a classical Bayesian ap-
proach, the �eld was discretized into grid locations and
the continuous robot head angle was discretized into
a set of possible values. These grid cells and robot
headings de�ne a state space. Observations of the
landmarks are combined with the state space for the
position calculation. The CMTrio-98 localization al-
gorithm has two passes, and it uses the Bayes rule for
the updates. The �rst pass incorporates observations
into the probability distribution over the discretized
state space of the grid cells and robot headings. The
second pass updates the probabilities as a function of
the movement actions selected [8].

2.2 Monte Carlo Localization

Monte Carlo Localization(MCL) [4] uses the general
Bayesian approach to localization. Monte Carlo Lo-
calization represents the probability density for the lo-
cation of the robot as a set of discrete samples. Since
each sample is an exact point in locale space, updates
of samples are easy to implement. The density of sam-
ples within an area is proportional to the probability
that the robot is in that area. Since the points are not
distributed evenly across the entire locale space, MCL
focusses computational resources where they are most
needed to increase the resolution near the believed lo-
cation of the robot. The position of the robot is cal-
culated from these samples by taking their mean. The
uncertainty in this estimate can be estimated by cal-
culating the standard deviation of the samples. There
are two kinds of update operations that are applied
to the sample set, movement updates and sensor up-
dates.

Movement updates require a convolution of the locale
probability density P (l) with the movement probabil-
ity density P (l0jl;m). Movement updates are done by
updating each of the samples in the sample set inde-
pendently. A new sample is drawn from the move-

ment probability density P (l0jl;m) to replace each lo-
cale sample. Note that l and m are known here and l0

may depend on both.

Sensor updates require a multiplication of the locale
probability density P (l) with the sensor reading prob-
ability density P (ljs). Sensor updates are done in two
steps. First, the samples are given weights equal to
the probability of the locale given the sensor readings
P (ljs). Second, a new set of unweighted locale samples
is generated by randomly sampling with replacement
from the old locale sample set, where the probabil-
ity of a sample being selected is proportional to its
weight. Note that this step never generates any new
sample points. Optionally, some random noise can be
added before each sensor update to help the algorithm
recover from errors.

The total weight of the samples gives an indication
of the approximation error in the resampling step.
This total weight is also proportional to the proba-
bility of the the locale sample set given the sensor
readings. One possible use of this information is to
adjust the sample set size dynamically to try to keep
errors roughly constant.

For a more complete description of Monte Carlo Local-
ization, please see Fox et al. [4] and Dellaert et al. [2].

2.2.1 Summary of Monte Carlo Localization

Movement update.
P (lj+1jm; lj) = P (lj) convolved P (l0jm; l)

1. foreach sample s in P (lj)

2. draw sample s0 from P (l0jm; s)

3. replace s with s0

Sensor update.
P (lj+1js; lj) = P (lj) �P (ljs)=� where � is a constant.

1. [optional step] replace some samples from P (lj)
with random samples

2. foreach sample s in P (lj)

3. set weight of sample equal to probability of
sensor reading, w = P (ljs)

4. foreach sample s in P (lj)

5. calculate and store the cumulative weight of
all samples below the current sample (cw(s))

6. calculate total weight of all samples (tw)

7. foreach sample s0 desired in P (lj+1)

8. generate a random number(r)
between 0 and tw

9. using a binary search, �nd the sample with
maximum cw(s) < r

10. add the sample found to P (lj+1)

2.2.2 Monte Carlo Localization discussion

We modelled all of our movements by 3 Gaussians,
one for movement distance, one for movement direc-
tion, and one for heading change. We represented our
sensor distributions as 2 Gaussians, one for distance
from the landmark and one for egocentric angle to the
landmark. We set deviation equal to a percentage of
the mean for distance and a constant value for angle.

We attempted to do one sensor update stage for each
movement update stage. However, we discovered that
even when using only 400 samples the localization al-
gorithm was too slow. To make the algorithm real
time, we ignored sensor readings whenever the local-
ization algorithm fell behind on movement updates.
When throwing away sensor readings, we were able
to execute about twice as fast but sacri�ced a small
amount of accuracy and a large amount of precision.

More samples are normallyneeded by Monte Carlo Lo-
calization during global localization than when track-
ing since similar resolution is needed and the samples
are spread over a much larger area. If MCL is run
with too few samples during global localization, the
locale probability density prematurely collapses to the
few most likely points. During testing with 1000 sam-
ples, we commonly observed the sample set collapse
to 1-2 distinct samples during global localization from
a single marker observance. The number of samples
remains constant, of course, but the number of dis-
tinct samples is often reduced greatly during the sen-
sor update phase. A single marker reading localizes
the robot to a circle around the marker at a set dis-
tance and a heading relative to the center of the circle.
Obviously, 1-2 distinct samples are not su�cient to
represent this circle accurately. Adaptive sample set
sizes do not help much here since only one movement
update step is resampled from. If the robot takes 2
steps and then sees a marker, the probability density
will consist of 1-2 tightly grouped blobs instead of 1-2
points which doesn't �x the problem. The premature
collapse of the probability density results in increased
time for global localization and more misleading error
in position during global localization. Since our robots
are continually losing track of their position due to col-
lisions, being moved, falling down, etc., it is extremely
important that the localization algorithm be capable
of globally localizing quickly.

MCL is only capable of handling small systematic er-
rors in movement. Every sensor reading gives MCL
a chance to correct a small amount of systematic er-
ror. The amount of systematic error that can be cor-
rected for increases with larger movement deviations

and larger numbers of samples. If the systematic er-
ror in movement gets too large, MCL will slowly ac-
cumulate more and more error. We need to handle
systematic errors in movement because measuring the
movement parameters for a robot is time consuming.
Systematic errors in movement also occur when the en-
vironment changes in unmodelled ways. For example,
if the robot moves from carpeting to a plastic surface
such as the goal, the movement of the robot for the
same motion commands is likely to change.

MCL does not handle unexpected/unmodelled robot
movements very well. The time MCL takes to recover
is proportional to the magnitude of the unexpected
movement. During this time, MCL reports incorrect
locations. Unexpected movements happen frequently
in the robotic soccer domain we are working in. Colli-
sions with other robots and the walls result in motions
having unexpected results. Collisions are di�cult to
detect on our robots and thus cannot be modelled by
the localization algorithm. Another unexpected move-
ment we incur is teleportation due to application of the
rules by the referee. MCL takes a long time to recover
from this.

Some of the drawbacks of MCL can be alleviated by
adding adaptive sample set sizing. Even with adap-
tive sample set sizing, MCL is still more sensitive to
systematic errors in movement than SRL. MCL with
adaptive sample set sizing requires di�erent compu-
tational resources as the number of samples changes.
Adaptive sample set sizing as described in Fox et al. [4]
can take an extremely long time if the robot thinks it
is one position and the sensor readings indicate a dif-
ferent position, especially if robot movements are very
accurate. We were unable to apply MCL with adap-
tive sample set sizing since we are working in a real
time domain and do not have any additional compu-
tational power available.

2.3 Sensor Resetting Localization

Sensor Resetting Localization(SRL) is an extension of
Monte Carlo Localization. SRL is motivated by the
desire to use fewer samples, handle larger errors in
modelling, and handle unmodelled movements. SRL
adds a new step to the sensor update phase of the
algorithm. If the probability of the locale designated
by the samples we have is low given the sensor read-
ings P (Ljs), we replace some samples with samples
drawn from the probability density given by the sen-
sors P (ljs). The number of samples kept is propor-
tional to the average probability of a locale sample
given the sensors divided by an expected average prob-
ability of locale samples. Thus if the average proba-

bility is above a threshold, all the samples are kept.
As the average probability of the locale samples falls
below this threshold, more and more samples are re-
placed by samples based on the sensor readings P (ljs).
We call this sensor based resampling. The logic behind
this step is that the average probability of a locale
sample is approximately proportional to the probabil-
ity that the locale sample set covers the actual loca-
tion of the robot, i.e. the probability that we are where
we think we are. Taking one minus this value as the
probability of being wrong, suggests that we should
replace a proportion of samples equal to the probabil-
ity of being wrong with samples from the sensors. The
constant of proportionality between the average prob-
ability of a locale sample and the probability of being
wrong is a parameter that can be tweaked to control
how often the localization algorithm resets itself.

2.3.1 Summary of Sensor Resetting Localiza-

tion

Movement update.
P (lj+1jm; lj) = P (lj) convolved P (l0jm; l)

Same as Monte Carlo Localization.

Sensor update.
P (lj+1js; lj) = P (lj) �P (ljs)=� where � is a constant.

1-10. Same as Monte Carlo Localization.

11. calculate number of new samples, ns = (1 �
avg sample prob=prob threshold)�num samples

12. if(ns > 0) repeat ns times

13. draw sample(s0) from P (ljs)

14. replace sample from P (lj+1) with s0

2.3.2 Sensor Resetting Localization discus-

sion

We modelled the robot movements and sensor read-
ings in the same way as for Monte Carlo Localization.
We used a sensor based resampling threshold equal to
the expected result of 20% of the samples being dis-
tributed according to the sensor Gaussians and the
other 80% having probability 0.

Sensor Resetting Localization is applicable in domains
where it is possible to sample from the sensor readings
P (ljs). This is not a problem if landmarks are being
used as the sensor readings as the sensor distributions
are easy to sample from. If all possible locations of the
robot are known, this sensor based sampling can be
done by rejection sampling. However, rejection sam-
pling increases the run time for resampling in propor-
tion to the probability of having to reject a sample.

One of the advantages of SRL is that fewer samples
can be used without sacri�cing much accuracy. This is
possible in part because it is more e�cient when glob-
ally localizing. When the �rst marker is seen during
global localization, the probability of almost all of the
samples is very low. Thus the average probability of a
sample is ridiculously small and SRL replaces almost
all the locale samples with samples from the sensors.
This results in all of the samples being distributed
evenly around the circle determined by the marker.
So, if we are using 400 samples, we have 400 sam-
ples instead of the 1-2 of MCL to represent the circle
around the marker. Naturally, this reduces misleading
errors during global localization. This also reduces the
time required to converge to the correct localization
since the correct answer has not been thrown out pre-
maturely. After seeing another marker the circle col-
lapses to a small area where the circles intersect. The
average probability of the locale samples now is much
higher than after seeing the �rst marker since more
samples have been concentrated in the right place by
the �rst sensor reading. Thus, if the threshold for
sensor based resampling is set correctly, no new sam-
ples will be drawn due to the second sensor readings.
As long as tracking is working, no new samples are
generated from he sensors and the algorithm behaves
exactly like MCL.

SRL can handle larger systematic errors in movement
because once enough error has accumulated, SRL will
replace the current estimate of the robot's location
with one based on the sensor readings, e�ectively re-
setting the localization. Adaptive sample set sizing
helps MCL, but MCL is still more sensitive to system-
atic errors in movement and unexpected/unmodelled
robot movements. SRL is also easier to apply to real
time domains since the running time per step is nearly
constant and easy to bound.

SRL can handle larger unmodelled movements than
MCL. The localization algorithm needs to handle ex-
tended collisions with other robots and the wall grace-
fully. SRL does this by resetting itself if its estimate
of current robot position gets too far o� from the sen-
sor readings. SRL is able to handle large unmodelled
movements such as movement by the referee easily.
SRL does this by resetting itself the �rst time it gets
a sensor reading that con
icts with its estimated posi-
tion. MCL would take a long time to correct for long
distance teleportation such as this since enough error
in movement has to occur to move the mean of the
samples to the new location.

3 Results

We tested Sensor Resetting Localization on the robots
provided by Sony and in simulation. In simulation
testing, we also compared Sensor Resetting Localiza-
tion with Monte Carlo Localization with and without
random noise samples added.

We tested SRL on the real robots using the parame-
ters we used at RoboCup '99. We used 400 samples
for all tests. In order to execute in real time, we were
forced to ignore about 50% of the sensor readings. Due
to inevitable changes in conditions between measuring
model parameters and using them, the parameter for
distance moved was o� � 25%, for angle of movement
� 10�, and for amount of rotation � :6�=step. The
deviations reported to the localization were 10% for
movement and 15% for vision. We had the test robot
run through a set trajectory of 156 steps while slowly
turning it neck from side to side. The robot was in-
structed to stop after 7 di�erent numbers of steps had
been executed. The �nal position of the robot was
measured by hand for each run. We did �ve runs at
each of the 7 number of steps and averaged the results.
We compared the actual location of the robot at each
of the 35 data points with the location reported by
the localization algorithm. We calculated the error
in the mean position over time and the deviation the
localization reported over time. We also calculated
an interval in each dimension by taking the mean re-
ported by the localization and adding/subtracting 2
standard deviations as reported by the localization.
We then calculated the distance from this interval in
each dimension which we refer to as interval error.
We report both average interval error and root mean
squared interval error. We feel that root mean squared
interval is a more appropriate measure since it weights
larger, more misleading errors more heavily. We also
calculated the percentage of time that the actual lo-
cation of the robot fell within the 3D box de�ned by
the x,y, and � intervals.

The table below shows the localization is accurate
within about 10cm in x and y and 15� in � despite the
erroneous parameter values. The actual location of the
robot is within the box most of the time and when it
is outside the box, it is close to the box. The fact that
the localization seldom gives misleading information is
very important for making e�ective behaviors. Figure
1 show that the error in position quickly converges to
a steady level. Figure 2 shows that the deviation re-
ported by the algorithm quickly converges to a fairly
steady level. The deviation tends to go up at the same
time the error goes up which keeps the interval error

low and avoids misleading output. In competition, we
observed that the localization algorithm quickly resets
itself when unmodelled errors such as being picked up
occur.

x (mm) y (mm) theta (�)

average error 99.94 95.14 14.29
average interval error 15.18 4.91 2.07
rms interval error 34.92 13.94 3.82
in box percentage 74.29% 80.00% 57.14%

0 20 40 60 80 100 120 140 160
0

100

200

300

400

500

600

700

steps taken

x
po

si
tio

n
er

ro
r (

m
m

)

Figure 1

SRL on real robots (mean)

0 20 40 60 80 100 120 140 160
0

100

200

300

400

500

600

700

steps taken

x
po

si
tio

n
de

vi
at

io
n

(m
m

)

Figure 2

SRL on real robots (mean)

In simulation, we tested Sensor Resetting Localiza-
tion against Monte Carlo Localization with and with-
out random noise. Since the developers of Monte
Carlo Localization suggested adding a few random
samples to help the algorithm recover from errors, we
tested Monte Carlo Localization adding no random
noise samples and adding 5% random noise samples.
Each test was run 30 times and the results averaged.
All tests were run with 400 samples unless otherwise
noted. The simulator models the movement of the
robot with the same probability density used by the
localization algorithm. Each step the probability den-
sity for motion is sampled once to generate the new po-
sition of the robot. The parameters for the movement
model are the same parameters we used in RoboCup
'99. The robot's vision system is modelled by assum-
ing that the vision system correctly identi�es every-
thing within the robot's view cone and estimates the

correct distance and angle to each marker. The re-
ported deviation on the vision information as given
to the localization algorithm is 15%. We modelled
the movement of the robot's neck in the simulator by
having it sweep through a set of degrees relative to
the body at the same pace that the real robot used.
The neck movement allowed the robot to see many
di�erent markers from almost all �eld positions.

Figure 3 shows that SRL has less error than MCL
localization with small sample sets. Figure 3 and 4
show the mean error and 95% con�dence interval er-
ror bands. Once the sample set has increased to about
5000 samples, the two algorithms give almost identical
performance. Since performance of MCL with noise
samples was slightly worse than MCL without noise
samples, especially at small sample sizes, MCL with
noise is not shown in these �gures. Interestingly, the
error of SRL stayed about constant above 100 sam-
ples was usable with only 10 samples. Figure 4 shows
that SRL gives fewer misleading results than MCL.
SRL gives fewer misleading results even at intermedi-
ate sample counts where the error between SRL and
MCL has almost disappeared.

10
1

10
2

10
3

10
4

10
5

20

40

60

80

100

120

140

160

180

200

220

of samples

x
po

si
tio

n
er

ro
r

(m
m

)

Figure 3

SRL (mean + error bands)
MCL without noise (mean + error bands)

10
1

10
2

10
3

10
4

10
5

0

20

40

60

80

100

120

140

160

180

200

220

of samples

x
po

si
tio

n
in

te
rv

al
 e

rr
or

 (
m

m
)

Figure 4

SRL (rms + error bands)
MCL without noise (rms + error bands)

Figures 5 and 6 show that SRL is able to do global lo-
calization quicker than MCL using 400 samples. The
�gures show mean error and two standard deviations
from the mean (the deviation lines are not error bars).
SRL is able to globally localize in about 10 steps
whereas MCL takes about 60 steps. In noisy domains
with adversarial robots, we can't a�ord to spend 60
steps localizing. The global localization performed by
SRL is more consistent than MCL making its output
easier to reason with. Surprisingly, adding noise to
MCL hurts global localization. We noticed in testing
that MCL with noise pays a penalty in larger devia-
tions than the other two algorithms. Figure 7 shows
the average interval error over time for the 3 algo-
rithms (see the experiment on real robots above for a
description of interval error). Unlike SRL, MCL gen-
erates large interval errors during global localization
which indicates that it is producing very misleading
outputs.

0 10 20 30 40 50 60

−200

0

200

400

600

800

steps taken

x
po

si
tio

n
er

ro
r

(m
m

)

Figure 5

SRL (rms ± 2 standard deviations)
MCL with noise (rms ± 2 standard deviations)

0 10 20 30 40 50 60

−200

0

200

400

600

800

steps taken

x
po

si
tio

n
er

ro
r

(m
m

)

Figure 6

SRL (rms ± 2 standard deviations)
MCL without noise (rms ± 2 standard deviations)

0 20 40 60 80 100 120 140 160
0

50

100

150

200

250

300

steps taken

y
po

si
tio

n
in

te
rv

al
 e

rr
or

 (
m

m
)

Figure 7

SRL (rms)
MCL without noise (rms)
MCL with noise (rms)

We also tested the response of SRL and MCL to sys-
tematic errors in movement and vision. We simulated
systematic movement errors by multiplying the actual
distance the robot moved and turned in the simula-
tor by a constant factor between 0.1 and 1.9 with-
out telling the localization algorithm. This shows the
sensitivity of the algorithm to movement parameters
which is important when movement parameters are
expensive or di�cult to measure. We also simulated
systematic error in vision by multiplying all distance
estimates passed to the localization by a constant fac-
tor between 0.7 and 1.75. Figures 8-11 show that SRL
is more robust to modelling error than MCL especially
in regards to systematic movement error. Shown in
the �gures is the mean and 95% con�dence interval
error bands.

0 0.5 1 1.5 2
0

100

200

300

400

500

600

700

systematic movement error

y
po

si
tio

n
er

ro
r

(m
m

)

Figure 8

SRL (mean + error bands)
MCL with noise (mean + error bands)

0 0.5 1 1.5 2
0

100

200

300

400

500

600

700

systematic movement error

y
po

si
tio

n
er

ro
r

(m
m

)

Figure 9

SRL (mean + error bands)
MCL without noise (mean + error bands)

0.6 0.8 1 1.2 1.4 1.6 1.8
0

50

100

150

200

250

300

350

400

450

500
Figure 10

systematic vision error

y
po

si
tio

n
er

ro
r

(m
m

)

SRL (mean + error bands)
MCL with noise (mean + error bands)

0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

50

100

150

200

250

300

350

400

450
Figure 11

systematic vision error

y
po

si
tio

n
er

ro
r

(m
m

)

SRL (mean + error bands)
MCL without noise (mean + error bands)

There is a tradeo� between robustness to systematic
movement error and systematic vision error. SRL and
MCL with noise favor robustness to movement errors
while MCL without noise favors robustness to vision

errors. MCL without noise performs better than SRL
for large systematic vision errors. SRL performs bet-
ter than MCL with noise in all cases with similar
response to vision errors and lower errors when pre-
sented with movement errors. SRL is much more ro-
bust to errors in movement than MCL without noise,
especially when the movement error is larger than a
few standard deviations.

4 Summary and Conclusions

Sensor Resetting Localization(SRL) provides an e�ec-
tive localization option for real time systems with lim-
ited computational resources. The technique is appli-
cable in Markovian domains where locale samples can
be drawn from the sensor readings, i.e. it must be pos-
sible to sample from P (ljs). SRL requires a constant
amount of processing power unlike Monte Carlo Local-
ization(MCL) with adaptive sample set sizes which at-
tempt to address some of the same issues as SRL. SRL
achieves better results than MCL using small sample
sets, which translates into smaller computational re-
source requirements. SRL is able to localize e�ectively
using very small sample sets and very little computa-
tional power. Part of the reason SRL is able to ac-
complish this is SRL's ability to globally localize using
fewer samples. SRL automatically resets itself before
errors can accumulate too much allowing it to grace-
fully recover from errors in modelling such as collisions
and teleportation. SRL is less sensitive than MCL to
systematic errors in modelling except for large errors
in vision when using MCL without random noise sam-
ples added. SRL is particularly robust with respect to
systematic errors in movement. In addition to these
bene�ts, the algorithm almost never returns mislead-
ing information. The algorithm correctly reports the
reliability of its best guess of the location of the robot.
Sensor Resetting Localization is an accurate, easy to
use technique that is able to perform robust localiza-
tion with very small computational resources.

Acknowledgments

We would like to thank Sony for providing us with
wonderful robots and walking movements to work
with. We would like to thank Jim Bruce for devel-
oping the vision system and Elly Winner for devel-
oping the behavior system for our robots. Thanks to
Tucker Balch for suggesting ways to display the data
collected.

This research is sponsored in part by the Defense
Advanced Research Projects Agency (DARPA) and
the Air Force Research Laboratory (AFRL) under

agreement numbers F30602-97-2-0250 and F30602-98-
2-0135. The views and conclusions contained in this
document are those of the authors and should not be
interpreted as necessarily representing o�cial policies
or endorsements, either expressed or implied, of the
Air Force or the United States Government.

References

[1] W. Burgard, D. Fox, D, Hennig, and T. Schmidt,
\Estimating the absolute position of a mobile
robot using position probability grids," Proceed-
ings of the Thirteenth National Conference on Ar-
ti�cial Intelligence (AAAI-96), Vol. 2, pp. 896-901,
1996.

[2] F Dellaert, D. Fox, W. Burgard, and S.
Thrun, \Monte Carlo Localization for mobile
robots," Proceedings of International Conference
on Robotics and Automation 99, 1999.

[3] D. Fox, W. Burgard, and S. Thrun, \Active
Markov localization for mobile robots," Robotic
and Autonomous Systems,, Vol. 25, pp. 193-207,
1998.

[4] D. Fox, W. Burgard, F. Dellaert, and S. Thrun,
\Monte Carlo Localization: E�cient Position Es-
timation for Mobile Robots," Proceedings of the
Sixteenth National Conference on Arti�cial Intel-
ligence (AAAI-99), 1999.

[5] M. Fujita, M. Veloso, W. Uther, M. Asada, H. Ki-
tano, V. Hugel, P. Bonnin, J.-C. Bouramoue, and
P. Blazevic, \Vision, strategy, and localization us-
ing the Sony legged robots at RoboCup-98," AI
Magazine, 1999, to appear.

[6] J.-S. Gutmann, W. Burgard, D. Fox, and K.
Konolige, \An experimental comparison of local-
ization methods," Proc. of the IEEE/RSJ Inter-
national Conference on Intelligent Robots and Sys-
tems (IROS-98), 1998.

[7] R. Simmons and S. Koenig, \Probabilistic robot
navigation in partially observable environments,"
Proceedings of International Conference on Ma-
chine Learning (ICML-95), 1995.

[8] M. Veloso and W. Uther, \The CMTrio-98 Sony
legged robot team," In M. Asada and H. Kitano,
eds, RoboCup-98: Robot Soccer World Cup II,
Springer, 1999.

