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Abstract

This paper characterizes polygons that are small-time lo-
cally controllableby stable pushing as a function of the poly-
gon shape, the location of the center of friction, and thefric-
tion coefficient at the pushing contact. Such polygonscan be
pushed to follow any path arbitrarily closely, a useful prop-
erty for planar manipulation. Because the pushes are stabl e,
pushing plans can be executed without feedback.

1 Introduction and Motivation

Pushing is a useful robot primitive for manipulating large
and heavy parts, parts with uncertain location, or parts that
are otherwise difficult to grasp and carry. One application
of pushing is parts feeding (Mani and Wilson [7]; Peshkin
and Sanderson[11]; Goldberg[4]; Akellaet al.[1]). Pushing
also allows amobilerobot to easily manipulate large objects
(Donald et al. [2]).

Weare interested in characterizing the fundamental capa
bilities of pushing as a manipulation primitive. Toward that
end we have studied the controllability of pushing: isit pos-
sible to push the object to the goa location? We are partic-
ularly interested in small-timelocal controllability (STLC),
which implies that the object can be pushed to follow any
planar path arbitrarily closely. If we have this property, we
can maneuver the part in tight places.

We have previously shown that any object, other than a
frictionlessdisk centered at itscenter of friction, isSTLC by
pushing with point contact (Lynch and Mason [6]). Thisim-
pliesthat atwo-degree-of-freedom robot (a point translating
intheplane) can maneuver an object arbitrarily closely aong
any pathinitsthree-dimensional configurationspace SE(2).
(In one sense, pushing isamore complete primitivefor pla:
nar manipulation than pick and place, as no frictionlessdisk
can be rotated by grasping and turning. Pushing can rotate
any frictionlessdisk not centered at its center of friction.)

Pushingwith point contact resultsin unpredictable motion
of the object, making planning difficult. For thisreason, we
have aso studied stable pushing with line contact. A stable
pushis defined as apusher contact and motion that keepsthe
object fixed to the pusher asit moves. Stable pushes make it
possibleto plan pushing paths (Figure 1) which can be exe-
cuted without feedback. A pushing planner and experiments
are described in (Lynch and Mason [6]).

By switching the line contacts, it is often possible to
achieve STLC by stable pushing. We would like to charac-
terize the set of polygonsthat are STLC by stable pushing.
In thispaper we give conditionsfor apolygontobe STLCin

Figure 1: Maneuvering a pentagon by stable pushing with line
contact. This pentagonis STLC using just the two pushing edges
shown.

terms of its shape, the location of its center of friction, and
the friction coefficient at the pushing contact.

By considering geometry (the shape of the polygon) and
thefrictional mechanics of pushing, we can demonstratethis
fundamental “maneuverability” property for classes of parts
by stable pushing. One aim of the science of robotic ma-
nipulation is to elucidate such characterizations of manipu-
lation primitives. Other related results in manipulation in-
cludethe demonstration of the controllability of aball rolling
on aplane or another ball (Li and Canny [5]); boundson the
number of fingers necessary for a grasp (Mishraet al. [9];
Markenscoff et al. [8]; Rimon and Burdick [12]); the classi-
fication of orientable parts by sensorless paralel-jaw grasp-
ing sequences (Goldberg[4]); and the proof that asinglejoint
operating above afixed-speed conveyor is sufficient to posi-
tionand orient polygona partsby pushing (Akedlaet al.[1]).

In the next section we provide definitions and a basic re-
sult used throughout the paper. Section 3 givesan agorithm
for finding theminimum friction coefficient that yieldsSTLC
for a given part. Section 4 presents results on the minimum
friction needed for STLC for classes of polygons. Proofs of
these results are given in Section 5.

2 Definitions

Theflat robot pusher is called the pusher and the pushed ob-
jectis caled the dider. We assume that the dider’smotion
is sufficiently slow that dynamic forces are negligible com-
pared to dliding friction. Thisisthe quasistatic assumption.
Pushing forces map to dider velocities, not accelerations.
The state of the dlider is simply its configuration g.
ThediderisSTLCif, for any configuration q of the slider
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Figure 2: Friction forces through a contact edge and the repre-
sentation as a convex cone in force-moment space (Erdmann [3]).
Boundary forces (through an edge endpoint or at a friction bound-
ary) arethe outer “shell” and interior forcesare al forcesinside the
shell. Forcesin the m = 0 plane are pure forces.

and any neighborhood U of g, the set of configurations the
slider can reach without leaving U is a neighborhood of g.
By patching together these neighborhoods, theslider can fol-
low any path arbitrarily closely. A sufficient condition for
STLC of a system at a state q is that the set of feasible
motion directions (tangent vectors) positively spans the sys-
tem’ stangent space at g (Sussmann [13]). For the dider, the
tangent vectors are the stabl e pushing directions and the tan-
gent space isthe space of al dlider velocities.

We study stable pushing with line contact. The dider is
a convex polygon and the pusher is aflat edge aligned with
an edge of the polygon. Because the pusher is a line, non-
convex polygons are equivalent to their convex hulls. The
pusher can push on any edge of the dider’sconvex hull.

Weassume that the center of friction of the dlider isin the
interior of its convex hull. The planar location of the cen-
ter of friction isequivalent to that of the center of massif the
support friction coefficient is uniform. We assume that only
the center of friction of the dider is known; no other infor-
mation about the support distributionis available.

Friction between the pusher and the dlider and the dider
and the support surface isassumed to conform to Coulomb’s
law. At acontact, thefriction angle « isthehaf-angle of the
cone of forces applicable through the contact. The friction
coefficient 1 isdefined = tan «. Inthispaper « and p refer
tofrictionat the contact between the pusher and the slider.

Aninterior force for a given contact edge is defined as a
force that passes through the interior of the edge a an angle
less than the friction angle «. A boundary force is defined
as aforce at thefriction angle « or passing through an end-
point of the edge (Figure 2). A pureforceis acontact force
through the center of friction. We will refer to interior pure
forces, forces which are both interior and pure, and bound-
ary pure forces, forces which are both on the boundary and
pure. For any contact edge, the set of pureforcesthat can be
appliedis either empty, asingle force direction (necessarily
aboundary force), or arange of force directions (includinga
range of interior pureforces). The set of pureforces through
an edge can be found asin Figure 3.

The velocity of the dider can be represented either as a
rotation center or as a point in the three-dimensional space
(ve,vy,w) Of velocities measured at the center of friction.
Rotation centers are convenient for graphica purposes, but
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Figure 3: The cone of pure forces that can be applied through an
edgeis the intersection of the friction cone drawn at the center of
friction and the coneformed by lines through the center of friction
and the two endpoints of the edge. The boundary pure forces are
the boundaries of the cone.

the three-dimensional velocity space is more convenient for
proofs. A trandationisavelocity with a zero angular com-
ponent. Aswith forces, we can define interior and boundary
velocities of a set of velocities.

In a previous paper (Lynch and Mason [6]) we described
the procedure STABLE that determines a set of stable push-
ing motionsfor agiven line contact, friction coefficient, and
center of friction. We reproduce it in Figure 4. The pushes
found by STABLE are guaranteed to be stable for the known
center of friction regardless of the dider’ sexact support dis-
tribution. We will use the following key properties of STA-
BLE:

o If aninterior pureforcecan beappliedthroughthe edge,
then STABLE finds a set of stable pushing directions
with nonempty interior including a range of transla-
tion directions aligned with the pure force directions.
The stable pushing directions are a convex cone in the
slider’ svelocity space.

e If asingle pure force can be applied, STABLE finds a
singletrandation direction aligned with the force.

o If no pure force can be applied through the edge, then
STABLE findsno stable pushingmotions, andinfactitis
impossibleto identify any stable pushing motionswith-
out more information about the support distribution.

Using these properties of STABLE we can state the basis
of the results derived in this paper.

Proposition 1 Given afriction coefficient ¢« > 0, the convex
polygonal dider is STLC by stable pushes found by STABLE
if and onlyif the boundary pureforcesfromthe edge contacts
positively span the plane.

Proof: Every dider has a least one edge that can apply a
set of pure forces with nonempty interior with any friction
coefficient 1+ > 0. To find such an edge, draw the maxi-
mal inscribed circle centered at the center of friction. This
circle must contact an interior point of at least one edge £
The normal to £ at the contact point represents a pure force,
and because 1 > 0 and this point isinterior to ~, this nor-
mal corresponds to an interior pure force. Therefore arange
of pure forces 5" with nonempty interior can be applied
through £. STABLE finds a set of velocity directions Vg
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(a) The coefficient of friction (0.5 here) defines two friction cone
edges. For each edge of the friction cone, draw two lines perpen-
dicular to the friction cone edge such that the entire slider is con-
tained between the two lines. For an applied force at an edgeof the
friction cone, the resulting rotation center must lie in its respective
band. Counterclockwise (clockwise) rotation centers between the
two bands and to the left (right) of the slider correspond to force
anglesinside the angular limits of the friction cone.

(b) For each endpoint of theline contact, draw two lines perpendic-
ular to the line through the center of friction and the endpoint. One
of theselinesisthe perpendicular bisector betweenthe contact point

andthe center of friction. Theotherisadistancer?/p fromthe cen-
ter of friction and on the opposite side from the endpoint, where p
is the distance from the endpoint to the center of friction and r is
the distance from the center of friction to the most distant support
point of the slider. (This “tip line” should actually be slightly more
distant from the center of friction; see(Peshkin and Sanderson[10])
for details.) Therotation center from pushing on this endpoint must
lieinthe band betweenthesetwollines. All rotation centersbetween
the two bands correspond to forces passing between the endpoints.

(c) Theintersection of theclosed regionsfoundin (a) and (b) yield a
set of rotation centerscorrespondingto forcesthat are guaranteed to
lie on or inside the compositefriction cone F from theline pushing
contact. These rotation centers may also be expressed as a convex
cone of velocitiesin the slider’s velocity space (ve, vy, w).

Figure4: Procedure STABLE.

(with nonempty interior in the three-dimensiona velocity
space) with aset of trandations Vi *** aigned with F5".

For every pure force applied from every other edge,
StaBLE will find a trandationa velocity aigned with the
force. The union of the boundary trandations from these
other edges is denoted V7 e"s. (By convexity, it is suf-
ficient to consider only the boundary trandations.) |If
yirans gnd Yirens positively span the plane, then Virens

other other

and int(VY**) aso positively span the plane, where

int(Vi"*) is the set of interior trandlation directions of
Virans Because int(V{"*) isinterior to Vg inthedlider’s
velocity space, Vi and VIS positively span the space of
slider velocities, and the dider is STLC.

This proves that the conditions of the proposition are suf-
ficient. To show they are necessary, assume the pure forces
positively span a half-plane. Then StABLE will find a set
of velocity directions confined to an open half-space ,
along with two opposing trand ations on the plane bounding
‘H. These velocities do not provide STLC (Lynch and Ma
son [6]).

Finaly note that if 4+ = 0, STABLE can find only trans-
lationa motions, and the dider cannot be rotated by pushes
found by STABLE. O

Proposition 1 givesusasimpleway to determineif agiven
convex polygonal dlider is STLC by pushes found by StaA-
BLE for anonzerofriction coefficient x: simply construct the
boundary pure forces for each edge and check if they posi-
tively span the plane.

3 Minimum Friction Algorithm

Given aparticular dider we would like to find the minimum
friction coefficient p that makes it STLC by pushes found
by StaBLE. Such afriction coefficient always exists. Intu-
itively, as we increase the friction coefficient, the set of pure
forces that can be applied from each edge increases (or re-
mains unchanged) until we hit a critica friction coefficient
at which the pure forces positively span the plane. We can
identify this critical value with the following steps.

1. Find the set of all critical friction angles at which the
dlider might become STLC. Thecritical friction angles
are of types 1 and 2, illustrated in Figure 5.

2. Sort the corresponding critical friction coefficients ¢ =
tanca in increasing order. Each friction coefficient
should retain its type information. Remove duplicates.
If there are type 1 and 2 friction coefficients with the
same friction value, discard the type 2 friction coeffi-
cient.

3. Evaluate the friction coefficients until one is found
whichyields STLC.

Step 2 yiedds a sorted list of friction coefficients
(41, Hos .-, pin), Where y; is dways zero. To evau-
ate p;, we actualy evaluate u; + 8, where 6 > 0 and
pi +6 < piy1. If the boundary pure forces (Figure 3) for
all edges positively span the planefor y; + é, then the dlider
is STLC for any friction coefficient ¢ > ;. If the critica
frictioncoefficient p1; > 0 isof typelinFigure5, thenif the
boundary pure forces aso positively span the plane for p;,
thedider isSTLC for any p > ;.

4 Classes of Locally Controllable Polygons

Using Proposition 1 we can characterize classes of STLC
polygonsbased on their geometry, center of frictionlocation,
and contact friction. The proofsare given in Section 5.
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Figure5: Critical friction angles. Type 1: For each edge, the criti-
cal friction angle « isthe minimum friction angle such that the edge
can apply a force through the center of friction. Type2: For each
pair of edges, the critical friction angle « is the minimum friction
angle needed for the two edges to be able to apply opposite pure
forces. (Some pairs of edges cannot apply opposite pure forces re-
gardless of the friction angle. This occurs if we can draw a line
through the center of friction suchthat both edgeslie wholly on the
sameside of theline.)

Regular Arbitrary
Edges (k) | Friction (1) || Edges (k) | Friction (i)
5 0.325 3 0577
7 0.228 4 1.0
9 0.176 5 1.376
11 0.144 6 1.732
13 0.121 7 2077

Table 1: Worst-case friction coefficientsfor STLC for regular k-
gons (k is odd) and arbitrary k-gons.

Theorem 1 (Specia cases)  The convex polygonal dider
isSTLC by stable pushing withline contact, regardlessof the
location of the center of friction, if

1. x> 0 and the dider is a rectangle, a regular 2k-gon
(k > 3), or atrianglewith all interior anglesless than
or equal to w/2, or

2. pu > tan(w/2k) and the dider isaregular k-gon (k is
odd, k& > 5).

Theorem 2 (Number of edges) Any convexk-gondideris
STLC by stable pushing with line contact, regardless of the
location of the center of friction, if u > tan(w/2 —7/k).

Theorem 2 impliesthat there exists afinite friction coeffi-
cientthat yieldsSTLC for any convex polygon. Some worst-
case friction coefficients for regular £-gonsand arbitrary k-
gonsaregivenin Table 1.
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Figure6: Worst-casefriction coefficients i for STLC asafunction
of theratio r of theradius of theminimal circumscribed circleto the
radius of the maximal inscribed circle.

Figure7: Any polygon with its center of friction at the point indi-
cated and its boundary outside the inner circle and inside the outer
circle (r = 2) is STLC by stable line contact pushesfor afriction
coefficient ¢ > 0.395. An example polygon is shown.

The worst-case friction coefficientsin Theorem 2 and part
2 of Theorem 1 require placing the dlider’ scenter of friction
near a corner of the convex polygon, far from the geometric
center of the dider. Thus another useful characterization of
polygonsis based on the location of the center of friction.

Theorem 3 (Center of frictionlocation) Draw thelargest
inscribed circle and smallest circumscribed circle centered
at the center of friction. The radius of theinscribed circleis
a and the radius of the circumscribed circleis ra (r > 1).
Then r and the worst-case friction angle « are related by
r=sec(a)eZ ¥ If 4 > tana, theslider isSTLC by stable
pushing with line contact.

Figure 6 showsaplot of theworst-case friction coefficient
for STLC asafunctionof theratior. Figure7illustratesThe-
orem 3 for thecase r = 2.

5 Proofs

Edges of a k-gon dider are numbered 1...% in a counter-
clockwise fashion. Vertices are also numbered 1...% coun-
terclockwise such that edge 1 is bounded by vertices 1 and 2
and edge k isbounded by vertices k and 1. Theinterior angle
between 2 adjacent edges isdefined asin Figure 8.

51 Theorem1

1. If thedider isarectangle or atriangle with all interior
angleslessthan or equal to 7 /2, then the perpendicular pro-
jection of each edge containsthe entire interior of the dider.
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Figure8: Polygon definitions.
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Figure9: Theregion R and its construction.

Therefore each edge can apply a pure force through the cen-
ter of friction, and these pureforces positively span theplane.
If thefriction coefficient  isnonzero, thenthediderisSTLC
by Proposition 1.

For aregular 2k-gon, k > 3, there are aways two oppos-
ing edges with opposing interior normals that pass through
the center of friction regardless of itslocation. If i > 0, then
pure forces from these two edges positively span the plane,
and the dlider is STLC from these two edges. To find two
such edges, draw the largest inscribed circle centered at the
center of friction. Any edge that contacts the circle, aong
withits opposing edge, are sufficient for STLC.

2. Aregular k-gondider (k isodd, £ > 5) isSTLC for any
> 0 and center of friction placement other than in one of
2k triangular regions near the vertices of the k-gon. With-
out loss of generality, consider the triangular regions R il-
lustrated in Figure 9. For a center of frictionin R, only nor-
mals to edge 1 and edge (% + 1)/2 pass through the center
of friction. Since these edges are not opposite, they are not
sufficient for STLC for al g > 0.

Increasing the friction coefficient, the dlider first becomes
STLCusingonly edges1and (k+3)/2 for al centersof fric-
tionin R. To find the required friction angle, draw theline
segment C' connecting vertex 1 and vertex (k+5)/2 (Fig-
ure 10). Thefriction angleisjust the angle of C' relativeto
thennormalsof the2 edges, = /2k. Atthisfrictionangle, pure
forcesfrom edges 1 and (k + 3)/2 positively span the plane
for any center of frictionlocationin R.

52 Theorem 2

Assumethe center of friction of thedlider isat (—e¢, ¢) (e > 0)
and edge 1 of the dlider is digned with the « axis, stretch-
ing from (—c0,0) to (0,0). Edge 2 isat an interior angle of
7 — 27 /k with respect to edge 1 and has length d. Edge n,
n=23...k isaanangler — v /k with respect toedgen — 1
with length d"~! (except edge &, which has infinite length;

edge5 edge 4
8
p
k=7
i\
R \ edgel

Figure 10: Determining the worst-case friction angle.

k=4

Figurell: Ase — 0 andd — oo, these polygonsrequire the worst-
casefriction coefficient for STLC.

see Figure 11). Edge 1 and edge k are paralld and meet at
infinity with zero interior angle. (To be an actual polygon,
of course, these edges cannot be exactly parallel, but here
we consider the limiting case) As ¢ approaches zero and d
goestoinfinity, the friction angle required to make the dlider
STLC goesto /2 — w/k. Withthisfrictionangle, al edges
can apply apureforce, andthedliderisSTLC. Atany smaller
friction angle, it is possible to choose ¢ and d so that only
edges 1 and 2 can apply pure forces. The positive span of
these forces is confined to an open half-plane, and the dider
isnot STLC.

When thefrictionangleisincreasedto 7 /2 — 7/ k, thefric-
tionforcesthroughedge n (n > 3) includeaforce aong edge
n—1. Ase — 0 and d — o, thisforce approaches the pure
force from edge n through the center of friction.

The detailed proof that a k-gon dider of thistyperequires
the largest friction coefficient of al k-gonsis somewhat la-
borious. Simply stated, if we try to design a polygon which
requires afriction coefficient larger than = /2 — = /k, wefind
that the polygon cannot be closed with only & edges. The
diders described here are designed so as friction increases
from zero, pure forces are confined to a hal f-plane until fric-
tion has been increased so high that, smultaneoudy, pure
forces can be applied from al edges.

53 Theorem3

Toinvestigatethelimiting behavior, wealow the slider to be
any closed convex curve. This curve can be approximated
arbitrarily closely by a polygon.

The problem is: given afriction angle «, find the dider
that 1) is marginally STLC and 2) minimizes the ratio r of
theradiusra of thecircumscribed circletotheradius« of the
inscribed circle. This is equivalent to maximizing the fric-
tion coefficient necessary for STLC for adider with ratio r.
Without loss of generality, assume a = 1.
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Figure12: Examplesof dlidersthat maximize the required friction
coefficient for STLC for r = 2,3,4,5. The pieces of the slider are
shownfor r = 2.

The solutionsfor several different values of « are shown
in Figure12. Each dlider consists of acircular arc, two spi-
ral curves, and two line segments connecting the circular arc
tothespiral curves. Thecircular arciscentered at the origin
(the center of friction), has unit radius, and sweeps the an-
glefrom —7/2 4 « to 7 /2 — «. Thetwo line segments are
tangent to the ends of the arc and connect to (0,sec «) and
(0, —secar). The arc and line segments provide pure forces
which positively span a half-plane. From there, the curve
spiralsaway from the center of friction such that the tangent
of the curve at every pointisat an angle /2 + « to theline
connecting thecurveto thecenter of friction. Thus, ongthe
spiral segments, only boundary friction forces pass through
the center of friction.

Tofind the top spiral, we solve the differential equation

ds = sdftana

where (s, ) is the polar representation of the spira (Fig-
ure 13). Rearranging

d
& dftan o
s

and integrating, we get
Ins—1Insg = (6 —0p)tane,

where (sg, 6p) isthe start point of the spiral. Exponentiating
and rearranging, we get
s = Soe(G—GO)tana.

Pluggingin so = seca, 6y = n/2, and the end angle § = ,
we caculate r: i
r=sec(a)ez N,

This curve is guaranteed to give the smallest possible
value of » while keeping pure forces on the boundary. Fur-
thermore, the arc and line segments minimize the va ue of

Figure 13: Constructing the spiral segment.

so while confining pure forces to a haf-plane. Therefore,
thisdlider minimizesr for agiven «; equivalently, thisdider
maximizes the required friction angle « for agiven r.

This dlider isonly marginally STLC for the friction angle
«. For any friction angleless than «, we can find apolygonal
approximation to the dider that isnot STLC. In particular,
we can choose a piecewise linear approximation to thespira
such that no pure forces can be applied throughiit.

6 Conclusion

By considering the part’ sgeometry and frictional properties,
this paper has characterized parts that can be maneuvered
closely aong arbitrary paths by open-loop stable pushing.
These results help further establish the theoretical scope of
pushing as a manipulation primitive.
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