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Abstract

This paper reviews the problem of a thin rigid rod
sliding on a horizontal surface in the plane, which
is commonly cited as an example of the inconsis-
tency of planar rigid-body Newtonian mechanics. We
demonstrate the existence of a consistent solution, us-
ing Routh’s analysis of rigid-body impact.

1. Introduction

It is widely accepted in the mechanics literature that New-
tonian mechanics of rigid planar bodies with Coulomb fric-
tion is sometimes inconsistent, that is, that problems can be
posed that have no solution satisfying the axioms of the the-
ory in question. Excellent treatments of this issue are given
by Lotstedt (1981), and Erdmann (1984), who independently
constructed the sliding rod problem to demonstrate the incon-
sistency, and by Kilmister and Reeve (1966) who treat the
issues of uniquess and existence in a more general context.
Lotstedt attributes his example to Béghin (1923) and Klein
(1909), and cites Painlevé (1895) for the first examples of
this kind. A variation of the sliding rod problem provides an
example of ambiguities, i.e. problems with more than one so-
lution satisfying the axioms. (See Rajan et al. 1987, and the
works cited above.)

The consistency of rigid-body mechanics is an interesting
issue in the abstract, but also has some important practical
ramifications. Robotics research, in particular, is exploring
automatic systems for solving a number of problems in me-
chanics, such as testing whether a structure of objects is sta-
ble, where to place kinematic constraints (such as fingertips)
so as to move, or immobilize, an object, and computer sim-
ulations for off-line programming and debugging of robotic
manipulator systems. Since rigid-body mechanics provides
the underlying model for some of these systems, inconsisten-
cies and ambiguities in rigid-body mechanics are of practical
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importance. For example, it is awkward if a robot simulation
encounters a situation with no possible outcome. Taylor et al.
(1987) describe a similar difficulty in the context of planning.

The existence of inconsistencies in rigid-body mechanics
is sometimes hard to accept. For the reader who has not faced
this issue before, we offer the following intuitive explanation,
which may make the possibility of inconsistencies more plau-
sible, if not more palatable. To begin, consider the problem
of a system of a finite number of particles subject to Newton’s
laws, and suppose, for concreteness, that the only forces act-
ing among the particles are the result of mutual gravitation.
Now, for any given state, i.e. a specification of the instanta-
neous positions and velocities of the particles, a total force
acting on each particle is uniquely determined. The change in
state is obtained by integrating these forces, and is likewise
well-defined and uniquely determined.

The laws of rigid-body mechanics with Coulomb friction
are not as simple as the laws of the system described above. In
particular, Coulomb’s law of sliding friction does not specify
the force as a unique function of the state. Rather, it imposes
constraints on the force, the state, and the change of state.
The law does not suggest an effective means of determining
the contact forces, and, in some cases, search is required to
find a set of contact forces satisfying the constraints. Given
this state of affairs, it is not too surprising to find that the
search might turn up more than one solution (ambiguity) or
fail to turn up any solutions (inconsistency).

This argument suggests the plausibility of inconsistency,
but to prove inconsistency is a different matter. It suffices to
demonstrate a problem with no solution satisfying the axioms
of the theory. The example in question is a thin rigid rod
sliding along a horizontal surface. In nice cases, the contact
produces a force that balances the gravitational force, so that
the end of the rod either continues sideways, or accelerates
away from the surface. However, with a particular choice of
the dynamic parameters, we can arrange for all feasible finite
contact forces to generate an angular acceleration of the rod
that accelerates the end of the rod into the surface, rather than
away from the surface. Section 2 of the paper develops this
analysis in detail.



In section 3 the problem is resolved by recognizing that we
have an impact problem, even though the rod is initially mov-
ing along, and not into, the surface. It is possible to construct
impulsive forces, fully in accord with the relevant axioms,
that do not accelerate the end of the rod downwards. Small
impulsive forces are subject to the same constraint as finite
forces, but a large enough impulse can instantaneously halt the
rod’s sideways motion, after which the constraint imposed by
Coulomb on additional impulse is considerably relaxed. The
details originate in Routh’s (1860) treatment of rigid-body im-
pact, which is further developed by Keller (1986) and Wang
and Mason (1987).

2. Finite force analysis of the sliding rod problem

In this section we recapitulate Lotstedt’s analysis of the sliding
rod problem, introducing geometrical methods where Lotstedt
relies primarily on algebraic methods. Lotstedt’s methods are
more suitable than ours when generality is important, but we
believe that the geometrical methods are easier to understand.

Consider the rigid rod and horizontal surface of Figure 1.
Following Lotstedt, we assume that the mass is distributed
symmetrically about the geometrical midpoint of the rod. The
ends of the rod are at distance / from the center of gravity.

We have a coordinate system aligned with the surface, and
let (x,y) denote the location of the center of mass, (x., y.) the
lower end of the rod, § the angle of the rod with respect to a
horizontal reference, (f.x,fcy) the contact force acting on the
rod, (f;,fy) an applied force acting at the center of mass, and
7 an applied torque. The mass of the rod is m, the angular
inertia J, and the coefficient of friction at the contact is a
constant u, whether sliding occurs or not.
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Figure 1: A rigid rod on a frictional surface.

Purely kinematic considerations provide the following re-
lations for the position, velocity, and acceleration of the end
of the rod:

X, = x—lcosf [6))
y = y—lIsiné )
i = x+6lsiné €))
Ve = y—élcosﬂ 4)
¥ = X+0lsin8 +6%cosé &)
Yo = y—6lcosé+6%sing (6)

For simplicity, we will assume the mass and the angular
inertia to be 1. (The reader should not assume a uniform
distribution of mass, but might imagine a weightless rigid rod
with two point masses at unit distance from the center of
mass.) Newton’s laws give the following equations of motion:

¥ = fiths 0]
y = Htfey (8
6 = 7 +Ifysin8 —If,cosd ©)

We can obtain the equations of motion expressed with respect
to the coordinates of the contact point, by combining equa-
tions 5-9:

%o = fe+rlsing +fo (1+Psin’ )

ey (—-12 cos 8 sin 9) +6%cosé (10)
Vo = fy—rtlcosf+f, (1 +12cos20)

oy (-12 cosé sin&) +6%cosf 11

To produce the inconsistency, we stipulate an initial transla-
tional motion to the left, with a gravitational applied force:

< 0 (12)
¥ = 0 (13)
§d =0 (14)
£ =0 (15)
L o= -8 (16)
T =0 a7
Also substituting
Jor = ﬂﬁ‘y (18)
and simplifying, we obtain
Ye=—g+ afcy (19)
where
B(r+2 .
a= A +c0s 260 — usin26 20)
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The contact conditions dictate that both y. and f;, be non-
negative, which, from inspection of equation 19 implies that a
must be positive. To complete the example, then, we choose
values for /, u, and 8 to obtain a negative a. In particular,
w =tan30°, 6 =75°, and / = 4 render a negative.

We can best explain the situation in terms of the instan-
taneous acceleration center (Hall 1961). First, consider a
motionless rod subjected to a rotational acceleration about a
center (x,,Y,), as in Figure 2. The acceleration at each point
is perpendicular to a line drawn from the acceleration center,
and proportional in magnitude to the length of that line. It
is apparent that any point to the left of the acceleration cen-
ter, including the bottom of the rod, will have a downwards
component of acceleration.

Figure 2: If the contact point were to the left of the instanta-
neous acceleration center, the rod would penetrate the surface.

Now, to apply this observation to the sliding rod problem,
consider Figure 3. Note first that the rod is subject to two
forces, one of which, the gravitational force, is fixed. The
contact force is constrained by Coulomb’s law to lie on a ray,
making an angle tan~! i from the contact normal. Its magni-
tude is unconstrained. The contact force and the gravitational
force always intersect at the same point, so we can express the
total force as a single force acting on a line passing through
that intersection point. The family of feasible (finite) forces is
illustrated in the figure. Now, for each feasible force, we can
plot an instantaneous acceleration center. All of the accelera-
tion centers fall on a single horizontal ray, which is delimited
on the left by a line perpendicular to the contact force and
passing through the center of mass. The distance from the ray
to the center of mass varies as p2. (p is defined to be the radius
of gyration, i.e. ,J;.) Now, by decreasing p (or, equivalently,
leaving p at a constant 1 and increasing /) it is easy to see
that we can keep the feasible acceleration centers to the right
of the bottom end of the rod, which, as we observed earlier,
implies that the bottom of the rod accelerates into the table.
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Figure 3: The locus of feasible acceleration centers. An in-
consistency occurs when the locus lies entirely to the right of
the contact point.

3. Impact analysis of the sliding rod problem.

The resolution of the sliding rod problem lies in viewing the
rod/table interaction as a collision, involving impulsive forces.
It may seem paradoxical to have a collision between two ob-
jects that are not approaching one another (and even, as we
shall see, between two objects that are touching but moving
away from one another!) but such a collision is surely prefer-
able to an inconsistency in our theory. And, in any case, we
have no choice, the collision being admitted by the theory.

In this section, we follow Wang and Mason (1987), which
is based on Routh’s (1860) analysis. We keep most of the
previous section’s notation, with some changes to simplify
the analysis. The contact point is instantaneously at the ori-
gin, and we use, for example, v, to indicate a velocity rather
than our earlier x,. P, and P, denote the normal and tangential
components of impulse, respectively. We do not include any
other applied forces. Any finite forces would be negligible
relative to the impact forces, although the existence of an ex-
ternal force, such as the gravitational force in the last section,
can determine whether the impact must occur, or might occur.

The following kinematic relations must hold:

Vex Ve +Yw (21)
Voy = Ve— Xw 22)
AV = Ave+yAw (23)
Avy = Avy—xAw 24)

where Avy = v — Ve etc., and the following impulse-
momentum laws relate the effect of impulse:



mAv, = P, 25)
mAvy, = P, (26)
mp*Aw = Py—Px 27
Substituting into the kinematic equations, we obtain:
P, Py-P,
Ay, = _‘+y,y—2Px (28)
m mp
P n — In
Avy = 2 PP 29)
m mp

Now, the reason that impact works is that we can obtain
enough zorch to instantaneously cancel the tangential motion
at the contact point. We will call the condition of zero tan-
gential relative motion sticking. We also define a condition
called maximum compression, occuring at zero normal rela-
tive motion. Each of these conditions defines a linear relation
between P, and P,. To find the sticking condition, we set
Vex = 0, obtaining:

2
Py p o

O=v+P, > [y
mp mp

(30)
To find the maximum compression condition, we set v, =0,
obtaining:

p2 +x2

mp?

A
mp?

0= Voo +Ps 31)

H

These two linear relations define lines in impulse space, which
are plotted in Figure 4, using the same parameter values as
the previous section. We have also plotted the line P, = uP,
through the origin, making an angle tan™! u with the verti-
cal. Using these three lines we can construct an impulse that
satisfies the laws of Newton and Coulomb and preserves the
rigidity of the rod. Although the impact is assumed to be
instantaneous, it is convenient to think about the impulse ac-
cumulating from zero. Using Figure 4, the characteristic point
representing the cumulative impulse begins at the origin, and
moves along the line P, = uP,. The reason is that differential
impulse is force, and since the rod is sliding leftwards, the dif-
ferential force must obey Coulomb’s law. Note, however, that
eventually the characteristic point reaches the line of sticking.
For an impulse on the line of sticking, the tangential velocity
has halted, leaving greater freedom in the possible additional
differential impulse. Now Coulomb’s law allows dP, < udP,,
resisting any impending resumption of sliding. In this case,
the characteristic point can satisfy this constraint by moving
along the sticking line.

To complete the construction of the total impulse, we push
the characteristic point to the line of maximum compression.
A perfectly plastic collision would terminate at this point, with
the rod’s bottom instantaneously at rest with respect to the
surface. A perfectly elastic collision would continue until
the normal component of impulse is doubled, and would pop
away from the surface, with the path of the rod’s bottom end
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perpendicular at the surface. Intermediate cases, with coeffi-
cients of restitution between 0 and 1, terminate between these
two extremes, and bounce away from the surface with varying
amounts of energy.

sticking

max compression

Pn
[\, P = HPy
halts
~———————— sliding halts
=0.063vq ’
L}

0.25v 4

Figure 4: Impact analysis. An impulse is constructed that
preserves the rigidity of the rod and surface, and satisfies
Coulomb’s law.

4. Remarks

We have already observed that the sliding rod problem can be
varied to demonstrate ambiguities, as well as inconsistencies.
The existence of an impact solution resolves the inconsisten-
cies, raising the number of solutions from zero to one. But
for problems already having a solution, the existence of an
impact solution increases the ambiguity. For example, if we
set g =0, the rod can skim along the surface with zero contact
force, or the impact can occur. Kilmister and Reeve (1966,
p. 79), adopt a principle of constraints that resolves the addi-
tional ambiguity:

constraints shall be maintained by forces, so
long as this is possible; otherwise, and only oth-
erwise, by impulses.

However, the basis for this principle is unclear.



Given a solution of a well-known example of inconsistency
in rigid-body mechanics, the next question is whether other
examples have been demonstrated. We know of one other
example of inconsistency, the “second-order impact” problem
reproduced from (Featherstone 1986) in Figure 5. A block is
sliding in a frictionless channel of the same dimension, closed
off at one end by a smooth curve. The impulse must be
parallel to the change in velocity, i.e. orthogonal to the contact
normals. For frictionless contacts, this is an inconsistency.

We note in parting that the sliding rod problem has impor-
tant ramifications in the analysis of impact, besides its obvious
relevance to the foundations of rigid-body mechanics. In our
earlier work, (Wang and Mason 1987) we neglected the pos-
sibility of zero approach velocity, and we should also note
that the impact might occur for small negative approach ve-
locities. As far as we know there is no previous treatment of
these possibilities.

The sliding rod problem also presents difficulties in the
existing definitions of the coefficient of restitution. Newton’s
definition of the coefficient of restitution is defined as the ratio
of the initial and final normal velocities, and seems to admit
only the perfectly plastic solution in this case. Poisson’s defi-
nition of the coefficient of restitution, which relates the normal
impulses during compression and restitution, is applicable, but
its application is not well-defined in problems for which two
distinct phases of compression and restitution might not be
present, such as an impact involving negative approach veloc-
ities.

contact
1 normals

motion impulse

Figure 5: Second-order impact (Featherstone 1986). A change
in velocity is required, in a direction orthogonal to all contact
normals. For frictionless contact, this results in an inconsis-
tency.
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