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Abstract

This paper characterizes polygons that are small-time lo-
cally controllableby stable pushing as a function of the poly-
gon shape, the location of the center of friction, and the fric-
tion coefficient at the pushing contact. Such polygons can be
pushed to follow any path arbitrarily closely, a useful prop-
erty for planar manipulation. Because the pushes are stable,
pushing plans can be executed without feedback.

1 Introduction and Motivation

Pushing is a useful robot primitive for manipulating large
and heavy parts, parts with uncertain location, or parts that
are otherwise difficult to grasp and carry. One application
of pushing is parts feeding (Mani and Wilson [7]; Peshkin
and Sanderson [11]; Goldberg [4]; Akella et al. [1]). Pushing
also allows a mobile robot to easily manipulate large objects
(Donald et al. [2]).

We are interested in characterizing the fundamental capa-
bilities of pushing as a manipulation primitive. Toward that
end we have studied the controllability of pushing: is it pos-
sible to push the object to the goal location? We are partic-
ularly interested in small-time local controllability (STLC),
which implies that the object can be pushed to follow any
planar path arbitrarily closely. If we have this property, we
can maneuver the part in tight places.

We have previously shown that any object, other than a
frictionless disk centered at its center of friction, is STLC by
pushing with point contact (Lynch and Mason [6]). This im-
plies that a two-degree-of-freedom robot (a point translating
in the plane) can maneuver an object arbitrarilyclosely along
any path in its three-dimensional configuration spaceSE(2).
(In one sense, pushing is a more complete primitive for pla-
nar manipulation than pick and place, as no frictionless disk
can be rotated by grasping and turning. Pushing can rotate
any frictionless disk not centered at its center of friction.)

Pushingwith point contact results in unpredictable motion
of the object, making planning difficult. For this reason, we
have also studied stable pushing with line contact. A stable
push is defined as a pusher contact and motion that keeps the
object fixed to the pusher as it moves. Stable pushes make it
possible to plan pushing paths (Figure 1) which can be exe-
cuted without feedback. A pushing planner and experiments
are described in (Lynch and Mason [6]).

By switching the line contacts, it is often possible to
achieve STLC by stable pushing. We would like to charac-
terize the set of polygons that are STLC by stable pushing.
In this paper we give conditions for a polygon to be STLC in

Figure 1: Maneuvering a pentagon by stable pushing with line
contact. This pentagon is STLC using just the two pushing edges
shown.

terms of its shape, the location of its center of friction, and
the friction coefficient at the pushing contact.

By considering geometry (the shape of the polygon) and
the frictional mechanics of pushing, we can demonstrate this
fundamental “maneuverability” property for classes of parts
by stable pushing. One aim of the science of robotic ma-
nipulation is to elucidate such characterizations of manipu-
lation primitives. Other related results in manipulation in-
clude the demonstration of the controllabilityof a ball rolling
on a plane or another ball (Li and Canny [5]); bounds on the
number of fingers necessary for a grasp (Mishra et al. [9];
Markenscoff et al. [8]; Rimon and Burdick [12]); the classi-
fication of orientable parts by sensorless parallel-jaw grasp-
ing sequences (Goldberg [4]); and the proof that a single joint
operating above a fixed-speed conveyor is sufficient to posi-
tion and orient polygonal parts by pushing (Akella et al. [1]).

In the next section we provide definitions and a basic re-
sult used throughout the paper. Section 3 gives an algorithm
for finding the minimum frictioncoefficient that yields STLC
for a given part. Section 4 presents results on the minimum
friction needed for STLC for classes of polygons. Proofs of
these results are given in Section 5.

2 Definitions

The flat robot pusher is called the pusher and the pushed ob-
ject is called the slider. We assume that the slider’s motion
is sufficiently slow that dynamic forces are negligible com-
pared to sliding friction. This is the quasistatic assumption.
Pushing forces map to slider velocities, not accelerations.
The state of the slider is simply its configuration q.

The slider is STLC if, for any configuration q of the slider



Figure 2: Friction forces through a contact edge and the repre-
sentation as a convex cone in force-moment space (Erdmann [3]).
Boundary forces (through an edge endpoint or at a friction bound-
ary) are the outer “shell” and interior forces are all forces inside the
shell. Forces in the m= 0 plane are pure forces.

and any neighborhood U of q, the set of configurations the
slider can reach without leaving U is a neighborhood of q.
By patching together these neighborhoods, the slider can fol-
low any path arbitrarily closely. A sufficient condition for
STLC of a system at a state q is that the set of feasible
motion directions (tangent vectors) positively spans the sys-
tem’s tangent space at q (Sussmann [13]). For the slider, the
tangent vectors are the stable pushing directions and the tan-
gent space is the space of all slider velocities.

We study stable pushing with line contact. The slider is
a convex polygon and the pusher is a flat edge aligned with
an edge of the polygon. Because the pusher is a line, non-
convex polygons are equivalent to their convex hulls. The
pusher can push on any edge of the slider’s convex hull.

We assume that the center of friction of the slider is in the
interior of its convex hull. The planar location of the cen-
ter of friction is equivalent to that of the center of mass if the
support friction coefficient is uniform. We assume that only
the center of friction of the slider is known; no other infor-
mation about the support distribution is available.

Friction between the pusher and the slider and the slider
and the support surface is assumed to conform to Coulomb’s
law. At a contact, the friction angle� is the half-angle of the
cone of forces applicable through the contact. The friction
coefficient� is defined �= tan�. In this paper � and � refer
to friction at the contact between the pusher and the slider.

An interior force for a given contact edge is defined as a
force that passes through the interior of the edge at an angle
less than the friction angle �. A boundary force is defined
as a force at the friction angle � or passing through an end-
point of the edge (Figure 2). A pure force is a contact force
through the center of friction. We will refer to interior pure
forces, forces which are both interior and pure, and bound-
ary pure forces, forces which are both on the boundary and
pure. For any contact edge, the set of pure forces that can be
applied is either empty, a single force direction (necessarily
a boundary force), or a range of force directions (including a
range of interior pure forces). The set of pure forces through
an edge can be found as in Figure 3.

The velocity of the slider can be represented either as a
rotation center or as a point in the three-dimensional space
(vx; vy;!) of velocities measured at the center of friction.
Rotation centers are convenient for graphical purposes, but
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Figure 3: The cone of pure forces that can be applied through an
edge is the intersection of the friction cone drawn at the center of
friction and the cone formed by lines through the center of friction
and the two endpoints of the edge. The boundary pure forces are
the boundaries of the cone.

the three-dimensional velocity space is more convenient for
proofs. A translation is a velocity with a zero angular com-
ponent. As with forces, we can define interior and boundary
velocities of a set of velocities.

In a previous paper (Lynch and Mason [6]) we described
the procedure STABLE that determines a set of stable push-
ing motions for a given line contact, friction coefficient, and
center of friction. We reproduce it in Figure 4. The pushes
found by STABLE are guaranteed to be stable for the known
center of friction regardless of the slider’s exact support dis-
tribution. We will use the following key properties of STA-
BLE:

� If an interiorpure force can be applied through the edge,
then STABLE finds a set of stable pushing directions
with nonempty interior including a range of transla-
tion directions aligned with the pure force directions.
The stable pushing directions are a convex cone in the
slider’s velocity space.

� If a single pure force can be applied, STABLE finds a
single translation direction aligned with the force.

� If no pure force can be applied through the edge, then
STABLE finds no stable pushingmotions, and in fact it is
impossible to identify any stable pushing motions with-
out more information about the support distribution.

Using these properties of STABLE we can state the basis
of the results derived in this paper.

Proposition 1 Given a friction coefficient � > 0, the convex
polygonal slider is STLC by stable pushes found by STABLE

if and only if the boundary pure forces from the edge contacts
positively span the plane.

Proof: Every slider has at least one edge that can apply a
set of pure forces with nonempty interior with any friction
coefficient � > 0. To find such an edge, draw the maxi-
mal inscribed circle centered at the center of friction. This
circle must contact an interior point of at least one edge E.
The normal to E at the contact point represents a pure force,
and because � > 0 and this point is interior to E, this nor-
mal corresponds to an interior pure force. Therefore a range
of pure forces Fpure

E with nonempty interior can be applied
through E. STABLE finds a set of velocity directions VE
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(a) The coefficient of friction (0.5 here) defines two friction cone
edges. For each edge of the friction cone, draw two lines perpen-
dicular to the friction cone edge such that the entire slider is con-
tained between the two lines. For an applied force at an edge of the
friction cone, the resulting rotation center must lie in its respective
band. Counterclockwise (clockwise) rotation centers between the
two bands and to the left (right) of the slider correspond to force
angles inside the angular limits of the friction cone.

(b) For each endpoint of the line contact, draw two lines perpendic-
ular to the line through the center of friction and the endpoint. One
of these lines is the perpendicularbisector betweenthe contactpoint
and the center of friction. The other is a distancer2=p from the cen-
ter of friction and on the opposite side from the endpoint, where p
is the distance from the endpoint to the center of friction and r is
the distance from the center of friction to the most distant support
point of the slider. (This “tip line” should actually be slightly more
distant from the center of friction; see (Peshkin and Sanderson[10])
for details.) The rotation center from pushing on this endpointmust
lie in the band between these two lines. All rotation centers between
the two bands correspond to forces passing between the endpoints.
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(c) The intersection of the closed regions found in (a) and (b) yield a
set of rotation centers corresponding to forces that are guaranteed to
lie on or inside the composite friction coneF from the line pushing
contact. These rotation centers may also be expressed as a convex
cone of velocities in the slider’s velocity space (vx;vy;!).

Figure 4: Procedure STABLE.

(with nonempty interior in the three-dimensional velocity
space) with a set of translations VtransE aligned with Fpure

E .
For every pure force applied from every other edge,

STABLE will find a translational velocity aligned with the
force. The union of the boundary translations from these
other edges is denoted Vtransother . (By convexity, it is suf-
ficient to consider only the boundary translations.) If
Vtransother and VtransE positively span the plane, then Vtransother

and int(VtransE ) also positively span the plane, where

int(VtransE ) is the set of interior translation directions of
VtransE . Because int(VtransE ) is interior to VE in the slider’s
velocity space, VE and Vtransother positively span the space of
slider velocities, and the slider is STLC.

This proves that the conditions of the proposition are suf-
ficient. To show they are necessary, assume the pure forces
positively span a half-plane. Then STABLE will find a set
of velocity directions confined to an open half-space H,
along with two opposing translations on the plane bounding
H. These velocities do not provide STLC (Lynch and Ma-
son [6]).

Finally note that if � = 0, STABLE can find only trans-
lational motions, and the slider cannot be rotated by pushes
found by STABLE. 2

Proposition1 gives us a simple way to determine if a given
convex polygonal slider is STLC by pushes found by STA-
BLE for a nonzero friction coefficient �: simply construct the
boundary pure forces for each edge and check if they posi-
tively span the plane.

3 Minimum Friction Algorithm
Given a particular slider we would like to find the minimum
friction coefficient � that makes it STLC by pushes found
by STABLE. Such a friction coefficient always exists. Intu-
itively, as we increase the friction coefficient, the set of pure
forces that can be applied from each edge increases (or re-
mains unchanged) until we hit a critical friction coefficient
at which the pure forces positively span the plane. We can
identify this critical value with the following steps.

1. Find the set of all critical friction angles at which the
slider might become STLC. The critical friction angles
are of types 1 and 2, illustrated in Figure 5.

2. Sort the corresponding critical friction coefficients �=
tan� in increasing order. Each friction coefficient
should retain its type information. Remove duplicates.
If there are type 1 and 2 friction coefficients with the
same friction value, discard the type 2 friction coeffi-
cient.

3. Evaluate the friction coefficients until one is found
which yields STLC.

Step 2 yields a sorted list of friction coefficients
(�1;�2; : : :;�n), where �1 is always zero. To evalu-
ate �i, we actually evaluate �i + �, where � > 0 and
�i + � < �i+1. If the boundary pure forces (Figure 3) for
all edges positively span the plane for �i+ �, then the slider
is STLC for any friction coefficient � > �i. If the critical
friction coefficient �i > 0 is of type 1 in Figure 5, then if the
boundary pure forces also positively span the plane for �i,
the slider is STLC for any � � �i.

4 Classes of Locally Controllable Polygons
Using Proposition 1 we can characterize classes of STLC
polygons based on their geometry, center of friction location,
and contact friction. The proofs are given in Section 5.
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Figure 5: Critical friction angles. Type 1: For each edge, the criti-
cal friction angle� is the minimum friction angle such that the edge
can apply a force through the center of friction. Type 2: For each
pair of edges, the critical friction angle � is the minimum friction
angle needed for the two edges to be able to apply opposite pure
forces. (Some pairs of edges cannot apply opposite pure forces re-
gardless of the friction angle. This occurs if we can draw a line
through the center of friction such that both edges lie wholly on the
same side of the line.)

Regular Arbitrary
Edges (k) Friction (�) Edges (k) Friction (�)

5 0.325 3 0.577
7 0.228 4 1.0
9 0.176 5 1.376
11 0.144 6 1.732
13 0.121 7 2.077

Table 1: Worst-case friction coefficients for STLC for regular k-
gons (k is odd) and arbitrary k-gons.

Theorem 1 (Special cases) The convex polygonal slider
is STLC by stable pushing with line contact, regardless of the
location of the center of friction, if

1. � > 0 and the slider is a rectangle, a regular 2k-gon
(k � 3), or a triangle with all interior angles less than
or equal to �=2, or

2. � � tan(�=2k) and the slider is a regular k-gon (k is
odd, k � 5).

Theorem 2 (Number of edges) Any convex k-gon slider is
STLC by stable pushing with line contact, regardless of the
location of the center of friction, if � � tan(�=2��=k).

Theorem 2 implies that there exists a finite friction coeffi-
cient that yields STLC for any convex polygon. Some worst-
case friction coefficients for regular k-gons and arbitrary k-
gons are given in Table 1.

1 2 3 4 5 6

0

0.25

0.5

0.75

1.0

µ

r

Figure 6: Worst-case friction coefficients� for STLC as a function
of the ratio r of the radius of the minimal circumscribed circle to the
radius of the maximal inscribed circle.

Figure 7: Any polygon with its center of friction at the point indi-
cated and its boundary outside the inner circle and inside the outer
circle (r = 2) is STLC by stable line contact pushes for a friction
coefficient�� 0:395. An example polygon is shown.

The worst-case friction coefficients in Theorem 2 and part
2 of Theorem 1 require placing the slider’s center of friction
near a corner of the convex polygon, far from the geometric
center of the slider. Thus another useful characterization of
polygons is based on the location of the center of friction.

Theorem 3 (Center of friction location) Draw the largest
inscribed circle and smallest circumscribed circle centered
at the center of friction. The radius of the inscribed circle is
a and the radius of the circumscribed circle is ra (r > 1).
Then r and the worst-case friction angle � are related by
r= sec(�)e

�

2
tan�. If �� tan�, the slider is STLC by stable

pushing with line contact.

Figure 6 shows a plot of the worst-case friction coefficient
for STLC as a function of the ratio r. Figure 7 illustrates The-
orem 3 for the case r = 2.

5 Proofs
Edges of a k-gon slider are numbered 1 : : :k in a counter-
clockwise fashion. Vertices are also numbered 1 : : :k coun-
terclockwise such that edge 1 is bounded by vertices 1 and 2
and edge k is bounded by vertices k and 1. The interior angle
between 2 adjacent edges is defined as in Figure 8.

5.1 Theorem 1
1. If the slider is a rectangle or a triangle with all interior
angles less than or equal to �=2, then the perpendicular pro-
jection of each edge contains the entire interior of the slider.
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Figure 8: Polygon definitions.
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Figure 9: The region R and its construction.

Therefore each edge can apply a pure force through the cen-
ter of friction, and these pure forces positivelyspan the plane.
If thefriction coefficient� is nonzero, then the slider is STLC
by Proposition 1.

For a regular 2k-gon, k � 3, there are always two oppos-
ing edges with opposing interior normals that pass through
the center of friction regardless of its location. If �> 0, then
pure forces from these two edges positively span the plane,
and the slider is STLC from these two edges. To find two
such edges, draw the largest inscribed circle centered at the
center of friction. Any edge that contacts the circle, along
with its opposing edge, are sufficient for STLC.

2. A regular k-gon slider (k is odd, k� 5) is STLC for any
� > 0 and center of friction placement other than in one of
2k triangular regions near the vertices of the k-gon. With-
out loss of generality, consider the triangular regions R il-
lustrated in Figure 9. For a center of friction in R, only nor-
mals to edge 1 and edge (k+1)=2 pass through the center
of friction. Since these edges are not opposite, they are not
sufficient for STLC for all � > 0.

Increasing the friction coefficient, the slider first becomes
STLC using only edges 1 and (k+3)=2 for all centers of fric-
tion in R. To find the required friction angle, draw the line
segment C connecting vertex 1 and vertex (k+ 5)=2 (Fig-
ure 10). The friction angle is just the angle of C relative to
the normals of the 2 edges, �=2k. At this friction angle, pure
forces from edges 1 and (k+3)=2 positively span the plane
for any center of friction location in R.

5.2 Theorem 2
Assume the center of friction of the slider is at (��; �) (�> 0)
and edge 1 of the slider is aligned with the x axis, stretch-
ing from (�1;0) to (0;0). Edge 2 is at an interior angle of
�� 2�=k with respect to edge 1 and has length d. Edge n,
n= 3 : : :k, is at an angle ���=k with respect to edge n�1
with length dn�1 (except edge k, which has infinite length;

edge 1

edge 4edge 5

R

C

α = π/2k

k = 7

Figure 10: Determining the worst-case friction angle.
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Figure 11: As �! 0 and d!1, these polygons require the worst-
case friction coefficient for STLC.

see Figure 11). Edge 1 and edge k are parallel and meet at
infinity with zero interior angle. (To be an actual polygon,
of course, these edges cannot be exactly parallel, but here
we consider the limiting case.) As � approaches zero and d
goes to infinity, the friction angle required to make the slider
STLC goes to �=2��=k. With this friction angle, all edges
can apply a pure force, and the slider is STLC. At any smaller
friction angle, it is possible to choose � and d so that only
edges 1 and 2 can apply pure forces. The positive span of
these forces is confined to an open half-plane, and the slider
is not STLC.

When the frictionangle is increased to�=2��=k, the fric-
tion forces through edge n (n� 3) include a force along edge
n�1. As �! 0 and d!1, this force approaches the pure
force from edge n through the center of friction.

The detailed proof that a k-gon slider of this type requires
the largest friction coefficient of all k-gons is somewhat la-
borious. Simply stated, if we try to design a polygon which
requires a friction coefficient larger than �=2��=k, we find
that the polygon cannot be closed with only k edges. The
sliders described here are designed so as friction increases
from zero, pure forces are confined to a half-plane until fric-
tion has been increased so high that, simultaneously, pure
forces can be applied from all edges.

5.3 Theorem 3
To investigate the limiting behavior, we allow the slider to be
any closed convex curve. This curve can be approximated
arbitrarily closely by a polygon.

The problem is: given a friction angle �, find the slider
that 1) is marginally STLC and 2) minimizes the ratio r of
the radius ra of the circumscribed circle to the radius a of the
inscribed circle. This is equivalent to maximizing the fric-
tion coefficient necessary for STLC for a slider with ratio r.
Without loss of generality, assume a= 1.
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Figure 12: Examples of sliders that maximize the required friction
coefficient for STLC for r = 2;3;4;5. The pieces of the slider are
shown for r = 2.

The solutions for several different values of � are shown
in Figure 12. Each slider consists of a circular arc, two spi-
ral curves, and two line segments connecting the circular arc
to the spiral curves. The circular arc is centered at the origin
(the center of friction), has unit radius, and sweeps the an-
gle from��=2+� to �=2��. The two line segments are
tangent to the ends of the arc and connect to (0; sec�) and
(0;� sec�). The arc and line segments provide pure forces
which positively span a half-plane. From there, the curve
spirals away from the center of friction such that the tangent
of the curve at every point is at an angle �=2+� to the line
connecting the curve to the center of friction. Thus, along the
spiral segments, only boundary friction forces pass through
the center of friction.

To find the top spiral, we solve the differential equation

ds= sd� tan�

where (s;�) is the polar representation of the spiral (Fig-
ure 13). Rearranging

ds

s
= d� tan�

and integrating, we get

lns� lns0 = (�� �0) tan�;

where (s0; �0) is the start point of the spiral. Exponentiating
and rearranging, we get

s = s0e
(���0) tan�:

Plugging in s0 = sec�, �0 = �=2, and the end angle � = �,
we calculate r:

r = sec(�)e
�

2
tan�:

This curve is guaranteed to give the smallest possible
value of r while keeping pure forces on the boundary. Fur-
thermore, the arc and line segments minimize the value of

s dθ sds

α

sec α

r

Figure 13: Constructing the spiral segment.

s0 while confining pure forces to a half-plane. Therefore,
this slider minimizes r for a given �; equivalently, this slider
maximizes the required friction angle � for a given r.

This slider is only marginally STLC for the friction angle
�. For any friction angle less than�, we can find a polygonal
approximation to the slider that is not STLC. In particular,
we can choose a piecewise linear approximation to the spiral
such that no pure forces can be applied through it.

6 Conclusion
By considering the part’s geometry and frictional properties,
this paper has characterized parts that can be maneuvered
closely along arbitrary paths by open-loop stable pushing.
These results help further establish the theoretical scope of
pushing as a manipulation primitive.
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