
Local Application of Optic Flow
to Analyse Rigid versus Non-Rigid Motion

CMU-RI-TR-99-13

Alan J. Lipton
The Robotics Institute,

Carnegie Mellon University,
5000 Forbes Ave,

Pittsburgh, PA, 15213
email: ajl@cs.cmu.edu,

URL: http://www.cs.cmu.edu/˜ vsam

Abstract

Optic flow has been a research topic of interest for many years. It has, until recently, been largely inapplicable to real-
time video applications due to its computationally expensive nature. This paper presents a new, reliable flow technique
called dynamic region matching, based on the work of Anandan[1], Lucas and Kanade[10] and Okutomi and Kanade[11],
which can be combined with a motion detection algorithm (from stationary or stabilised camera image streams) to allow
flow-based analyses of moving entities in real-time. If flow vectors need only be calculated for “moving” pixels, then the
computation time is greatly reduced, making it applicable to real-time implementation on modest computational platforms
(such as standard Pentium II based PCs).

Applying this flow technique to moving entities provides some straightforward primitives for analysing the motion of those
objects. Specifically, in this paper, methods are presented for: analysing rigidity and cyclic motion using residual flow; and
determining self-occlusion and disambiguating multiple, mutually occluding entities using pixel contention.

Keywords: optic flow, motion analysis, tracking

1 Introduction

Analysing the motion of entities in a video stream is an important, current research challenge. Groups such as the enter-
tainment industry use motion captured from video imagery to generate computer graphic characters and avatars for movies,
computer games, and web-based applications. These motion capture techniques usually require a large investment of oper-
ator time and effort. As applications become more interactive, it will be increasingly important to automate the analysis of
moving objects in real time. In applications such as automated video surveillance[7], it is essential to be able to understand
the different motions of objects and infer their behaviours - such as the difference between two joggers meeting in a park,
and a mugging.

Presented in this paper is a new strategy for divining some low-level motion parameters in real-time from entities in
video streams. A new optic flow technique called dynamic region matching is applied locally to blobs extracted using an
adaptive background subtraction motion detection algorithm[4]. Computing flow only for “moving” pixels allows real-time
implementation on even modest computational platforms (such as Pentium II PCs). The resulting local flow fields can be
used to analyse the motions of those blobs. Specifically, this technique is used to determine rigidity of motion, determine
self-occlusion, and disambiguate mutually occluding moving objects.

1.1 Optic Flow

Optic flow techniques are traditionally used to determine camera motion or reconstruct 3D scene structure. In these cases,
only the gross flow of large scene components is required and real-time performance is not necessary. Consequently, most
flow techniques provide sparse results over an entire image or are extremely computationally expensive. Furthermore, most
algorithms fail in largely homogeneous regions (ie. regions lacking texture). Although Anandan[1] provides a measure for
determining just how bad a flow vector is, most algorithms make no effort to improve flow vectors in homogeneous regions.

Barron, Fleet, and Beauchemin[2] divide flow techniques into four categories: differential methods; region-based match-
ing; energy-based; and phase-based. Of these, the most amenable to real-time implementation are the differential methods
and the region-based matching methods. The differential methods such as Lucas and Kanade[10] effectively track inten-
sity gradients in the scene. The advantage of this is that reliable flow vectors can be determined based on the information
(measured by intensity gradient) content of a scene. However, one of the assumptions behind this method is that there is no
deformation in the objects in the scene. Clearly an unreasonable assumption when determining the motion of a entity like a
human being. Region-based matching techniques such as Anandan[1] track small regions in the scene from frame to frame.
These methods are more robust to deformable objects, but are susceptible to large errors where there is little texture in the
scene.

1.2 Motion Analysis

The ultimate goal of motion analysis is to describe activities occurring in video streams. Primitive analyses have concen-
trated on simply determining the rigidity of moving objects as a precursor to more complex recognition schemes[13]. Others

go further and attempt to fit models (2D or 3D) to objects[5, 8] in order to analyse their motions. More complex schemes
attempt to interpret and characterise particular motions[4, 3] such as walking, running, sitting, doing push-ups, etc.

With reliable flow vectors for every pixel in a blob it becomes possible to track individual pixels from frame to frame.
This capability can be employed to cluster pixels into “body parts” for model-based motion analyses (such as pfinder[14]
and W 4[5]). It also means that an object’s rigidity can be determined by calculating residual flow – that is the motion of
“body parts” relative to the blob’s gross motion. It is clear that a human or animal will have limbs moving relative to each
other and to the gross body motion whereas a vehicle will not. By clustering residual flow vectors, it is even possible to
extract these “body parts”. Finally, a property called pixel contention is introduced in this paper to analyse occlusion. When
flow is computed for an object that is occluded either through self-occlusion (such as an arm swinging in front of the body)
or by another body (such as a person walking behind something else), some of the pixels will “disappear” from one frame
to the next causing competition between pixels or invalid flow vectors. This pixel contention can be measured and used to
determine when such occlusions are occurring.

Section 2 of this paper describes blob detection and tracking. Section 3 describes the new dynamic region matching
algorithm for computing a dense flow field within the pixels of a moving entity. Section 4 describes how residual flow can be
used to determine the rigidity of a moving object. Section 5 describes the pixel contention measure of occlusion and explains
how it can be applied to determine self-occlusion within an object or mutual occlusion between two objects.

2 Detection and Tracking of Moving Blobs

Figure 1. Moving blobs are extracted from a video image.

Detection of blobs in a video stream is performed by the method described in [4]. This is basically a process of background
subtraction using a dynamically updating background model.

Firstly, each frame is smoothed with a 3 � 3 Gaussian filter to remove video noise. The background model Bn(x) is
initialised by setting B0 = I0. After this, for each frame, a binary motion mask image Mn(x) is generated containing all
moving pixels

Mn(x) =

�
1; jIn(x)� Bn�1(x)j > T

0; jIn(x)� Bn�1(x)j � T
(1)

Where T is an appropriate threshold. After this, non-moving pixels are updated using an IIR filter to reflect changes in the
scene (such as illumination)

Bn(x) =

�
Bn�1(x); Mn(x) = 1
�In(x) + (1 � �)Bn�1(x); Mn(x) = 0

(2)

where � is the filter’s time constant parameter. “Moving” pixels are aggregated using a connected component approach so
that individual blobs can be extracted. An example of these extracted blobs is shown in figure 1.

Tracking a blob from frame to frame is done by the template matching method described in [9]. The important feature
of this tracker is that, unlike traditional template tracking which has a tendency to “drift” when the background becomes
highly textured, this method only matches pixels which have been identified as “moving” by the motion detection stage - thus
making it more robust.

Synthetic templates

Figure 2. Two examples of tracking through occlusion. The blobs are tracked using synthetic templates derived from
previous views

2.1 Tracking Through Occlusion

When two objects being tracked are predicted to occlude

(xB0 + ~vB0�t) � (xB1 + ~vB1�t) (3)

(where xB0, ~vB0, xB1 and ~vB1 are the positions and velocities of the two objects respectively, and �t is the time between
consecutive frames) it becomes hard to track them using the template matching algorithm of [9], not because the template
matching fails, but because it becomes difficult to update a template as it will be corrupted by pixels from the other object.
In fact, when two blobs are close to occluding, the motion detection algorithm will detect them as only a single blob!

The problem can be addressed by storing the previous views of each object over time. When an occlusion is about to
occur, synthetic templates can be generated to use in the template matching process. If the object is determined to be rigid
by the method of section 4, then the latest view is used as a synthetic template while the occlusion is occurring. On the
other hand, if the object is determined to be non-rigid, then its periodicity is determined by a process akin to Selinger and
Wixson[13]. The latest view is matched with the previous views to find the best synthetic template. Then, as the occlusion
continues, new synthetic templates are generated by stepping through the list of previous views.

An example of this procedure is shown in figure 3. While the occlusion lasts, blobs from previous views of the object are
substituted for the potentially corrupted data. These synthetic blobs are used for matching until the occlusion is over.

Figure 2 shows two examples of tracking through occlusion. In both cases synthetic templates are derived from previous
views of both blobs and thus they can be disambiguated even when they are in the process of occluding. Pixels tinted red
belong to the occluding object, and pixels tinted blue belong to the occluded object.

3 Optic Flow by Dynamic Region Matching

To analyse the motion of a character in a video stream it is necessary to acquire a dense, accurate flow field over that
object, perhaps even a flow vector at every pixel. To obtain a legitimate flow vector for every pixel in an area, region-based
matching is the obvious choice. But to make sure the flow vectors are realistic, it is necessary to have enough texture in the
region to ensure a good match. This can be achieved by using a dynamic region size similar to the approach of Okutomi and
Kanade[12]. The idea is to use edge gradients as a measure of information and, at every pixel position, grow the support
region until there is enough edge gradient information to justify matching. Furthermore, flow needs to be computed only
for pixels contained within the moving object. Consequently, this particular implementation is only valid for video streams
derived from stationary cameras, or streams which have been stabilised.

3.1 The Region Matching Algorithm

Consider a stabilised video stream or a stationary video camera viewing a scene. The returned image stream is denoted
In(x) where I is a pixel intensity value, n is the frame number and x represents a pixel position in the image (i; j). If

Current view

Figure 3. Template matching the current view of a blob with previous views allows a synthetic template to be used
when it is occluded.

images in the stream are �t (time) apart, then a particular pixel in the image will move by a distance ~v(x)�t where ~v(x) =
(vi(x); vj(x)) is the 2D image velocity of that pixel. This can be found by matching a region in In to it’s equivalent region
in In+1 by minimising a distance function D(x; d) where d represents a linear translation (di; dj).

Firstly, a regionW (x)In(x) is defined by multiplying In with a 2D windowing function W (x) of size (Wi;Wj) centered
on pixel x. This region is then convolved with the next image in the stream In+1 to produce a correlation surface D(x; d).
The range of values over which the convolution is performed d 2 [d0; d1] must be specified.

D(x; d) =

i=WiX
i=1

j=WjX
j=1

jW (i; j)In(i; j)� In+1((i; j) + d)j

jjW (x)jj
(4)

where jjW (x)jj is a normalisation constant given by

jjW (x)jj=
i=WiX
i=1

j=WjX
j=1

W (i; j) (5)

Figure 4 shows a typical correlation surface for a region match. The minimum of D(x; d) is then computed to sub-pixel
accuracy by approximating the surface with a quadratic function D̂(x; d).

The true pixel displacement dmin is taken as the minimum of the approximate surface

dmin = min
d
D̂(x; d) (= ~v(x)�t) (6)

3.2 Computing Local Flow

Having established a track between a blob
n in In and a blob
n+1 in In+1 and the gross velocity ~vB (from the tracker)
between them, it is possible to determine the flow of every “moving” pixel. The idea is to take a small region around each

0

2

4

6

8

10

12

0
2

4
6

8
10

12

−80

−60

−40

−20

0

Negative Correlation Surface [−D(x;d)]

N
or

m
al

is
ed

 C
or

re
la

tio
n

Figure 4. A typical correlation surface (inverted for easier viewing)

pixel in
n and match it with its equivalent region in
n+1. The method used is similar to Anandan’s[1] method with several
distinctions. Anandan uses a pyramid to perform matching. In this implementation, a pyramid is unnecessary as the number
of pixels for which flow is computed is not large. In Anandan’s work, the Laplacian of the image is used. This provides a
confidence measure for each flow vector. If there is not enough information in a region, the confidence on the flow vector is
low. In this implementation, the image itself is used and confidence is measured using the content of the region. Anandan
uses fixed 3 � 3 regions for matching. Here, as in Okutomi and Kanade[11], the regions are dynamic and are grown until
there is enough information to ensure a reliable match.

The flow computation per pixel is a two-pass process. Firstly, an appropriate support region is found to ensure that enough
information is present to obtain a valid flow vector. And then a region matching is performed to compute the flow vector.

3.2.1 Computing the Support Region

Information"Vertical"

Adequate

9x5
AdequateAdequate

"Horizontal"

Inadequate Inadequate
3x3

Blob

5x5

Information

Inadequate

Figure 5. Growing the region around a pixel to ensure adequate information content in both vertical and horizontal
directions.

To ensure a good match between regions, it is essential that enough information is available in both horizontal and vertical
directions around the central pixel x. So a support region around x is iteratively grown and the enclosed information content
is measured until it reaches a predetermined threshold TI . To measure horizontal and vertical information, a Sobel filter is
used. Prior to the matching process, two images SH (x) and SV (x) are computed from In by filtering using the standard

Sobel operators.

SH (x) =

2
4 1 0 �1

2 0 �2
1 0 �1

3
5 � In(x)

SV (x) =

2
4 1 2 1

0 0 0
�1 �2 �1

3
5 � In(x)

(7)

Starting with a 3 � 3 support window W (x) centered on x two information measures are calculated: vertical image
informationEV ; and horizontal image informationEH

EH =
X
i

X
j

W (i; j)SH (i; j) (8)

EV =
X
i

X
j

W (i; j)SV (i; j) (9)

The algorithm for determining the ultimate window size is as follows

Do
Calculate EH by equation 8
Calculate EV by equation 9
If EH < TI

Increase Wi by 2 pixels
If EV < TI

Increase Wj by 2 pixels
Until both EH and EV are > TI

Figure 5 shows a graphical representation of how the algorithm is applied to select an appropriate support region around a
pixel.

3.2.2 Computing the Flow Vector

Figure 6. The flow fields and confidence values for two different blobs. Notice that confidence is higher on the edges
of the figures where information content is greater.

Motion of individual pixels can be modeled as as the gross motion of the blob ~vB plus some residual pixel motion ~vR(x).
Thus

~v(x) = ~vB + ~vR(x) (10)

If it is assumed that the residual motion of pixels within
n is not very great, then the correlation surface D(x; d) to compute
the flow vector for a given pixel x need only be evaluated over a small range around d = ~vB�t.

Using the 2D windowing function W (x) as determined by the algorithm of section 3.2.1, the flow ~v(x) for pixel x can
be computed using the method of section 3.1. One limitation of this method is that background texture can corrupt the
flow vector calculation. To ameliorate this, the elements of W (x) can be weighted to give preference to “moving” pixels
(expressed as a binary image Mn), for example

W 0(x) = W (x)(1 +Mn(x)) (11)

Anandan[1] uses the curvature of the correlation surface around the minimum as a measure of confidence in the flow vector.
This is a reasonable choice if the information content of the region is unknown. Homogeneous regions will be characterised
by correlation surfaces with high radii of curvature (infinite in the ultimate case). However, in this implementation, the
informationcontent is known, so a simpler metric for confidence is used. Here, the value of the correlation surface’s minimum
Dmin(x; d) is taken as a confidence measure. Regions which match well will have low values of Dmin(x; d) whereas regions
which do not match well will have higher values. This property can be used in outlier rejection and to calculate pixel
contention as in section 5. Figure 6 shows the flow fields and confidence measures for two different blobs.

4 Rigidity Analysis by Residual Flow

Given the gross motion of the moving body ~vB as calculated in section 2, and the flow field ~v(x) for all of the pixels in
that body, it is possible to determine the velocity of the pixels relative to the body’s motion ~vR(x) by simply subtracting off
the gross motion

~vR(x) = ~v(x) � ~vB (12)

to find the residual flow.
It is expected that rigid objects would present little residual flow whereas a non-rigid body such as a human being would

present more independent motion. When the average absolute residual flow per pixel

vR =

PX

i=1 ~vR(x)

X
(13)

(where X is the number of pixels in the blob) is calculated, it not only provides a clue to the rigidity of the object’s motion,
but also its periodicity. Rigid objects such as vehicles display extremely low values of ~vR whereas moving objects such as
humans display significantly more residual flow that even displays a periodic component.

Figure 7(a) shows the residual flow from two objects. Clearly, there is a large amount of independent pixel motion in
the case of the human, and there is almost none in the case of the vehicle. A simple clustering based on histogramming the
residual flow vectors clearly shows groupings of these flow vectors and could facilitate the extraction of “body parts” such as
arms and legs. Figure 7(b) shows how residual flow can be used a measure of rigidity for humans and vehicles.

5 Occlusion Analysis by Pixel Contention

Many researchers have noted problems with tracking objects or their component parts through occlusions. One of the
big selling points of the Condensation algorithm of Isard and Blake[6] is that it successfully tracks objects’ shapes through
deformations and occlusions. The patterns of optic flow can also be used as a key to object occlusions, whether they be
caused by self-occlusion, or occlusion with other bodies. A pixel contention metric can be used to detect when occlusion is
occuring, and even extract the spatial ordering. The object in front will display less pixel contention than the object in the
rear.

When occlusions happen in the 3D world, they appear as 2D deformations. 2D deformation also occurs if the object
changes size or “looms”. In this paper, only occlusion is considered. When this occurs, the total number of pixels on the
object decreases and there is contention between pixels for good matches as shown in figure 8. In some cases, multiple pixels
in In match with single pixels in In+1, and in others, pixels in In do not have good matches in In+1. This pixel contention
propertyPc provides a good measure of occlusion. Pixel contention can be measured by counting the number of pixels in
n

(a)

60 80 100 120 140 160 180
0

1

2

3

4

5

6

7

8
Rigidity

Frame Number

A
ve

ra
ge

 R
es

id
ua

l F
lo

w

Human
Vehicle

(b)

Figure 7. (a) The residual flow computed for the two blobs of figure 6. Also, a primitive clustering is shown. Clearly,
arms and legs are apparent in the human clustering whereas only one significant cluster is visible for the vehicle. (b)
The rigidity measure vR calculated over time. Clearly the human has a higher average residual flow and is thus less
rigid. It also displays the periodic nature that would be expected for a human moving with a constant gait.

��
��
��

��
��
��

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��
��
��

��
��
��

Figure 8. When two objects occlude, pixels become contended (shown hashed). Measuring the number of such pixels
can be used to measure occlusion.

Figure 9. Pixel Contention to measure self-occlusion. Here, the value of Pc rises considerably as parts of the human,
such as arms and legs, start to occlude.

which either have flow vectors terminating at a common pixel of
n+1, or are poorly matched to pixels of
n+1. This value
can be normalised by dividing by the size X of
. A contended pixel xc exists if

9(x0; x1) :

�
x0 + ~v(x0)�t = xc
x1 + ~v(x1)�t = xc

(14)

or
minD(xc; d) > Tc (15)

where Tc is a threshold for determining a valid region match. And

Pc =
#fxcg

X
(16)

When the first condition occurs (equation 14) the flow vector is chosen which minimises the D(x; d)s. That is, the vector
x! xc is chosen such that

x = min
x

[D(x0; d); D(x1; d)] (17)

When the second condition occurs (equation 15) the flow vector for that pixel is simply ignored.

When applying pixel contention to a single target, it is observed that rigid bodies, such as vehicles, do not exhibit as
much as non-rigid bodies, such as humans. Also, it is observed that if Pc is measured over time, it peaks when significant
self-occlusions are occurring as shown in figure 9.

5.1 Occlusion by a Second Object

100 150 200 250 300 350
0

5

10

15

20

25
Pixel Contention for Human/Vehicle Occlusion

Frame Number

P
ix

el
 C

on
te

nt
io

n
(P

o)

Human
Vehicle

80 90 100 110 120 130 140 150 160
0

2

4

6

8

10

12
Pixel Contention for Human/Human Occlusion

Frame Number

P
ix

el
 C

on
te

nt
io

n
(P

o)

Foreground Human
Background Human

Figure 10. Pixel Contention for the two occlusion examples of figure 2. As the vehicle is occluded, the normalised
number of contended pixels increases well beyond the human. When the two humans are occluding, the occluded human
displays a greater number of contended pixels. Note that at the moment of maximum occlusion, the pixel contention of
the occluding human drops to a local minimum as it almost totally obscures the background human.

If two objects
 and ! are occluding, it is important to know their spatial ordering. As with self-occlusion, it is expected
that the occluded object will have a greater pixel contention than the foreground one. However, the absolute number of
contended pixels may not be a good measure if one object is very large compared to the other, so pixel contention should be
normalised with respect to the expected pixel contention for that object.

While the occlusion is occurring, the occluding pixel contention Pc is calculated for each of
 and ! and normalised with
respect to the average pixel contention for that blob measured prior to the occlusion. If Pc
 and Pc! are the expected pixel
contentions of
 and ! respectively, then a normalised occluding pixel contention Po can be determined for each

Po =
Pc

Po
(18)

The blob with the larger value of normalised occluding pixel contention is taken as the occluded blob and the lower value

of Po is taken as the occluder. Figure 10 shows the normalised pixel contention measures for the two examples of figure 2. It
is clear in both cases, that the background object displays a larger pixel contention than the foreground object as expected.

6 Discussion and Conclusions

yes

(Pc)?
Occlusion

synthetic target

no

Create

Template

VIDEO STREAM Moving target
detection

matching
Optic flow

computation

Figure 11. The entire tracking procedure.

Optic flow has been a research topic of interest for many years. It has, until recently, been largely inapplicable to real-time
video applications due to its computationally expensive nature. This paper has shown how a new, reliable flow technique
called dynamic region matching can be combined with a motion detection algorithm (from stationary or stabilised camera
streams) to allow flow-based analyses of moving entities in real-time. If flow vectors need only be calculated for “moving”
pixels, then the computation time is greatly reduced, making it applicable to real-time implementation on modest compu-
tational platforms (such as standard Pentium II based PCs). However, the issue of detecting moving entities from mobile
camera video streams remains a challenge. The procedure is outlined in figure 11

Using an Anandan[1] type of region matching algorithm with Okutomi and Kanade[11] dynamic support regions allows a
very accurate computation of visual flow from even very homogeneous regions on the moving object’s surface.

Once optic flow has been calculated, it can be used to provide some motion analysis primitives. The residual flow (see
section 4) can be used as a measure of the object’s rigidity. These flow vectors can even be used to grossly segment the object
for further region-based or model-based processing. Also, using the flow vectors to determine pixel contention (see section
5) provides a measure of an object’s self-occlusion, and even aids in tracking objects while they are mutually occluding each
other by providing a measure of spatial ordering.

The template matching process described requiresO(N2) operations per region, whereN is the number of moving pixels.
This part of the procedure is clearly the computational bottleneck. If a different tracking scheme was used, it could conceiv-
ably greatly reduce the method’s overall computational load. However, if the number of moving pixels in a rectangular region
is approximately half of the total number of pixels (which is reasonable) then using this approach reduces the computational
complexity by a factor of 4 over traditional template matching schemes. The complexity of the optical flow technique is
linear in the number of moving pixels so does not become excessively unwieldy for large objects.

The presented procedure was employed on 12 video sequences from thermal sensors and 15 video sequences from daylight
sensors. The sequences totalled 721 seconds and contained 47 independently moving objects. 7 false alarms were detected
in the daylight imagery. These consisted of 1 case in which a tree was blown by wind, and 6 cases in which reflections of
moving objects in windows cause false alarms. No false alarms were detected in the thermal imagery. Track continuity was
maintained in all but 19 image frames. In each of these cases, the tracker re-acquired the target on the subsequent frame.
The sequences contained 19 occlusions, all of which were correctly identified and tracking maintained through the occlusion.

Admittedly, these sequences were taken under controlled conditions — it is still required to attempt this method on a wider
variety of realistic surveillance imagery.

On an SGI O2 with a R10K processor, the entire process of detection, template matching, and flow computation ran
at �4Hz on 320x240 monochrome images containing no more than 2 targets of <400 moving pixels. It is expected that
optimising for MMX on faster commercial PC’s, a greater performance could be achieved.

References

[1] P. Anandan. A computational framework and an algorithm for the measurement of visual motion. International Journal of Computer
Vision, 2:283–310, 1989.

[2] J. Barron, D. Fleet, and S. Beauchemin. Performance of optical flow techniques. International Journal of Computer Vision, 12(1):42–
77, 1994.

[3] J. Davis and A. Bobick. The representation and recognition of human movement using temporal templates. In Proceedings of IEEE
CVPR 97, pages 928 – 934, 1997.

[4] H. Fujiyoshi and A. Lipton. Real-time human motion analysis by image skeletonization. In Proceedings of IEEE WACV98, pages
15–21, 1998.

[5] I. Haritaoglu, L. S. Davis, and D. Harwood. w4 who? when? where? what? a real time system for detecing and tracking people. In
FGR98 (submitted), 1998.

[6] M. Isard and A. Blake. Contour tracking by stochastic propagation of conditional density. In Proceedings of European Conference
on Computer Vision 96, pages 343–356, 1996.

[7] T. Kanade, R. Collins, A. Lipton, P. Burt, and L. Wixson. Advances in cooperative multisensor video surveillance. In Proceedings
of DARPA Image Understanding Workshop, volume 1, pages 3–24, November 1998.

[8] D. Koller, K. Daniilidis, and H. Nagel. Model-based object tracking in monocular image sequences of road traffic scenes. Interna-
tional Journal of Computer Vision, 10(3):257–281, 1993.

[9] A. Lipton, H. Fujiyoshi, and R. S. Patil. Moving target detection and classification from real-time video. In Proceedings of IEEE
WACV98, pages 8–14, 1998.

[10] B. Lucas and T. Kanade. An interative image registration technique with an application to stereo vision. In Proceedings of DARPA
Image Understanding Workshop, pages 121–130, 1981.

[11] M. Okutomi and T. Kanade. A multiple-baseline stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(4),
1993.

[12] M. Okutomi and T. Kanade. A locally adaptive window for signal matching. International Journalof Computer Vision, 7(2):143–162,
1994.

[13] A. Selinger and L. Wixson. Classifying moving objects as rigid or non-rigid without correspondences. In Proceedings of DARPA
Image Understanding Workshop, volume 1, pages 341–358, November 1998.

[14] C. Wren, A. Azarbayejani, T. Darrell, and A. Pentland. Pfinder: Real-time tracking of the human body. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 19(7):780–785, 1997.

