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Abstract. In this paper, the mathematical theory of wallpaper groups

is used to construct a computational tool for symmetry analysis of peri-
odic patterns. Starting with a novel peak detection algorithm based on

\regions of dominance", an input periodic pattern can be automatically

classi�ed into one of the 17 wallpaper groups. The orbits of stabilizer
subgroups within the group lead to a small set of candidate motifs that

exhibit local symmetry consistent with the global symmetry of the en-

tire pattern. We further consider a�ne distorted periodic patterns and
show that each such pattern can be classi�ed into a small set of symme-

try groups that describe the patterns' potential symmetries under a�ne

transformation.

1 Introduction

Symmetry is pervasive in both natural and man-made environments. Humans
have an innate ability to perceive symmetry, but it is not obvious how to auto-
mate this powerful insight. It is a continuous e�ort of the authors to �nd proper
computational tools for dealing with symmetry. Symmetries of periodic patterns
in a plane are of particular interest in computer vision. This is because the sym-
metry group of a pattern is independent of scale, absolute color, lighting, density
and orientation/position of the pattern. Periodic patterns can be found in regu-
lar textures, indoor and outdoor scenes (e.g. brick walls, tiled 
oors, wallpapers,
ceilings, clothes, windows on buildings, cars in a parking lot), or in intermediate
data representations (e.g. periodicity analysis of human and animal gaits in the
spatio-temporal domain).

A mature mathematical theory for periodic patterns has been known for over
a century [1,2]. For monochrome planar periodic patterns, there are seven frieze

groups for 2D patterns repeated along one dimension, and seventeen wallpaper

groups describing patterns extended by two linearly independent translational
generators. Despite an in�nite variety of instantiations, this �nite set of sym-
metry groups completely characterizes the possible structural symmetry of any
periodic pattern.

We have developed a computational model of periodic pattern perception
composed of: generating the underlying translational lattice from the image of
a periodic pattern, classifying the symmetry group of the periodic pattern, and
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identifying the preferred \motif" of the pattern. Our work, initially inspired by
[7], appears to be the �rst to use the theory of frieze and wallpaper groups
for automated analysis of periodic patterns, although there exist 
owcharts and
computer programs that allow humans to interactively generate and identify
periodic patterns for educational purposes [8,3]. Due to space limitations, this
paper concentrates only on wallpaper groups. Furthermore, we assume that the
translational lattice of the 2D periodic pattern has already been extracted. The
reader is referred to [5] to �nd our algorithm for performing robust lattice ex-
traction. Figure 1 shows one sample result produced by this algorithm.

rug (A) (B) (C) (D) (E)

Fig. 1. An oriental rug image and A) its autocorrelation surface, B) peaks found using

a global threshold, C) peaks extracted using the threshold-free method of Lin, et al. [4],
D) the highest 32 peaks from those returned by Lin, et al., E) the 32 most-dominant

peaks found using our approach described in [5].

2 Symmetry Group Classi�cation under Euclidean

Transformations

A 2D repeated or periodic pattern has the following property: there exists a �nite
region bounded by two linearly independent translations which, when acted upon
by the group generated by the translations, produces simultaneously a covering
(no gaps) and a packing (no overlaps) of the original image [7, 2]. The smallest
such bounded region is called a unit of the pattern or lattice unit, since the
translational orbit of any single point on the plane is a lattice. A symmetry of
a subset S of Euclidean space is an isometry that keeps S setwise invariant.
All symmetries of S form the symmetry group of S under composition. It
has been proven that there are seventeen wallpaper groups (Figure 2) describing
patterns extended by two linearly independent translational generators [7, 2].
Mathematically,wallpaper groups are de�ned only for in�nite patterns that cover
the whole plane. In practice, we analyze a periodic pattern P of a �nite area,
and use the phrase \symmetry group G of P" to mean that G is the symmetry
group of the in�nite periodic pattern that has P as a �nite patch.

Figure 2 depicts unit lattices for the 17 distinct wallpaper groups (from [7]).
Each unit is characterized in terms of its translation generators, rotation, re
ec-
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Fig. 2. The generating regions for the 17 Wallpaper groups (from [7])

tion and glide-re
ection symmetries. The two linearly independent translations
of minimum length are the two basic generators of each group, and they con-
struct a lattice for the group. Even though the variety of pattern instantiations
is endless, the underlying relationship between translation, rotation, re
ection
and glide-re
ection in any 2D periodic pattern must conform to one of these
seventeen cases.

Since a symmetry of a 2D periodic pattern has to map the lattice associ-
ated with the pattern onto itself, i.e., map centers of rotation to new centers
of rotation having the same order, the only possible rotation symmetries are
2; 3; 4; 6-fold rotations. This restriction is often referred to as the crystallographic
restriction. Furthermore, re
ection axes can only be oriented parallel, diago-
nal, or perpendicular to the lattice translation vectors. Under these constraints,
there are only �ve possible lattice unit shapes: (1) parallelogram (two groups:
p1; p2), (2) rectangular (�ve groups: pm; pg; pmm; pmg; pgg), (3) rhombic (two
groups:cm; cmm), (4) square (three groups:p4; p4m; p4g) and (5) hexagonal (�ve
groups:p3; p3ml; p3lm; p6; p6m). All lattice units are parallelograms. Rectangu-
lar units have angles of 90o. Rhombic units have equal-length edges. Square units
are a special case of both (2) and (3), and hexagonal units are a special case of
(3).

We have constructed an algorithm that can automatically classify which sym-
metry group a 2D periodic pattern under Euclidean transformations belongs to.
The practical value of understanding the 17 wallpaper groups is that correct pat-
tern classi�cation can be performed after verifying the existence of only a small
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set of rotation and/or re
ection symmetries. Table 1 lists the eight symmetries
checked in the classi�cation algorithm. It is clear that each group corresponds
to a unique sequence of values listed in Table 1, and all are mutually exclusive
from each other. The determination of a speci�c rotation or re
ection or glide-
re
ection symmetry is performed by applying the symmetry to be tested to the
entire pattern, then checking the similarity between the original and transformed
images.

Table 1. Wallpaper group classi�cation: numbers 2,3,4 or 6 denote n-fold rotational

symmetry, Tx (or Dx) denotes re
ectional symmetry about one of the translation (or
diagonal) vectors of the unit lattice. \Y" means that the symmetry exists for that

particular symmetry group; empty space means no. Y(g) denotes a glide re
ection.

p1 p2 pm pg cm pmm pmg pgg cmm p4 p4m p4g p3 p3m1 p31m p6 p6m

2 Y Y Y Y Y Y Y Y Y Y

3 Y Y Y Y Y

4 Y Y Y

6 Y Y

T1 Y Y(g) Y Y(g) Y(g) Y Y(g) Y Y

T2 Y Y Y(g) Y Y(g) Y Y

D1 Y Y Y Y Y Y Y

D2 Y Y Y Y

3 Extracting Representative Motifs

Although other work has addressed detection of the translational lattice of a
periodic pattern, ours is the �rst to seek a principled method for determining a
representative motif. The issue here is that consideration of translational sym-
metry alone �xes the size, shape and orientation of the lattice, but leaves open
the question of where the lattice is located in the image. Any o�set of the lattice
carves the pattern into a set of identical tiles, but these tiles typically provide
no computational insight, and appear nonintuitive to a human observer (Fig-
ure 3). Choosing a good motif should help one see, from a single tile, what the
whole pattern looks like. From work in perceptual grouping, it is known that
the human perceptual system often has a preference for symmetric �gures. Our
contribution in this section is to show how a small set of tiles can be chosen, in
a principled way, such that the symmetry of the pattern fragments on them is
maximized.

If we entertain the idea that the most representative motif is the one that
is most symmetrical, one plausible strategy for generating motifs is to align the
motif center with the center of the highest-order of point symmetry in the pat-
tern. This is the point �xed by the largest stabilizer subgroup of the symmetry
group of the pattern. If we choose the centers of the highest order of rotational
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(C)
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Orbits of 2-fold rotation centersCMM

Fig. 3. (A) and (B) show an automatically extracted lattice and the tile that it implies.
The tile is not a good representation of the pattern motif. (C) and (D) show the lattice

position in terms of one of the three most-symmetric motifs found for the oriental rug

image. The latter was generated automatically by an algorithm that analyzes pattern
symmetry based on knowledge of the 17 wallpaper groups.

symmetries, candidate motifs can then be determined systematically by enu-
merating each distinct center point of the highest-order rotation. Two rotation
centers are distinct if they lie in di�erent orbits of the symmetry group, that is,
if one cannot be mapped into the other by applying any translation, rotation,
re
ection or glide-re
ection symmetries in its own symmetry group.

Figure 3 shows an example of an automatically extracted lattice, and an
arbitrary tile that it carves out, followed by three symmetrical tiles centered on
2-fold rotation centers More examples and explanations can be found in [5].

4 Symmetry Group Classi�cation Under A�ne

Transformations

When a 2D pattern undergoes a rigid transformation, its symmetry group re-
mains. Strictly speaking, its symmetry group is conjugated by the transforma-
tion that acts on the pattern. Since there exists a bijection between the original
symmetry group and the conjugated symmetry group, the two groups are con-
sidered equivalent (isomorphic). If one imagines a coordinate system �xed on
the pattern, the translation, rotation, re
ection and glide-re
ection symmetries
are unchanged under this coordinate system when the pattern is undergoing
rigid transformations. This situation will no longer be true when the pattern un-
dergoes a non-rigid transformation. However, certain symmetries of a periodic
pattern may survive.
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4.1 Wallpaper Group Transition Matrix

If g is a symmetry of a 2D periodic pattern P , by the de�nition of symmetry
g(P ) = P . Let T (g(P )) = T (P ), here T is a transformation. Then T (gT�1T (P )) =
T (P )) TgT�1(T (P )) = T (P ). A useful question to ask is: Does TgT�1 remain
a symmetry of T (P )? The answers, of course, depend on what g and T are.
The answer is \yes" if (1) T is a similarity transformation (a proof that under
similarity transformation, a periodic pattern remains the same in terms of its
symmetry group) (2) T is an a�ne transformation and g is either a transla-
tion (a proof that a periodic pattern remains a periodic pattern under a�ne
transformation) or g is a 2-fold rotation; (3) g is a re
ection (glide-re
ection)
and T is a non-uniform scaling parallel or perpendicular to g's re
ection axis.
Relevant proofs can be found in [6]. Based on these proven results, we can con-
struct a 17x17 wallpaper group transition matrix (Table 2) that dictates
how the symmetry group of a periodic pattern can be transformed into other
groups under non-rigid transformations. It turns out that only certain groups
can be associated with a pattern under a�ne distortions. This matrix leads to a
new way of evaluating a periodic pattern a�ne deformation: we should not only
consider the symmetry group of the pattern as given, but also all the possible
symmetry groups that can be associated with that pattern when it transformed
a�nely. Table 2 tells us that these transitions form well-de�ned small, �nite or-
bits. For example, there are two large orbits of the 17 groups: the p1-orbit and
the p2-orbit. This comes from the fact that 2-fold rotation always survives any
nonsingular a�ne distortion. Figure 4 shows one example of symmetry group
transition as a pattern undergoes a series of a�ne deformations.

4.2 Symmetry Group Classi�cation Algorithm

When the 2D pattern undergoes an a�ne transformation that preserves the
shortest vector property, the same Euclidean algorithm (Table 1) can be applied
for determining the lattice unit and classifying its symmetry group 1. FromTable
2, only those entries with P need to be further checked for possible \higher
symmetries".

The implementation of this idea is carried out as follows: Once the lattice unit
is decided, the input unit lattice is simultaneously deformed into a hexagonal
lattice and a square lattice, with the pattern deformed accordingly. Hexagonal
and square lattices are the most symmetrical lattices, therefore these deforma-
tions allow the most symmetrical potential patterns to form. Meanwhile, the
original symmetries of the pattern are guaranteed to be preserved under at least
one of these two deformations, because hexagonal and square lattices are special
cases of the more general lattices (rhombus, rectangular and parallelogram, see
Section 2). The group classi�cation procedure can then proceed in the same way

1 When the a�ne distortion is so large that the nearest neighboring lattice points no

longer form the boundary of a proper generating region, additional information is

needed to locate the lattice unit. These include �nding an axis of skewed symmetry,
which is beyond scope of this paper.
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Table 2.Wallpaper Group Transition Matrix
Empty entries mean that there exist no transformations between the two groups (to

the left and to the top). S: similarity transformation, N: non-uniform scaling ? or k to
all re
ection axes in the group to the left, A: general a�ne transformation other than

S or N, and P: possible a�ne transformation (pattern dependent).

p1 p2 pm pg cm pmm pmg pgg cmm p4 p4m p4g p3 p3m1 p31m p6 p6m

p1 A P P P P P P

p2 A P P P P P P P P P

pm A N

pg A N

cm A N P P

pmm A N P

pmg A N

pgg A N P

cmm A N P P P

p4 A S

p4m A N N S

p4g A N N S

p3 A S

p3ml A N S

p3lm A N S

p6 A S

p6m A N S

as stated in Section 2. A diagram version of the algorithm is shown in Figure 5.

4.3 Symmetry Group Classi�cation Experimental Results

We have successfully processed all seventeen wallpaper group patterns2. Here we
provide one example to illustrate how our algorithm works.

The �rst step is to determine the underlying translational lattice structure of
the original image, in the form of two independent generating vectors t1 and t2.
Since we are assuming that the wallpaper pattern has been previously isolated,
the lattice points are determined by �nding signi�cant peaks in the pattern's
autocorrelation surface (Figure 6a-c). The lattice of dots is decomposed into two
generating vectors by �nding the two shortest di�erence vectors t1 and t2 such
that the angle between them is between 60 and 90 degrees. The second step
involves transforming the lattice to a square grid, aligned with the horizontal
and vertical axes (Figure 6d-f). This is performed by applying an a�ne transfor-
mation to the image and its autocorrelation surface. The transformation used is
the unique a�ne transform leaving the origin (0,0) �xed and taking t1 to (L; 0)

2 For a more complete set of results on all 17 wallpaper groups see [6].
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Fig. 4. The original periodic pattern has symmetry group cmm (middle). Its symmetry

group migrates to di�erent groups within its orbit in the wallpaper group transition

matrix (Table 2) while the pattern is being a�nely transformed.

and t2 to (0; L), where L is the larger of the two generating vectors lengths jjt1jj
and jjt2jj.

After transforming to a square lattice, a square generating region (with di-
mensions L � L) is cropped from the transformed image. This is used as a
template, the rotated and re
ected versions of which are correlated with the
transformed image to determine what, if any, type of rotation and re
ection
symmetry it has. In the location determined by the highest correlation peak, a
match score between the rotated/re
ected template and the image is computed
as the mean of the absolute di�erence between corresponding intensity values.
The lower the value of this match score, the more likely it is that the image
has that particular rotational/re
ectional symmetry. This yields a set of \typi-
cal" match scores for that pattern { the mean and standard deviation of these
scores are used as an adaptive threshold tailored for this pattern. Match scores
associated with rotated/re
ected templates are compared to this threshold to
determine whether that particular symmetry holds.

An example is shown in Figure 6. The processed values for both square and
hexagon lattices are shown below:

rot180 rot120 rot90 rot60 T1 re
 T2 re
 D1 re
 D2 re


square 0.040 0.279 0.296 0.269 0.272 0.275 0.269 0.268
hexag 0.040 0.038 0.310 0.043 0.269 0.271 0.271 0.271

We �nd that the pattern only has two-fold rotation symmetry when represented
using a square lattice grid, which signi�es group p2 (Table 1). To transform
the image to a hexagonal lattice structure, the a�ne transformation is used that



9

Fig. 5. An algorithm for symmetry group classi�cation of 2D periodic pattern under

a�ne transformation: Y(glide) means the re
ection symmetry must be a non-trivial

glide re
ection. Y(n) / N(n) means the test result is positive/negative and n is the
possible number of symmetry groups need to be further distinguished.

leaves the origin (0,0) �xed while mapping t1 to (L; 0) and t2 to (L=2; L�(
p
3=2)),

where L is a length chosen as before. The row labeled \hexag" in the table shows
rotation and re
ection results for the hexagonally transformed pattern. We see
that now, in addition to two-fold symmetry, the pattern also has 60 and 120
degree rotational symmetry. The pattern is uniquely classi�ed as being from
the p6 wallpaper symmetry group (Table 1). One can also verify this transition
between p6 and p2 in the wallpaper group transition matrix (Table 2).

(a) (b) (c) (d) (e) (f) (g) (h) (i)

Fig. 6. (a) original image. (b) autocorrelation of image. (c) detected lattice points.

(d) transformed image. (e) transformed autocorrelation. (f) transformed lattice points,

now a square grid. (g) hexagonal transformed image. (h) transformed autocorrelation.
(i) transformed lattice points, now a hexagonal grid.
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5 Conclusion

We propose a computational model for periodic pattern perception based on
the mathematical theory of crystallographic groups, in particular, the wallpaper
groups. This mature mathematical theory provides principled guidelines for an-
alyzing and classifying periodic patterns, and for extracting a patterns' visually
meaningful building blocks, namely motifs. This computational model has been
implemented and tested on both synthetic and real-world images of periodic
patterns. We hypothesize that symmetric tiles form good candidates for human
and machine periodic pattern perception.

More importantly, an understanding of the potential symmetry group tran-
sitions of a periodic pattern undergoing a�ne transformation opens a door for
us to apply this method to new problems, such as texture perception and re-
placement, localization, robot navigation, and human perceptual organization,
among others.
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