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Abstract

We are interested in using low degree-of-freedom robots to
perform complex mani pul ationtasks by not grasping. By not
grasping, therobot can userolling, dipping, andfreeflight to
control more degrees-of-freedomof the part. To demonstrate
thiswestudy the controllability propertiesof planar dynamic
nonprehensile manipulation. We show that almost any pla-
nar object is small-time locally controllable by point con-
tact, and the controlling robot requires only two degrees-of-
freedom (a point trangatingin the plane). We then focus on
a onejoint mani pul ator (with a two-dimensi onal state space)
and show that even this simplest of robots, by using slipping
and rolling, can control an object to a full-dimensional sub-
set of its six-dimensional state space. We have developed a
onejoint robot to performa variety of dynamic tasks, includ-
ing snatching an object fromatable, rolling an object on the
surface of the arm, and throwing and catching.

1 Introduction

We are interested in using low degree-of-freedom robotsto
perform complex manipulation tasks by not grasping (non-
prehensilemanipulation). By not grasping, therobot can use
gravitational, centrifugal, and Coriolisforces as virtual mo-
torsto control more degrees-of-freedom of the part. The ex-
tramotion freedoms of the part are exhibited asrolling, dip-
ping, and free flight. An exampleis shooting a basketbal|—
the ball is sent to the basket by using rolling and free flight
(Figure 1).

One obvious advantage is that we may be able to build
cheaper, simpler robots with fewer motors and joints. This
comes at the expense of increased complexity in planning
and control. Planning for pick and place manipulation re-
quires only a kinematic model of the world; dynamic ma
nipulation requires a dynamic model. In a previous paper
(Lynch and Mason [15]) we addressed the planning problem
for dynamic nonprehensile manipulation—how to choose
mani pul ator traj ectories to achieve the desired motion of the
object vianonlinear coupling throughthe nonprehensilecon-
tact.

In this paper we study controllability properties of planar
dynamic nonprehensile manipulation. The results paralle
our previousresultson the controllability of quasi static push-
ing (Lynch and Mason [13]), but now we have second-order
dynamicsand there is no support friction resisting motion of
the object. Thereisaso adrift term corresponding to the ob-
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Figure1: Shooting a basketball using rolling contact.

ject’smotionwhen no control forceisapplied. The problems
studied here can bethought of as dynamic pushing—imagine
pushing or batting an object floating on an air table (which
may betiltedtoyield agravitationa acceleration inthe plane
of thetable).

We begin by assuming no constraints on the motion of the
robot, and we show that almost any planar object is small-
timelocally controllable by pushing with point contact. The
controlling robot requires only two degrees-of-freedom (a
point trandating in the plane). We then focus on a one
joint manipulator (with a two-dimensiona state space) and
show that even thissimplest of robots, by using slipping and
rolling, can control an object to a full-dimensional subset of
its six-dimensional state space. We have developed a one
joint robot to perform a variety of dynamic tasks, including
snatching an object from atable, rolling an object on the sur-
face of thearm, and throwing and catching.

This work pursues a minimalist approach to robotic ma-
nipulation. We are motivated by the academic interest to
understand the simplest mechanisms capable of performing
a given task and the economic motive to construct simpler,
cheaper robots. Simple robots employing dynamic nonpre-
hensile manipulation may be especialy effective in indus-
trial parts feeding or in space, where dynamic effects dom-
inate.

Ths paper summarizes work presented in (Lynch [11]).

2 Redated Work

Minimalist systems have received increasing attention in the
roboticsliterature. Erdmann [7] studied minimal sensor de-
sign based on a task description. Bicchi and Sorrentino [4]
demonstrated minimalist dextrous manipulation by rolling
an object between two flat palms. Our previous work on
1JOC (1 Joint Over aConveyor) (Akellaet al. [1]) isclosaly
related to the work described in this paper. 1JOC uses a se-
guence of pushesby asinglejoint robot to positionand orient



parts coming down the conveyor in random configurations.

The problems studied in this paper are related to the con-
trollability of aplanar free-flying robot with gasjets, aforced
planar rigid body (Lewis and Murray [10]), a hovercraft
(Manikondaand Krishnaprasad [16]), or an unactuated link
of arobot arm (Ara [2]). One distinguishing feature of
nonprehensile manipulation is that contact forces are uni-
lateral, while most controllability analyses assume bidirec-
tional controls. An exception isthe work by Goodwine and
Burdick [8] based on Sussmann’ s[22] general theoremon lo-
cal controllability.

Dynamic nonprehensile manipulation is also similar to
the control of underactuated manipulators, except the unac-
tuated freedoms are controlled through unilateral frictional
contacts. The proof that a one joint robot can control an ob-
ject to a full-dimensional subset of its state space is closaly
related to work by Oriolo and Nakamura [21] on theintegra-
bility of second-order constraints on underactuated manipu-
lators. Building on previouswork on the control of a passive
joint, Arai and Khatib [3] demonstrated rolling of a cube on
apaddieheld by aPUMA, akind of dynamic nonprehensile
manipulation.

3 Definitionsand Assumptions

All problems considered in this paper are planar. The planar
object O can be contacted anywhere along its closed, piece-
wisesmooth perimeter I'. Coulomb friction acts between the
robot and the object.

The configuration space of the object isC = SE(2) =
R2 x S1. An object frame Fo isfixed to the center of mass
of the object. Coordinatesin thisframe are (z,y,4)”. The
configuration of Fp in the world frame Fyy iswritten q =
(Tw,yuw, dw)T . The state space of the object is the tangent
bundleTC = SE(2) x R?, and the object’ sstate is given by
(9,9). The tangent space at (q, q) iswritten Tiq,¢,7C.

Generdized forcesf = (f,, f,,7)* are written in the ob-
ject frame Fo». A pure force is a force with a zero torque
component (7 = 0) and a pure torque is aforce with a zero
linear component (f, = f, = 0). A force direction f =
(fe, £y, 7)T isdefined asf/|f|. The force sphereisthe two-
dimensional unit sphere S? of all force directions.

4 Accessbility

This section studiesthe accessibl e state space of aplanar ob-
ject O during dynamic nonprehensile manipulation. The ob-
ject is accessible from (q, q) if the set of states reachable
from(q, q) has nonempty interior in the state space. The ob-
ject issmall-timeaccessible from(q, g) if, for any neighbor-
hood U of (q,q), the set of reachable states without leav-
ing U has nonempty interior. The object is controllablefrom
(q,q) if, starting from (q, g), the object can reach any point
in the state space. The object is small-timelocally control-
lable from (q, q) if, for any neighborhood U of (q,q), the
set of reachable states without leaving U contains a neigh-
borhood of (q, ).

We begin by examining the case of no constraints on the

motion of the manipulator M which can contact any point on
the object’s perimeter I'. With this assumption, we demon-
strate necessary and sufficient conditionsfor the controll abil-
ity of the object by pushing and batting.

Because of the difficulty of breaking contact and recon-
tacting a moving object, we then include manipulator mo-
tion constraints in the analysis. We study the simplest pos-
sible case: a single-degree-of-freedom robot which main-
tains point contact with the object as it moves. We show
that a one-degree-of-freedom revol uterobot, with just atwo-
dimensiona state space, can take a planar object to a six-
dimensional subset of its six-dimensional state space. The
equality constraints on the motion of the manipulator (the
pivot remains fixed) usually do not trand ate to equality con-
straints on the motion of the object.

4.1 NoManipulator Constraints

To visualize the control system with no manipulator con-
straints, imagine an object floating on an air table which may
be tilted to yield a gravitationa acceleration in the plane of
the table. The object is pushed or batted by a manipulator.
Alternatively, the object can be considered to be a planar
free-flying rigid body with gasjets attached to its perimeter.
The angle the gas jets can take with respect to the normal of
the perimeter is determined by the friction coefficient p.

The control system iswritten

(,0) = Xo(q,0) +uXi(q,0), i€{l,....n},

where X is a drift vector field, « € [0,00) is a nonnega
tivescalar control, and X; isthecontrol vector field, where
chooses which control vector field isused. (Note that only
one control force is applied at a time, and v must be non-
negative dueto unilateral contact.) The vector field X;, i €
{1,...,n}, correspondsto aforcedirection f; (and resulting
acceleration direction &;) fixed in the object frame 7. For
simplicity, themass and radius of gyration of O are assumed
to beunit, yieldingf; = &;. The set of force directionsU;f; is
denoted F. Forces arise from point contact on the perimeter
I of the object. .

The state of O '5(q,Q) = (xwaywa¢waijwaywa¢w)Tny and
the tangent vector is (q, Q) = (xw a.ywa¢wa.l;waywa¢w)T-
Thedriftfield X, iswritten (4, % , ¢, 0,0,0)7 4+ g, where
g is the gravitationa acceleration vector (0,0,0,0,¢,0)%.
The gravitational acceleration ¢ may be either 1 or 0.

We first consider a single control, » = 1. To determine
accessibility, we can examine the Lie algebra generated by
the vector fields Xy and X . (Recal that a systemis small-
time accessible at p if it satisfies the Lie Algebra Rank Con-
dition—thevector fieldsand their Lie bracketsevaluated at p
span the tangent space at p [20].) Without loss of generdity,
assume thecontrol force applied totheobject is(0, f,, 7) in
the object frame Fo, so the control vector field X iswrit-
ten (0,0,0, — f,sin ¢y, fy coséy,, 7)T. We define the Lie
bracket vector fidds X5 = [Xo,Xl], X3 = [Xl, [Xo,Xl]],
Xy = [Xy, [Xo, [Xo, Xu]]], X5 = [ Xy, [X1, [Xo, [Xo, Xu]]]],
Xg = [Xo, [Xl, [Xl, [Xo, [Xo,Xl]]]]] Wefind that

det(X1 Xz XS X4 XS X6) = _16f;7-8a



indicating that these six vector fields span the tangent space
TiqqTC a any state (q,q), provided f, # 0 (the control
must not be a pure torque) and T # 0 (the control must not
be apure force through the center of mass). Notethat apure
torqueisnot possibleby frictional contact with the perimeter
of abounded object.

The tangent vectors X:(q,d), X5(q,q), and Xs(q,q)
spantheacceleration spaceat (q, ), and X» (4, §), Xa(q, §),
and X(q, ) span the velocity space.

Proposition 1 The stateof theplanar object O issmall-time
accessible if and only if F contains a force direction which
isneither a pureforce nor a puretorque.

Proposition1impliesthat al planar objectsare small-time
accessi ble by point contact, except for africtionlessdisk cen-
tered at its center of mass. For such an object, all contacts
withits perimeter result in a pure force.

Clearly n = 1 isnever sufficient for controllability; the an-
gular velocity of the object can only change in one direction.
It can be shown that n = 2 is sufficient for controllability,
provided the signs of 7, and 7, are opposite.

Proposition 2 The state of the planar object O is control-
lable, with or without gravity, if and only if F containsforce
directionsf; andf, suchthat 7, > 0, 75 < 0, and they arenot
both pure torques.

Proof: See (Lynch and Mason [14]).

Manikondaand Krishnaprasad [ 16] proved asimilar result
for thecase f; = —f5 (not pure forces or torques).

Proposition 2 implies that any object is controllable by
point contact with its perimeter I' except for a frictionless
disk centered at its center of mass. In fact, if friction is
nonzero, Proposition 2 impliesthat the object is controllable
from asingle point of contact.

Theorem 1 Any planar object O with a closed, piecewise
smooth curve T' of available contact points is controllable
by pushing at a single point of T" if the friction coefficient is
nonzero.

Proof: Theradiusfunctionr : ' — R measures the distance
fromthe center of massto points~ on the object’s perimeter
I'. At each point v where dr(vy)/dT = 0, the contact nor-
mal of I' passes through the center of mass. There are at
least two such points because T' is closed. If »(y) # 0 and
dr(7)/dI = 0, thenif thefriction coefficient isnonzero, pos-
itiveand negative torques can be applied from . The object
is controllable by Proposition 2. a

Wenow consider conditionsfor small-time local control-
lability about a state (q,0). The object O is small-time lo-
cally controllableabout (g, 0) if, given any neighborhood U/
of (g,0), (q,0) isinteriorto the set of states reachable by tra-
jectoriesremaining in U. Thisisa stronger condition than
global controllability.

Proposition 3 In the presence of gravity (or other distur-
bance forces), the planar object @ issmall-timelocally con-
trollableat all states (g, 0) if and only if the set of force di-
rections £ positively spans the force sphere. A minimum of
four controls(n > 4) is necessary.

The proof of Proposition 3 is straightforward and can be
found in (Lynch [11]). Thisis the familiar condition for a
“forceclosure’ grasp of aplanar object; thedifferenceisthat
foragrasp, al contactsare simultaneously active. Wecan di-
rectly apply varioustheoremsregarding the existence of pos-

itive grasps.

Theorem 2 Any planar object O with a closed, piecewise
smooth curve I' of available contact pointsis small-timelo-
cally controllableat all states (g, 0), with or without gravity,
unlessthe contact isfrictionlessand I" isacircle.

Proof: See, e.g., (Mishraetal.[19]; Markenscoff et al. [17]).

We can also apply results concerning the number of fin-
gers (respectively controls) sufficient for force closure (re-
spectively small-timelocal controllability), with and without
friction at the contacts, but they are not listed here because
their application isdirect. It should be noted, however, that
sufficient conditionsfor aforce closure grasp of aspatial ob-
ject are also sufficient conditions for small-time local con-
trollability of the object.

Tighter sufficient conditionson the set of control forces
can befound for small-timelocal controllabilityinzero grav-
ity and for subsets of the zero velocity space in the presence
of gravity.

Proposition 4 The planar object @ is small-time locally
controllableabout a state (g, 0) if the negated gravitational
force direction, expressed in the object’sframe Fo, isin the
interior of C'H 52 (F), the convex hull of the force directions
F on the force sphere.

If the condition of Proposition4 issatisfied, » > 3 and the
object is small-time locally controllable on the smply con-
nected three-dimensiona subset of its configuration space
{Q € C | min < bw < Gmas}, for asuitably defined world
frame Fyy. Thisisjust theanglerangefor stable equilibrium
if al contacts were acting simultaneously.

Proposition 5 addresses small-timelocal controllabilityin
zero gravity, and is relevant to controlling the position and
attitude of a free-flying planar robot with gas jets, a hover-
craft with a single rotating thruster (Manikonda and Krish-
naprasad [16]), or an unactuated joint of an underactuated
manipulator (Ara [2]).

Proposition 5 In the absence of gravity, the object O is
small-time locally controllable about any state (g, 0) if the
set of forcedirections F positively spansa great circle of the
force spherethat does not liein the r = 0 plane.



Figure?2: Without gravity, the object is small-time locally control-
lable at any state (g, 0) by the three force directions shown.

Remark: The condition of Proposition 5 is satisfied by any
set of three or moreforce linesthat intersect at asingle point,
provided the force lines positively span the plane and the in-
tersection pointisnot at the object’s center of mass (see Fig-
ure?2).

Proof: We consider the system (Lewis and Murray [10])

(an) = Xo(q,Q) +U1X1(an) +U2X2(an)a

where wj,us € [-1,1], and the bracket terms
X3 = [Xo, X1], Xa = [Xo, Xo], X5 = [X1, [ X0, X2]], X6 =
[Xo, [Xla [XO’XZ]]]

Now we give some definitions necessary to apply Suss-
mann’s[22] sufficient conditionfor small-timelocal control-
lability. For abracket term B, wedefine 6;( B) asthenumber
of times X; appearsin B, andthedegreeof Bis) . & (B).
Biscaleda“bad” bracket if §,(B) isodd and ;(B) iseven
foralie {1,...,n},and Bisa“good” bracket otherwise. A
“bad” bracket B is“neutralized” at astatep if B, evaluated at
p, isthelinear combination of “good” brackets of lower de-
greeevaluated at p. Sussmann proved that if asystem satis-
fiestheLie AlgebraRank Conditionat p and al “bad” brack-
ets evaluated at p are neutralized, then the system is small-
timelocally controllableat p.

Consider the control vector fidds X; =
(0,0,0,co8y,sin¢,,0)7 and X, = (0,0,0,0,0,1)%.
The force f; acts through the center of mass in the «
direction of the object frame F» and f, is a pure torque.
Calculating the brackets defined above, we find that
det(X; X3 X3 X4 X5 Xg) = 1; the Lie Algebra Rank
Conditionis satisfied. Because we only use brackets up to
degreefour, the only “bad” bracketsto be neutralized arethe
drift field (which vanishes a q = 0) and the “bad” brackets
of degreethree [ X, [ Xy, X1]] and [ X3, [ X0, X3]]. Here

[Xla [XO,XI]] = [XZa [XOaXZ]] = (OaOaOaO’O’O)T

and the system is smadl-time localy controllable a states
(q,0). Considering X7, — X1, X2, and — X as four sepa-
rate control vector fields with nonnegative controls, the cor-
responding force directions f;, —f1, 2, and —f, positively
spanagreat circle of theforce sphere orthogonal tother = 0
plane. Applying Sussmann’sProposition2.3[22] we seethat
any set of control forces which positively spans the same
gresat circle is sufficient for small-timelocal controllability.

Now consider a force f; in the y direction of
the object frame F» with some torque about the
center of mass, and its corresponding vector field

X5 =1(0,0,0,—singy,,cos ¢y, 7)7. Then X;, i =1,....6,
satisfies the Lie Algebra Rank Condition provided 7 is not
zero. The“bad” brackets

[Xla [XOaXI]] = (O’OaOaOaOaO)T
[X2, [ X0, Xao]] = (0,0,0,—27c08 ¢y, —27i0 ¢y, 0)7

areclearly neutralized (thelatter being amultipleof X ), and
the system issmall-timelocally controllable. Thetwo forces
f; and f can span any planewhichisneither ther = 0 plane
nor orthogonal tothe = 0 plane. Asabove, any set of forces
which positively spansthe same plane aso yieldssmall-time
local controllability.

Taking thetwo casestogether, we see that small-timeloca
controllability holds provided the set of force directions F
positively spans a great circle of the force sphere that does
not lieinther = 0 plane. O

Proposition 5 alows us to strengthen Theorem 2 for the
case of zero gravity.

Theorem 3 In the absence of gravity, any object © with a
closed, piecewise smooth curve I of availablecontact points
is small-timelocally controllableat all states (q,0), unless
thecontactisfrictionlessand I isa circle centered at the ob-
ject’s center of mass.

Proposition 5 implies that three force directions are suf-
ficient for small-time local controllability in the absence of
gravity.? In contrast, aforce closure grasp requires at least 4
unilateral force directions. Further, we cannot attain aforce
closure grasp of any frictionless disk, but if the disk is not
centered at its center of mass, we have small-timelocal con-
trollability by point contact pushing. Dynamic pushing is
thereforeamore compl ete primitivefor planar manipulation.

Theorems 2 and 3 imply that a two-degree-of-freedom
robot, such as a point which can trandate arbitrarily in the
plane, issufficient to make the object small-timelocally con-
trollableon its three-dimensiona set of zero velocity states.

4.2 With Manipulator Constraints

Theresults of the previous section addressthetheoretical ca-
pabilities of dynamic nonprehensile manipulation from the
viewpoint of the object alone. Just as important, however,
are propertiesof themanipulator which iscontrollingthe ob-
ject. While an object may be controllable by point contact,
the manipulator may not be able to achieve the contacts and
motions necessary to bring the object to the desired state.
Idedlly, we would like to understand the global reacha
bility properties of a manipulator/object system—given the
kinematic and dynamic specifications of a manipulator M,
the mass, radius of gyration, and shape of an object O, the
friction between them, and their initial state, where can the
manipulator take the object? Unfortunately such a question
appearsto bevery difficultto answer, soweareforced to ook

?Recent work by Lewis [9] indicates that a single bidirectional force
(equivalently, two opposing unilateral forces) is insufficient, meaning that
three unilateral force directions are also necessary.



Ym

J

Figure 3: A one-degree-of-freedom prismatic robot manipulating
arod. Therod represents an arbitrary polygon in vertex contact.

locally. Because the contact is nonprehensile, in any neigh-
borhood of a manipulator/object state, the best we can hope
for issmall-time accessibility in the absence of gravity.

Proposition 1 says that a single control force direction,
fixed in the object frame, is sufficient for small-time acces-
sihility. Thisindicates that a one-degree-of -freedom manip-
ulator may be sufficient for small-time accessibility. This
would be an interesting result, as it implies that even the
simplest of robotsis capable of performing interesting dy-
namic manipulation in the plane—the object’s reachable
state space isafull-dimensional subset of itssix-dimensional
state space.

Weexaminethispossibility for asingleprismaticjoint and
asinglerevolutejoint.?

421 Examplel: SinglePrismatic Joint

Consider the system of Figure 3. The manipulator M isa
single prismatic joint, and the object O isaunit massrodin
point contact with A1 at an angle ¢, € (0, 7). The distance
from the contact to therod’ scenter of massisr and therod's
radiusof gyrationisp. Therod represents an arbitrary poly-
gon in vertex contact with the manipulator.

The configuration of the system is @' = (q,ym) € C,
where y,,, isthe position of M intheworld frame Fy. The
state space of the system is the eight-dimensiona manifold
TC' =R3 x S x R*. We assume that the manipul ator stays
in contact with therod endpoint at al times, and it may apply
zero force (simply “following” the rod) or apply a nonzero
force. The three-dimensiona submanifold of contact config-
urationsis{g’ € ¢’ | F (') = yu — ym — rsing,, = 0}.

The conditionsthat O remain in contact with M are

@) _
dt

CEEW)
dt? ’

Erdmann [5, 6] refers to these constraints as the First and
Second Variation Constraints, respectively. These con-
straints state that the velocity and accel eration of the system

3Sign errors were propagated through equations in this section in
(Lynch[11]).

normal to the constraint surface must be zero. For thesystem
of Figure 3, these constraints are written

dF(q'(t))
dt
d*F(q'(t - -
% = Yw — Ym +7Q(¢i; SN @y — G COSd)w) =0.
D
(The state variables’ dependence on timeisomitted for clar-
ity.) If these equations are satisfied at the initial state for
some manipulator control ¢,,, they remain satisfied for any
Um that does not “pull away” from therod.
Assuming the contact i sfrictionless, the accel eration of O
must satisfy the constraints

= Yuw —ym—rq;wcosqbw =0

i o= 0 )
o cospy +p 0w = 0. ©

Equation (2) constrainsthedirection of the contact force, and
Equation (3) constrains the force to pass through the contact
point. Using Equations(1)—(3), we solvefor the acceleration
of @ asafunction of the manipulator control 4, and the sys-
tem state (0, ¢'):

Zy = 0
ju = K
q}éw = —rKcosg¢,,

ym - ¢g¢; rsin ¢w
p24+ricosigy

Treating K as the control input, we can write the drift
vector field X(q,q) and the control vector field X;(q,q)
(which are the projections of the vector fields on the system
state space 7'C’ to vector fields on the object’s state space
TC) asfollows:

XO(qaq) =
Xl(qaq) =

The drift field is written without a gravity term, but one can
beincluded in any direction without changing the results.

It is clear that O is not accessible as Equation (2) inte-
grates to yield the velocity constraint #,, = ¢; and the posi-
tionconstraint z,, = ¢1t +¢3. Thesituationis (locally) simi-
lar with slipping contact and nonzero friction, except the ap-
plied force is constrained to act along a friction cone edge
instead of the contact normal.

We might ask instead if the rod is small-time accessi-
ble on its reduced state space (Y, , ¢, Y, $w). CONStruct-
ing the vector fields Xy = [Xo,Xl], X3 = [Xl, [Xo,Xl]],
and X, = [Xy,[Xo,[X0, X1]]] and projecting to the re-
duced state space, we see that these vector fields span if
—4KCp*r cos® ¢y, sin® ¢, # 0. This determinant is zero
if X' = 0 (the manipulator cannot accelerate into the rod),
p = 0 (the rod has zero inertia, so there is no coupling be-
tween force and torque), or » = 0 (the contact is coincident

K=

(#, fho, $w,0,0,0)"
(0,0,0,0, p% —rcosgy,)T.
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Figure4: A onejoint revolute robot manipulating a rod.

with the object’s center of mass). If none of these condi-
tionsholds, then we need only consider the cases cos ¢, = 0
and sin¢,, = 0. Taking higher order brackets showsthat the
rod issmall-time accessible onitsreduced state space unless
¢ = 0andcos ¢, = 0 (therodisperpendicular totherobot’s
surface). In thiscase, the rod cannot be rotated.

If there is nonzero friction at the contact between the rod
and the manipulator, and the contact is not initially sipping,
then in genera the rod is small-time accessible on its full
state space. This derives from the fact that the direction of
force applied to the rod, within the friction cone, is a func-
tion of the manipulator’s acceleration (and the state of the
system). This gives control over the direction of the ap-
pliedforce, not just the magnitudeasin the dlipping case. Of
course, therod must undergo both sticking and slipping con-
tact phases for it to be small-time accessible; otherwise the
configuration of therod is confined to atwo-dimensional set
where the endpoint is pinned to the manipulator.

4.2.2 Example2: Single Revolute Joint

Now consider the system of Figure 4. The manipulator M
is asingle revolute joint, and the object O is arod as be-
fore. The configuration of the system isq’ = (q,6) € (,
where§ isthe angle of the revolutejoint. Assuming the sin-
glelink is thin, the three-dimensional submanifold of con-
tact configurationsisgivenby {q’ € C' | F(Q') = cos 0(yw —
rsingy ) + sind(rcos ¢, — 2y, ) = 0}. After collecting ac-
celeration, centrifugal, and Coriolisterms, the second varia-
tion constraint iswritten

d°F(q'(t))
dt? .
Zyy (—sinf) + gy (cos 0) + ¢y (—r cos(¢y — 0)) +
é(r c08(y — ) — @y cOs — yyy sinfl) +
¢%u (rsin(¢y —0))+
éz(r sin(gy — 0) + xy sinf — yy, cosf) +
q;wé(—Qrsin(qbw -0+
éi‘w(—Qcosﬁ)—i—éyw(—QsinH). 4

=0=

Assuming the contact is frictionless, we have constraints
on thedirection and point of application of the contact force:

Fo cOsO+ gy sinfd = 0 (5)
o 7 cOS( oy —9)+q}§wp2 cos = 0. (6)

Solving Equations (4)—(6) for the acceleration of the object

in terms of the control § and the system state (q,9), weget

iy = p?Ksind (7
Yo = —p°Kcosb (8)
bo = rK cos( gy —0), (9

(0(rcos(pyy — ) — ay costl — yy, sinf) +
62, (rsin(g, —0)) +

éz(r sin( gy —0) + @y sinf — yy, cosf) +
q;wé(—Qrsin(qbw -0+

0 (—2cosf)+

09 (—25in0))/(1* cos (G — 0) + p?).

Equations (7)—(9) have the structure we expect—theforce
is normal to the manipulator link and the torque about the
center of mass of O depends on the relative angle between
the object and the manipul ator. The equations a so show that
evenfor thissimplest of systems, theforceisacomplex func-
tion of the state and control.

Using the object acceleration calculated above, we can
again write the drift and control vector fields:

Xo(d,q) =
Xl([(aq/aq/) =

Wetreat K as the control input, which yields simple forms
for Z.,, 4w, and ¢,,. The angular acceleration @ iswrittenin
termsof /. Notethat X, isnot linear in K.

Because the acceleration of the object is afunction of the
manipulator state (¢, ¢), not just its acceleration ¢, we can-
not immediately project the vector fields to vector fields on
theobject’ sstate space 7'C aswedid with the prismaticjoint.
We must 1ook at the vector fields X, and X, and their Lie
brackets, on thefull state manifold 7C’. After we have con-
structed the Lie brackets, we can look at their projection to
T'C to determine the accessibility of O.

As in the proof of Proposition 1, we construct the vec-
tor fidds X, = [Xo,Xl], X3 = [Xl, [Xo,Xl]], Xy =
[X1, [Xo, [Xo, Xu]]), X5 = [Xy, [X1, [Xo, [Xo, Xu]]]], X6 =
[Xo,[Xl,[Xl,[Xo,[Xo,Xl]]]]]. These vector fields are
highly complex trigonometricfunctions; in fact, Xs consists
of thousands of terms and takes more than a minute to com-
pute using Mathematica running on a Sun SPARC 20. To
completely answer the question of small-time accessibility,
we must consider even higher order bracket terms. Due to
the complexity of the bracket terms, we focus on the partic-
ular case of zero velocity states (', 0).

Evaluated at zero velocity and projected to 7°C, the vec-
tor fields X ... X¢ take theform (0,a)%, (—a,0)7, (0,b)7,
(=b,0)%, (0,c)T, (—c,0)", where a, b, c are three-vectors
and 0 isthe zero three-vector. Because of thisform, it is suf-
ficient to look at det(a b c) to determine accessibility. The
determinantis 4K °p*r?e, where e isacomplex trigonomet-
ric function of the configuration of the system. Thus, from
azero velocity state, the rod is small-time accessible unless

K =

(0, Yo b, 6,0,0,0,0)7
(0,0,0,0, %4, i, bu,0)T .
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Figure 5: Dynamically singular nonprehensile systems. (a) The
systemis initially at rest. Any acceleration of the prismatic joint
either results in zero force applied to the object, or a force through
the center of mass. This dynamic singularity is unstable. (b) If the
objectisinitialy at rest in line contact with the manipulator, no ac-
celeration of the manipulator can causethe object to rotate. Evenif
the robot has two or more prismatic joints, the system may be sin-
gular with line contact. (c) If the disk isfrictionless and centered at
its center of mass, the systemisdynamically singular at every state.
The angular velocity of the disk cannot be changed.

K = 0 (the manipulator cannot apply a force, as when the
contact pointisat the pivot of the manipulator), p =0, =0,
or e = (). Because e = ( defines alower-dimensiona mani-
fold of the configuration space, the rod is small-time acces-
siblefrom a generic configuration.

We conjecture that by taking higher order Lie brackets, a
rodwith p # 0, # 0 can be shown to be small-time accessi-
bleat al states provided the manipulator can apply aforce.
Unlikethe case of africtionless prismatic joint, we have ac-
cessibility with africtionlessrevol utejoint because theforce
anglevarieswiththejoint angled, givingtherobot some con-
trol over the direction of the applied force.

4.2.3 Discussion

The example above shows that even a one-degree-of-
freedom revolute robot can take an object to a six-
dimensional subset of its state space by using slipping
and rolling between the robot and the object. We should
therefore be able to do interesting planar dynamic manip-
ulation with even the simplest of robots. The four state
equality constraints of the robot link (pivot point is fixed)
do not trand ate to state equality constraintsfor the object.

The examples above consider edge-vertex contacts only.
Smooth objectsand mani pul ators can be handled by modify-
ing the constraints. Smooth surfaces may result in other hin-
drances to small-time accessibility; for example, afriction-
less disk centered at its center of mass can never be small-
time accessible by any type of contact.

The system is dynamically singular a a system state
(q,q) if the set of motion directions of O loses rank on
Tiq,qTC. (The object may still be accessible if the system
can break the dynamic singularity at sometime7'.) Figure5
gives examples of dynamically singular systems.

In short, the object is not small-time accessible if (1) the
linear force direction is fixed in the world frame (as with
a frictionless prismatic joint); (2) the force always passes
through the object’s center of mass (as with a frictionless
disk, or if the center of mass of the object is coincident with
the contact point); or (3) theinertiaof theobject is zero, giv-
ing no coupling between forces and torques.

gravity

Figure7: Manipulation phases: dynamic grasp, slip, roll, and free
flight.

Although we have shown that the accessible state space
may befull dimensiond, it appears extremely difficultto cal-
culate the shape of the accessible state space from a given
state. Ideally we would have a representation similar to a
robot’ skinematic workspace.

5 Experimental Setup

To test the manipulation capability of a singlejoint, we con-
structed aonejoint direct-driverobot to perform experiments
in dynamic manipulation (Figure 6). The planning problem
isto find an arm trgjectory to take the object to a goa state
using asequence of mani pul ationphases, includingdynamic
grasp, dip, roll, and free flight (Figure 7). (A dynamic grasp
is defined as a robot accel eration that keeps the object fixed
against it [18].) By sequencing these phases, we can control
more degrees-of-freedom of the object.

We have cast the planning problem as a nonlinear op-
timization. The joint trgectory and manipulation phase
switching times are iteratively modified to find a trgjectory
that takes the object to the goal state using dynamic grasp,
roll, and free flight phases (dip is not currently used). Con-
tact friction constraints are also enforced. We have used the
planner to solve dynamic tasks such as snatching an object
from atable, rolling an object on the surface of the arm, and
throwing and catching. The planned trgjectories have been
successfully implemented on the one joint robot. An exam-
plerolling task is shown in Figures 8-10.

Details on the planner and experiments can be found in
(Lynch[11]; Lynchand Mason [15]; Lynchand Mason[12]).

6 Conclusion

We have shown that by not grasping, a one joint robot can
exploit centrifugal and Coriolisforces to control the motion
of aplanar part. Compared to conventional pick and place,
the complexity of the robot system istransferred from hard-
ware to planning and control. Future work should address
the geometry of the object’ saccessible state space and feed-
back control of the manipulation trgjectories.
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Figure8: Thegoal isto roll the square 90 degrees counterclock-
wise while minimizing the squared impact velocity. The contact
friction coefficient is 1.5. The manipulation phases are dynamic
grasp, roll, and finally stable equilibrium. The end angle of the arm
is limited to make the roll experimentally robust to impact. Oth-
erwise the solution is to end the roll with zero impact velocity and
thearm at —45 degrees (with the center of mass balanced over the
vertex), which is not robust. Note the windup found by the planner.
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Figure9: Thearmtrajectory isrepresented asacubic B-splinewith
nine knot points. Shown here are the initial trgjectory guess, the
solution, and intermediate iterates.

Figure10: Implementation of theroll on the robot with awooden
27 cm square frame.
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