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Abstract
We are interested in using low degree-of-freedom robots to
perform complex manipulation tasks by not grasping. By not
grasping, the robot can use rolling, slipping, and free flight to
control more degrees-of-freedom of the part. To demonstrate
this we study the controllabilityproperties of planar dynamic
nonprehensile manipulation. We show that almost any pla-
nar object is small-time locally controllable by point con-
tact, and the controlling robot requires only two degrees-of-
freedom (a point translating in the plane). We then focus on
a one joint manipulator (with a two-dimensionalstate space)
and show that even this simplest of robots, by using slipping
and rolling, can control an object to a full-dimensional sub-
set of its six-dimensional state space. We have developed a
one joint robot to perform a variety of dynamic tasks, includ-
ing snatching an object from a table, rolling an object on the
surface of the arm, and throwing and catching.

1 Introduction
We are interested in using low degree-of-freedom robots to
perform complex manipulation tasks by not grasping (non-
prehensile manipulation). By not grasping, the robot can use
gravitational, centrifugal, and Coriolis forces as virtual mo-
tors to control more degrees-of-freedom of the part. The ex-
tra motion freedoms of the part are exhibited as rolling, slip-
ping, and free flight. An example is shooting a basketball—
the ball is sent to the basket by using rolling and free flight
(Figure 1).

One obvious advantage is that we may be able to build
cheaper, simpler robots with fewer motors and joints. This
comes at the expense of increased complexity in planning
and control. Planning for pick and place manipulation re-
quires only a kinematic model of the world; dynamic ma-
nipulation requires a dynamic model. In a previous paper
(Lynch and Mason [15]) we addressed the planning problem
for dynamic nonprehensile manipulation—how to choose
manipulator trajectories to achieve the desired motion of the
object via nonlinear coupling through the nonprehensile con-
tact.

In this paper we study controllability properties of planar
dynamic nonprehensile manipulation. The results parallel
our previous results on the controllabilityof quasistatic push-
ing (Lynch and Mason [13]), but now we have second-order
dynamics and there is no support friction resisting motion of
the object. There is also a drift term corresponding to the ob-

1This research was conducted while the first author was at the Robotics
Institute, Carnegie Mellon University.

Figure 1: Shooting a basketball using rolling contact.

ject’s motion when no control force is applied. The problems
studied here can be thought of as dynamic pushing—imagine
pushing or batting an object floating on an air table (which
may be tilted to yield a gravitational acceleration in the plane
of the table).

We begin by assuming no constraints on the motion of the
robot, and we show that almost any planar object is small-
time locally controllable by pushing with point contact. The
controlling robot requires only two degrees-of-freedom (a
point translating in the plane). We then focus on a one
joint manipulator (with a two-dimensional state space) and
show that even this simplest of robots, by using slipping and
rolling, can control an object to a full-dimensional subset of
its six-dimensional state space. We have developed a one
joint robot to perform a variety of dynamic tasks, including
snatching an object from a table, rolling an object on the sur-
face of the arm, and throwing and catching.

This work pursues a minimalist approach to robotic ma-
nipulation. We are motivated by the academic interest to
understand the simplest mechanisms capable of performing
a given task and the economic motive to construct simpler,
cheaper robots. Simple robots employing dynamic nonpre-
hensile manipulation may be especially effective in indus-
trial parts feeding or in space, where dynamic effects dom-
inate.

Ths paper summarizes work presented in (Lynch [11]).

2 Related Work

Minimalist systems have received increasing attention in the
robotics literature. Erdmann [7] studied minimal sensor de-
sign based on a task description. Bicchi and Sorrentino [4]
demonstrated minimalist dextrous manipulation by rolling
an object between two flat palms. Our previous work on
1JOC (1 Joint Over a Conveyor) (Akella et al. [1]) is closely
related to the work described in this paper. 1JOC uses a se-
quence of pushes by a single joint robot to positionand orient



parts coming down the conveyor in random configurations.
The problems studied in this paper are related to the con-

trollabilityof a planar free-flying robot with gas jets, a forced
planar rigid body (Lewis and Murray [10]), a hovercraft
(Manikonda and Krishnaprasad [16]), or an unactuated link
of a robot arm (Arai [2]). One distinguishing feature of
nonprehensile manipulation is that contact forces are uni-
lateral, while most controllability analyses assume bidirec-
tional controls. An exception is the work by Goodwine and
Burdick [8] based on Sussmann’s [22] general theorem on lo-
cal controllability.

Dynamic nonprehensile manipulation is also similar to
the control of underactuated manipulators, except the unac-
tuated freedoms are controlled through unilateral frictional
contacts. The proof that a one joint robot can control an ob-
ject to a full-dimensional subset of its state space is closely
related to work by Oriolo and Nakamura [21] on the integra-
bility of second-order constraints on underactuated manipu-
lators. Building on previous work on the control of a passive
joint, Arai and Khatib [3] demonstrated rolling of a cube on
a paddle held by a PUMA, a kind of dynamic nonprehensile
manipulation.

3 Definitions and Assumptions
All problems considered in this paper are planar. The planar
objectO can be contacted anywhere along its closed, piece-
wise smooth perimeter �. Coulomb friction acts between the
robot and the object.

The configuration space of the object is C = SE(2) =
R2�S1. An object frame FO is fixed to the center of mass
of the object. Coordinates in this frame are (x;y;�)T . The
configuration of FO in the world frame FW is written q =
(xw; yw;�w)T . The state space of the object is the tangent
bundle TC = SE(2)�R3, and the object’s state is given by
(q; _q). The tangent space at (q; _q) is written T(q; _q)TC.

Generalized forces f = (fx; fy; � )T are written in the ob-
ject frame FO. A pure force is a force with a zero torque
component (� = 0) and a pure torque is a force with a zero
linear component (fx = fy = 0). A force direction f̂ =

(f̂x; f̂y; �̂)T is defined as f=jfj. The force sphere is the two-
dimensional unit sphere S2 of all force directions.

4 Accessibility
This section studies the accessible state space of a planar ob-
jectO during dynamic nonprehensile manipulation. The ob-
ject is accessible from (q; _q) if the set of states reachable
from (q; _q) has nonempty interior in the state space. The ob-
ject is small-time accessible from (q; _q) if, for any neighbor-
hood U of (q; _q), the set of reachable states without leav-
ingU has nonempty interior. The object is controllable from
(q; _q) if, starting from (q; _q), the object can reach any point
in the state space. The object is small-time locally control-
lable from (q; _q) if, for any neighborhood U of (q; _q), the
set of reachable states without leaving U contains a neigh-
borhood of (q; _q).

We begin by examining the case of no constraints on the

motion of the manipulatorMwhich can contact any point on
the object’s perimeter �. With this assumption, we demon-
strate necessary and sufficient conditions for the controllabil-
ity of the object by pushing and batting.

Because of the difficulty of breaking contact and recon-
tacting a moving object, we then include manipulator mo-
tion constraints in the analysis. We study the simplest pos-
sible case: a single-degree-of-freedom robot which main-
tains point contact with the object as it moves. We show
that a one-degree-of-freedom revolute robot, with just a two-
dimensional state space, can take a planar object to a six-
dimensional subset of its six-dimensional state space. The
equality constraints on the motion of the manipulator (the
pivot remains fixed) usually do not translate to equality con-
straints on the motion of the object.

4.1 No Manipulator Constraints
To visualize the control system with no manipulator con-
straints, imagine an object floating on an air table which may
be tilted to yield a gravitational acceleration in the plane of
the table. The object is pushed or batted by a manipulator.
Alternatively, the object can be considered to be a planar
free-flying rigid body with gas jets attached to its perimeter.
The angle the gas jets can take with respect to the normal of
the perimeter is determined by the friction coefficient �.

The control system is written

( _q;�q) =X0(q; _q)+uXi(q; _q); i 2 f1; : : :;ng;

where X0 is a drift vector field, u 2 [0;1) is a nonnega-
tive scalar control, and Xi is the control vector field, where i
chooses which control vector field is used. (Note that only
one control force is applied at a time, and u must be non-
negative due to unilateral contact.) The vector field Xi, i 2
f1; : : :;ng, corresponds to a force direction f̂i (and resulting
acceleration direction âi) fixed in the object frame FO. For
simplicity, the mass and radius of gyration ofO are assumed
to be unit, yielding f̂i = âi. The set of force directions[îfi is
denoted F̂ . Forces arise from point contact on the perimeter
� of the object.

The state of O is (q; _q) = (xw; yw;�w; _xw; _yw; _�w)T , and
the tangent vector is ( _q;�q) = ( _xw; _yw; _�w; �xw; �yw; ��w)T .
The drift fieldX0 is written ( _xw; _yw; _�w;0;0;0)T+g, where
g is the gravitational acceleration vector (0;0;0;0; g;0)T.
The gravitational acceleration g may be either 1 or 0.

We first consider a single control, n = 1. To determine
accessibility, we can examine the Lie algebra generated by
the vector fields X0 and X1. (Recall that a system is small-
time accessible at p if it satisfies the Lie Algebra Rank Con-
dition—the vector fields and their Lie brackets evaluated at p
span the tangent space at p [20].) Without loss of generality,
assume the control force applied to the object is (0; fy; � )T in
the object frame FO, so the control vector field X1 is writ-
ten (0;0;0;�fy sin�w; fy cos�w; � )T . We define the Lie
bracket vector fields X2 = [X0;X1], X3 = [X1; [X0;X1]],
X4 = [X1; [X0; [X0;X1]]], X5 = [X1; [X1; [X0; [X0;X1]]]],
X6 = [X0; [X1; [X1; [X0; [X0;X1]]]]]. We find that

det(X1 X2 X3 X4 X5 X6) = �16f4y �
8;



indicating that these six vector fields span the tangent space
T(q; _q)TC at any state (q; _q), provided fy 6= 0 (the control
must not be a pure torque) and � 6= 0 (the control must not
be a pure force through the center of mass). Note that a pure
torque is not possible by frictional contact with the perimeter
of a bounded object.

The tangent vectors X1(q; _q), X3(q; _q), and X5(q; _q)
span the acceleration space at (q; _q), andX2(q; _q), X4(q; _q),
and X6(q; _q) span the velocity space.

Proposition 1 The state of the planar objectO is small-time
accessible if and only if F̂ contains a force direction which
is neither a pure force nor a pure torque.

Proposition1 implies that all planar objects are small-time
accessible by point contact, except for a frictionless disk cen-
tered at its center of mass. For such an object, all contacts
with its perimeter result in a pure force.

Clearlyn= 1 is never sufficient for controllability; the an-
gular velocity of the object can only change in one direction.
It can be shown that n = 2 is sufficient for controllability,
provided the signs of �̂1 and �̂2 are opposite.

Proposition 2 The state of the planar object O is control-
lable, with or without gravity, if and only if F̂ contains force
directions f̂1 and f̂2 such that �̂1> 0, �̂2 < 0, and they are not
both pure torques.

Proof: See (Lynch and Mason [14]).

Manikondaand Krishnaprasad [16] proved a similar result
for the case f̂1 = �f̂2 (not pure forces or torques).

Proposition 2 implies that any object is controllable by
point contact with its perimeter � except for a frictionless
disk centered at its center of mass. In fact, if friction is
nonzero, Proposition 2 implies that the object is controllable
from a single point of contact.

Theorem 1 Any planar object O with a closed, piecewise
smooth curve � of available contact points is controllable
by pushing at a single point of � if the friction coefficient is
nonzero.

Proof: The radius function r : �!R measures the distance
from the center of mass to points 
 on the object’s perimeter
�. At each point 
 where dr(
)=d� = 0, the contact nor-
mal of � passes through the center of mass. There are at
least two such points because � is closed. If r(
) 6= 0 and
dr(
)=d�= 0, then if the friction coefficient is nonzero, pos-
itive and negative torques can be applied from 
. The object
is controllable by Proposition 2. 2

We now consider conditions for small-time local control-
lability about a state (q;0). The object O is small-time lo-
cally controllable about (q;0) if, given any neighborhoodU
of (q;0), (q;0) is interior to the set of states reachable by tra-
jectories remaining in U . This is a stronger condition than
global controllability.

Proposition 3 In the presence of gravity (or other distur-
bance forces), the planar objectO is small-time locally con-
trollable at all states (q;0) if and only if the set of force di-
rections F̂ positively spans the force sphere. A minimum of
four controls (n� 4) is necessary.

The proof of Proposition 3 is straightforward and can be
found in (Lynch [11]). This is the familiar condition for a
“force closure” grasp of a planar object; the difference is that
for a grasp, all contacts are simultaneouslyactive. We can di-
rectly apply various theorems regarding the existence of pos-
itive grasps.

Theorem 2 Any planar object O with a closed, piecewise
smooth curve � of available contact points is small-time lo-
cally controllable at all states (q;0), with or without gravity,
unless the contact is frictionless and � is a circle.

Proof: See, e.g., (Mishra et al. [19]; Markenscoff et al. [17]).

We can also apply results concerning the number of fin-
gers (respectively controls) sufficient for force closure (re-
spectively small-time local controllability),with and without
friction at the contacts, but they are not listed here because
their application is direct. It should be noted, however, that
sufficient conditions for a force closure grasp of a spatial ob-
ject are also sufficient conditions for small-time local con-
trollability of the object.

Tighter sufficient conditions on the set of control forces F̂
can be found for small-time local controllabilityin zero grav-
ity and for subsets of the zero velocity space in the presence
of gravity.

Proposition 4 The planar object O is small-time locally
controllable about a state (q;0) if the negated gravitational
force direction, expressed in the object’s frame FO, is in the
interior of CHS2(F̂), the convex hull of the force directions
F̂ on the force sphere.

If the condition of Proposition 4 is satisfied, n� 3 and the
object is small-time locally controllable on the simply con-
nected three-dimensional subset of its configuration space
fq 2 C j �min < �w < �maxg, for a suitably defined world
frameFW . This is just the angle range for stable equilibrium
if all contacts were acting simultaneously.

Proposition 5 addresses small-time local controllability in
zero gravity, and is relevant to controlling the position and
attitude of a free-flying planar robot with gas jets, a hover-
craft with a single rotating thruster (Manikonda and Krish-
naprasad [16]), or an unactuated joint of an underactuated
manipulator (Arai [2]).

Proposition 5 In the absence of gravity, the object O is
small-time locally controllable about any state (q;0) if the
set of force directions F̂ positively spans a great circle of the
force sphere that does not lie in the � = 0 plane.



Figure 2: Without gravity, the object is small-time locally control-
lable at any state (q;0) by the three force directions shown.

Remark: The condition of Proposition 5 is satisfied by any
set of three or more force lines that intersect at a single point,
provided the force lines positively span the plane and the in-
tersection point is not at the object’s center of mass (see Fig-
ure 2).

Proof: We consider the system (Lewis and Murray [10])

(q; _q) =X0(q; _q)+u1X1(q; _q)+u2X2(q; _q);

where u1;u2 2 [�1;1], and the bracket terms
X3 = [X0;X1];X4 = [X0;X2];X5 = [X1; [X0;X2]];X6 =
[X0; [X1; [X0;X2]]].

Now we give some definitions necessary to apply Suss-
mann’s [22] sufficient condition for small-time local control-
lability. For a bracket termB, we define �i(B) as the number
of timesXi appears inB, and the degree ofB is

Pn

i=0 �i(B).
B is called a “bad” bracket if �0(B) is odd and �i(B) is even
for all i2f1; : : :;ng, andB is a “good” bracket otherwise. A
“bad” bracketB is “neutralized” at a state p ifB, evaluated at
p, is the linear combination of “good” brackets of lower de-
gree evaluated at p. Sussmann proved that if a system satis-
fies the Lie Algebra Rank Conditionat p and all “bad” brack-
ets evaluated at p are neutralized, then the system is small-
time locally controllable at p.

Consider the control vector fields X1 =
(0;0;0;cos�w; sin�w;0)

T and X2 = (0;0;0;0;0;1)T.
The force f1 acts through the center of mass in the x
direction of the object frame FO and f2 is a pure torque.
Calculating the brackets defined above, we find that
det(X1 X2 X3 X4 X5 X6) = 1; the Lie Algebra Rank
Condition is satisfied. Because we only use brackets up to
degree four, the only “bad” brackets to be neutralized are the
drift field (which vanishes at _q = 0) and the “bad” brackets
of degree three [X1; [X0;X1]] and [X2; [X0;X2]]. Here

[X1; [X0;X1]] = [X2; [X0;X2]] = (0;0;0;0;0;0)T

and the system is small-time locally controllable at states
(q;0). Considering X1, �X1, X2, and �X2 as four sepa-
rate control vector fields with nonnegative controls, the cor-
responding force directions f̂1, �f̂1, f̂2, and �f̂2 positively
span a great circle of the force sphere orthogonal to the � = 0
plane. ApplyingSussmann’s Proposition2.3 [22] we see that
any set of control forces which positively spans the same
great circle is sufficient for small-time local controllability.

Now consider a force f2 in the y direction of
the object frame FO with some torque about the
center of mass, and its corresponding vector field

X2 = (0;0;0;� sin�w;cos�w; � )
T . Then Xi, i = 1; : : :;6,

satisfies the Lie Algebra Rank Condition provided � is not
zero. The “bad” brackets

[X1; [X0;X1]] = (0;0;0;0;0;0)T

[X2; [X0;X2]] = (0;0;0;�2� cos�w;�2� sin�w;0)
T

are clearly neutralized (the latter being a multiple ofX1), and
the system is small-time locally controllable. The two forces
f1 and f2 can span any plane which is neither the � = 0 plane
nor orthogonal to the � =0 plane. As above, any set of forces
which positively spans the same plane also yields small-time
local controllability.

Taking the two cases together, we see that small-time local
controllability holds provided the set of force directions F̂
positively spans a great circle of the force sphere that does
not lie in the � = 0 plane. 2

Proposition 5 allows us to strengthen Theorem 2 for the
case of zero gravity.

Theorem 3 In the absence of gravity, any object O with a
closed, piecewise smooth curve � of available contact points
is small-time locally controllable at all states (q;0), unless
the contact is frictionless and� is a circle centered at the ob-
ject’s center of mass.

Proposition 5 implies that three force directions are suf-
ficient for small-time local controllability in the absence of
gravity.2 In contrast, a force closure grasp requires at least 4
unilateral force directions. Further, we cannot attain a force
closure grasp of any frictionless disk, but if the disk is not
centered at its center of mass, we have small-time local con-
trollability by point contact pushing. Dynamic pushing is
therefore a more complete primitive for planar manipulation.

Theorems 2 and 3 imply that a two-degree-of-freedom
robot, such as a point which can translate arbitrarily in the
plane, is sufficient to make the object small-time locally con-
trollable on its three-dimensional set of zero velocity states.

4.2 With Manipulator Constraints
The results of the previous section address the theoretical ca-
pabilities of dynamic nonprehensile manipulation from the
viewpoint of the object alone. Just as important, however,
are properties of the manipulator which is controlling the ob-
ject. While an object may be controllable by point contact,
the manipulator may not be able to achieve the contacts and
motions necessary to bring the object to the desired state.

Ideally, we would like to understand the global reacha-
bility properties of a manipulator/object system—given the
kinematic and dynamic specifications of a manipulator M,
the mass, radius of gyration, and shape of an object O, the
friction between them, and their initial state, where can the
manipulator take the object? Unfortunately such a question
appears to be very difficult to answer, so we are forced to look

2Recent work by Lewis [9] indicates that a single bidirectional force
(equivalently, two opposing unilateral forces) is insufficient, meaning that
three unilateral force directions are also necessary.



Figure 3: A one-degree-of-freedom prismatic robot manipulating
a rod. The rod represents an arbitrary polygon in vertex contact.

locally. Because the contact is nonprehensile, in any neigh-
borhood of a manipulator/object state, the best we can hope
for is small-time accessibility in the absence of gravity.

Proposition 1 says that a single control force direction,
fixed in the object frame, is sufficient for small-time acces-
sibility. This indicates that a one-degree-of-freedom manip-
ulator may be sufficient for small-time accessibility. This
would be an interesting result, as it implies that even the
simplest of robots is capable of performing interesting dy-
namic manipulation in the plane—the object’s reachable
state space is a full-dimensional subset of its six-dimensional
state space.

Weexamine this possibility for a single prismatic joint and
a single revolute joint.3

4.2.1 Example 1: Single Prismatic Joint
Consider the system of Figure 3. The manipulator M is a
single prismatic joint, and the object O is a unit mass rod in
point contact withM at an angle �w 2 (0;�). The distance
from the contact to the rod’s center of mass is r and the rod’s
radius of gyration is �. The rod represents an arbitrary poly-
gon in vertex contact with the manipulator.

The configuration of the system is q0 = (q; ym) 2 C0,
where ym is the position ofM in the world frame FW . The
state space of the system is the eight-dimensional manifold
TC0 = R3�S1�R4. We assume that the manipulator stays
in contact with the rod endpoint at all times, and it may apply
zero force (simply “following” the rod) or apply a nonzero
force. The three-dimensional submanifold of contact config-
urations is fq0 2 C0 j F (q0) = yw�ym� r sin�w = 0g.

The conditions thatO remain in contact withM are

dF (q0(t))
dt

= 0

d2F (q0(t))
dt2

= 0:

Erdmann [5, 6] refers to these constraints as the First and
Second Variation Constraints, respectively. These con-
straints state that the velocity and acceleration of the system

3Sign errors were propagated through equations in this section in
(Lynch [11]).

normal to the constraint surface must be zero. For the system
of Figure 3, these constraints are written

dF (q0(t))
dt

= _yw� _ym� r _�w cos�w = 0

d2F (q0(t))
dt2

= �yw� �ym+ r( _�2w sin�w� ��w cos�w) = 0:

(1)
(The state variables’ dependence on time is omitted for clar-
ity.) If these equations are satisfied at the initial state for
some manipulator control �ym, they remain satisfied for any
�ym that does not “pull away” from the rod.

Assuming the contact is frictionless, the acceleration ofO
must satisfy the constraints

�xw = 0 (2)

�ywr cos�w+�2 ��w = 0: (3)

Equation (2) constrains the direction of the contact force, and
Equation (3) constrains the force to pass through the contact
point. Using Equations (1)–(3), we solve for the acceleration
ofO as a function of the manipulator control �ym and the sys-
tem state (q0; _q0):

�xw = 0

�yw = �2K

��w = �rK cos�w;

K =
�ym� _�2wr sin�w
�2+ r2 cos2�w

:

Treating K as the control input, we can write the drift
vector field X0(q; _q) and the control vector field X1(q; _q)
(which are the projections of the vector fields on the system
state space TC0 to vector fields on the object’s state space
TC) as follows:

X0(q; _q) = ( _xw; _yw; _�w;0;0;0)
T

X1(q; _q) = (0;0;0;0; �2;�r cos�w)
T :

The drift field is written without a gravity term, but one can
be included in any direction without changing the results.

It is clear that O is not accessible as Equation (2) inte-
grates to yield the velocity constraint _xw = c1 and the posi-
tion constraint xw = c1t+c2. The situation is (locally) simi-
lar with slipping contact and nonzero friction, except the ap-
plied force is constrained to act along a friction cone edge
instead of the contact normal.

We might ask instead if the rod is small-time accessi-
ble on its reduced state space (yw;�w; _yw; _�w). Construct-
ing the vector fields X2 = [X0;X1], X3 = [X1; [X0;X1]],
and X4 = [X1; [X0; [X0;X1]]] and projecting to the re-
duced state space, we see that these vector fields span if
�4K6�4r4 cos2�w sin2�w 6= 0. This determinant is zero
if K = 0 (the manipulator cannot accelerate into the rod),
� = 0 (the rod has zero inertia, so there is no coupling be-
tween force and torque), or r = 0 (the contact is coincident



Figure 4: A one joint revolute robot manipulating a rod.

with the object’s center of mass). If none of these condi-
tions holds, then we need only consider the cases cos�w = 0
and sin�w = 0. Taking higher order brackets shows that the
rod is small-time accessible on its reduced state space unless
_�w =0 and cos�w=0 (the rod is perpendicular to the robot’s
surface). In this case, the rod cannot be rotated.

If there is nonzero friction at the contact between the rod
and the manipulator, and the contact is not initially slipping,
then in general the rod is small-time accessible on its full
state space. This derives from the fact that the direction of
force applied to the rod, within the friction cone, is a func-
tion of the manipulator’s acceleration (and the state of the
system). This gives control over the direction of the ap-
plied force, not just the magnitude as in the slipping case. Of
course, the rod must undergo both sticking and slipping con-
tact phases for it to be small-time accessible; otherwise the
configuration of the rod is confined to a two-dimensional set
where the endpoint is pinned to the manipulator.

4.2.2 Example 2: Single Revolute Joint
Now consider the system of Figure 4. The manipulator M
is a single revolute joint, and the object O is a rod as be-
fore. The configuration of the system is q0 = (q; �) 2 C0,
where � is the angle of the revolute joint. Assuming the sin-
gle link is thin, the three-dimensional submanifold of con-
tact configurations is given by fq0 2C0 jF (q0) = cos�(yw�
r sin�w)+ sin�(r cos�w � xw) = 0g. After collecting ac-
celeration, centrifugal, and Coriolis terms, the second varia-
tion constraint is written

d2F (q0(t))
dt2

= 0 =

�xw(� sin�)+ �yw(cos �)+ ��w(�r cos(�w� �))+

��(r cos(�w� �)�xw cos ��yw sin�)+

_�2w(r sin(�w� �))+

_�2(r sin(�w� �)+xw sin��yw cos�)+

_�w _�(�2r sin(�w� �))+

_� _xw(�2cos�)+ _� _yw(�2sin�): (4)

Assuming the contact is frictionless, we have constraints
on the direction and point of application of the contact force:

�xw cos�+ �yw sin� = 0 (5)

�ywr cos(�w� �)+ ��w�
2 cos� = 0: (6)

Solving Equations (4)–(6) for the acceleration of the object

in terms of the control �� and the system state (q0; _q0), we get

�xw = �2K sin� (7)
�yw = ��2K cos� (8)
��w = rK cos(�w� �); (9)

K = (��(r cos(�w� �)�xw cos��yw sin�)+

_�2w(r sin(�w� �))+

_�2(r sin(�w� �)+xw sin�� yw cos�)+

_�w _�(�2r sin(�w� �))+

_� _xw(�2cos�)+

_� _yw(�2sin�))=(r2 cos2(�w� �)+�2):

Equations (7)–(9) have the structure we expect—the force
is normal to the manipulator link and the torque about the
center of mass of O depends on the relative angle between
the object and the manipulator. The equations also show that
even for this simplest of systems, the force is a complex func-
tion of the state and control.

Using the object acceleration calculated above, we can
again write the drift and control vector fields:

X0(q0; _q0) = ( _xw; _yw; _�w; _�;0;0;0;0)
T

X1(K;q0; _q0) = (0;0;0;0;�xw; �yw; ��w; ��)
T :

We treat K as the control input, which yields simple forms
for �xw, �yw, and ��w. The angular acceleration �� is written in
terms of K. Note that X1 is not linear in K.

Because the acceleration of the object is a function of the
manipulator state (�; _�), not just its acceleration ��, we can-
not immediately project the vector fields to vector fields on
the object’s state space TC as we did with the prismatic joint.
We must look at the vector fields X0 and X1, and their Lie
brackets, on the full state manifold TC0. After we have con-
structed the Lie brackets, we can look at their projection to
TC to determine the accessibility of O.

As in the proof of Proposition 1, we construct the vec-
tor fields X2 = [X0;X1], X3 = [X1; [X0;X1]], X4 =
[X1; [X0; [X0;X1]]], X5 = [X1; [X1; [X0; [X0;X1]]]], X6 =
[X0; [X1; [X1; [X0; [X0;X1]]]]]. These vector fields are
highly complex trigonometric functions; in fact, X6 consists
of thousands of terms and takes more than a minute to com-
pute using Mathematica running on a Sun SPARC 20. To
completely answer the question of small-time accessibility,
we must consider even higher order bracket terms. Due to
the complexity of the bracket terms, we focus on the partic-
ular case of zero velocity states (q0;0).

Evaluated at zero velocity and projected to TC, the vec-
tor fields X1 : : :X6 take the form (0;a)T , (�a;0)T , (0;b)T ,
(�b;0)T , (0;c)T , (�c;0)T , where a;b;c are three-vectors
and 0 is the zero three-vector. Because of this form, it is suf-
ficient to look at det(a b c) to determine accessibility. The
determinant is 4K6�4r2e, where e is a complex trigonomet-
ric function of the configuration of the system. Thus, from
a zero velocity state, the rod is small-time accessible unless
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frictionless

Figure 5: Dynamically singular nonprehensile systems. (a) The
system is initially at rest. Any acceleration of the prismatic joint
either results in zero force applied to the object, or a force through
the center of mass. This dynamic singularity is unstable. (b) If the
object is initially at rest in line contact with the manipulator, no ac-
celeration of the manipulator can cause the object to rotate. Even if
the robot has two or more prismatic joints, the system may be sin-
gular with line contact. (c) If the disk is frictionless and centered at
its center of mass, the system is dynamically singular at every state.
The angular velocity of the disk cannot be changed.

K = 0 (the manipulator cannot apply a force, as when the
contact point is at the pivot of the manipulator), �= 0, r= 0,
or e= 0. Because e = 0 defines a lower-dimensional mani-
fold of the configuration space, the rod is small-time acces-
sible from a generic configuration.

We conjecture that by taking higher order Lie brackets, a
rod with � 6= 0; r 6= 0 can be shown to be small-time accessi-
ble at all states provided the manipulator can apply a force.
Unlike the case of a frictionless prismatic joint, we have ac-
cessibility with a frictionless revolute joint because the force
angle varies with the joint angle�, giving the robot some con-
trol over the direction of the applied force.

4.2.3 Discussion

The example above shows that even a one-degree-of-
freedom revolute robot can take an object to a six-
dimensional subset of its state space by using slipping
and rolling between the robot and the object. We should
therefore be able to do interesting planar dynamic manip-
ulation with even the simplest of robots. The four state
equality constraints of the robot link (pivot point is fixed)
do not translate to state equality constraints for the object.

The examples above consider edge-vertex contacts only.
Smooth objects and manipulators can be handled by modify-
ing the constraints. Smooth surfaces may result in other hin-
drances to small-time accessibility; for example, a friction-
less disk centered at its center of mass can never be small-
time accessible by any type of contact.

The system is dynamically singular at a system state
(q0; _q0) if the set of motion directions of O loses rank on
T(q; _q)TC. (The object may still be accessible if the system
can break the dynamic singularity at some time T .) Figure 5
gives examples of dynamically singular systems.

In short, the object is not small-time accessible if (1) the
linear force direction is fixed in the world frame (as with
a frictionless prismatic joint); (2) the force always passes
through the object’s center of mass (as with a frictionless
disk, or if the center of mass of the object is coincident with
the contact point); or (3) the inertia of the object is zero, giv-
ing no coupling between forces and torques.

x

y

gravity θ

Figure 6: The NSK one joint direct-drive arm.

Figure 7: Manipulation phases: dynamic grasp, slip, roll, and free
flight.

Although we have shown that the accessible state space
may be full dimensional, it appears extremely difficult to cal-
culate the shape of the accessible state space from a given
state. Ideally we would have a representation similar to a
robot’s kinematic workspace.

5 Experimental Setup
To test the manipulation capability of a single joint, we con-
structed a one joint direct-drive robot to perform experiments
in dynamic manipulation (Figure 6). The planning problem
is to find an arm trajectory to take the object to a goal state
using a sequence of manipulationphases, includingdynamic
grasp, slip, roll, and free flight (Figure 7). (A dynamic grasp
is defined as a robot acceleration that keeps the object fixed
against it [18].) By sequencing these phases, we can control
more degrees-of-freedom of the object.

We have cast the planning problem as a nonlinear op-
timization. The joint trajectory and manipulation phase
switching times are iteratively modified to find a trajectory
that takes the object to the goal state using dynamic grasp,
roll, and free flight phases (slip is not currently used). Con-
tact friction constraints are also enforced. We have used the
planner to solve dynamic tasks such as snatching an object
from a table, rolling an object on the surface of the arm, and
throwing and catching. The planned trajectories have been
successfully implemented on the one joint robot. An exam-
ple rolling task is shown in Figures 8–10.

Details on the planner and experiments can be found in
(Lynch [11]; Lynch and Mason [15]; Lynch and Mason [12]).

6 Conclusion
We have shown that by not grasping, a one joint robot can
exploit centrifugal and Coriolis forces to control the motion
of a planar part. Compared to conventional pick and place,
the complexity of the robot system is transferred from hard-
ware to planning and control. Future work should address
the geometry of the object’s accessible state space and feed-
back control of the manipulation trajectories.
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Figure 8: The goal is to roll the square 90 degrees counterclock-
wise while minimizing the squared impact velocity. The contact
friction coefficient is 1.5. The manipulation phases are dynamic
grasp, roll, and finally stable equilibrium. The end angle of the arm
is limited to make the roll experimentally robust to impact. Oth-
erwise the solution is to end the roll with zero impact velocity and
the arm at�45 degrees (with the center of mass balanced over the
vertex), which is not robust. Note the windup found by the planner.
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Figure9: The arm trajectory is represented as a cubic B-spline with
nine knot points. Shown here are the initial trajectory guess, the
solution, and intermediate iterates.

Figure 10: Implementation of the roll on the robot with a wooden
27 cm square frame.
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