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Abstract

Graphical methods are often applied to planar mechanics
problems, especially in the context of robotic manipulation,
but there are limitations. In particular, the friction cone is
an elegant representation of the set of forces generated by a
single frictional contact, but there was previously no simple
extension to problems of multiple frictional contacts. This
paper shows a simple generalization of the friction cone to in-
clude multiple contacts. The paper demonstrates application
to dynamics problems and manipulation planning problems.

1 Introduction

This paper describes a graphical representation of force,
called the “moment-labeling”. The moment labeling rep-
resentation is useful in analyzing the dynamics of a planar
rigid body in contact with fixed bodies, with Coulomb fric-
tion. It is also useful in planning robot manipulator pro-
grams. This paper presents the moment-labeling represen-
tation, shows how to analyze planar frictional contact prob-
lems, and demonstrates some simple examples of motion syn-
thesis.

The moment-labeling representation is related to an ear-
lier graphical representation of force, described by (Brost
and Mason 1989), called the “dual representation”. The dual
representation is somewhat more flexible, but less easily un-
derstood, than the moment-labeling representation. Both
methods are closely related to the use of screw coordinates,
and particularly to the techniques developed by Erdmann
(1984) and by Rajan et al. (1987). In fact, the moment-
labeling representation and the dual representation can be
viewed as special cases, restricted to planar problems, but
considerably simpler than the more general method. The
graphical methods are ideal for humans, whereas the more
general methods are better suited to a computer implemen-
tation.

2 Moment-labeling

Suppose we have some set of forces F' that is closed under
positive linear combination. (By “force”, we mean “force and
torque”.) That is, for any two forces fi, f, in F, kifi+kifo
is also in F), for all non-negative k,, k,. Now, if we restrict
our attention to the plane, there is a particularly simple way

of representing and manipulating these sets of forces. Let Fy
be the set of all points z in the plane such that every force
in F produces a non-negative moment at z; i.e.

Fy ={z|forevery f€ F,z x f > 0}.
F_ is defined similarly:
F_ = {z|for every f € F, z x f <0}.

Another way of saying this is that points in the plane are
labeled. If all the forces make positive (or zero) moments,
label the point +. If all the forces make negative (or zero)
moments, label the point —. The points labelled + form the
F region, and the points labelled — form the F_ region. F,
and F_ are convex regions in the plane, and they share points
only on their boundaries—their interiors do not overlap—
except that in the trivial case F = {(0,0,0)}, F, and F.
each consist of the entire plane.

We can use the regions F, and F_ to represent the original
set of forces F. Consider some force f, and its line of action.
Because f has a positive or zero moment at every point in
F, the line of action must pass F; on the right. The line of
force may touch the boundary, but may not pass through the
interior. Similarly, the line of force must pass F_ on the left.
Every force satisfying these constraints is in F, and every
force in F satisfies these constraints, so (Fy, F_) perfectly
represents F. Some simple cases are shown in Figure 1.

Manipulation of force sets is very simple with the moment-
labeling representation. Two operations are very common:
the convex hull CH(F,G) of two sets, to determine the set
of possible resultants of two sets of forces; and the inter-
section F' 1 G of two sets. These two operations are very
straightforward under the moment-labeling representation.

e Convex hull of two force sets is implemented by inter-
section of the moment-labelings:

CH(F,G) = (F, NG,,F.NG.)

¢ Intersection of two force sets is implemented by convex
hull of the moment-labelings:

FNG= (CH(F,,G,),CH(F_,G.))
The power of the representation is best demonstrated by the

ease with which several friction cones may be combined, to
describe the possible resultants of multiple frictional contacts
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Figure 1: Some examples of the moment-labeling
representation of force. (a) A line of force (i.e. all
forces sharing the same line of action) divides the
plane: points to the right of the line of force are in F._,
points to the left are in F, and points on the line of
force are in both sets. (b) The set of all forces passing
through a common point z yields Fy = F. = {z}. (¢)
A friction cone consists of all the forces that can be
applied through a point contact obeying Coulomb’s
law. It is represented as shown, with the apex of the
cone falling in both sets.

(Figure 2). We construct + and - regions for each individ-
ual friction cone, then intersect the +’s and the —’s. The
resultant construction generalizes the conventional friction
cone to multiple frictional contacts.

The next section shows how to apply the moment-labeling
representation to dynamics problems.

2.1 Graphical solution of the planar con-
tact problem

Using the moment-labeling representation of force sets, we
derive a graphical solution of the planar contact problem.
The underlying approach is similar to that described by Erd-
mann (1984) and Rajan et al. (1987). We assume a mobile
rigid polygon in contact with fixed polygons in the plane.
The problem is to construct the mapping between applied
force and object acceleration. We describe the approach in
full, and describe two examples: sliding a block along a wall,
and two-point insertion of a peg in a hole.

The first step in solving a planar contact problem is to
enunerate the contact modes: {or each contact, whether the
relative motion is left-sliding, right-sliding, rolling, or part-
ing. Since there are four choices at each contact, it would
seem that as many as 4" combinations might occur, for n
contacts. Fortunately, only a few of these (O(n?)) are kine-
matically consistent. These can be enumerated by an ex-
tension of Reuleaux’ (1876) method for analyzing kinematic
constraints. Reuleaux plotted all the contact normals in the
space of velocity centers, tu determine whether an object is
completely constrained. We use the space of acceleration
centers, and plot the contact tangents as well as the contact
normals. The lines cut the space of acceleration centers into
polygons, line segments, and isolated points, each of which
potentially corresponds to some contact mode. See (Brost
and Mason 1989) for details'and examples.

Having enumerated the contact modes, we then determine
applied forces for each mode. Let f be the total force acting
on the object, and let ¢ and e be the contact force, and the
effector force, respectively, so that f = ¢ + e. Then given a
desired total force f and a contact force t, we could calculate
the effector force ¢ = [ —t. Now, for a given contact mode
1, let F} be the set of possible total forces f, let T; be the
set of possible contact forces ¢. Then we can compute the
corresponding effector forces £, — {f —t | f € F,t € T}}.
The complete procedure is summarized below:

1. Enumerate the contact modes {i}.
2. For each contact mode 1:

{a} Construct total forces Iy for each object accelera-
tion e (and angular acceleration «) consistent with
contact mode 7, Newton’s law gives a total force
f = ma {and torque 7 = [a). The set of all such
forces forms a set £} which can be described by the
moment-labelling {F,;, F; ).

(b) Construct task contact forces Ty, by applying
Coulomb’s law. Conlomb’s law gives a particular
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Figure 2: The resultant forces due to two frictional
contacts. Each contact gives rise to a friction cone.
The resultants, i.e. the positive linear combinations of
the two cones, are given by intersecting the positive
regions to obtain F,, and intersecting the negative
regions to obtain F_.

The result is a mapping from each contact mode i to a set
of effector forces E;. Figure 3 illustrates the approach by
applying it to analyze the block-along-wall problem. Figure 4
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Figure 3: The block-along-wall problem. The goal is
to slide the block along the wall to the right. First
we construct the set F; of total forces, described by
the regions F;, and F,_ above and below the line,
respectively. Next we construct the contact forces T;.
Applying Coulomb’s law, each contact gives a line of
force, dividing the plane into + and - half-planes.
Intersecting the + half-planes yields T;4 to the right
of both lines, and intersecting the — half-planes yields
T;_ to the left of both lines. Finally, we construct
the effector forces E; = F, o T;, obtained by taking
Eiy =F,NTi_,and E;_ = F,_n Tis+. Any effector
force passing between these two regions will slide the
block along the wall.

line of force for each moving contact, and a friction
cone at each stationary contact. We can describe
each frictional contact using the moment-labelling
representation, and intersect the labeled regions to

obtain (T}, T;_).

(¢) Construct effector forces E;: the set of all forces
f, for some t € T; and
some f € F;. This set can also be described as
the convex hull of the set F. and the set —T:
which is computed by changing the signs on the T;
moment-labelling, and intersecting: (Eey, Bi) =

e such that e + ¢ =

(FuNTi, Fi_ N T).

shows analysis of two-point insertion of a peg in a hole.
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Figure 4: Two-point peg insertion. The goal is to
slide the peg into the hole while maintaining two
points of contact. p is the radius of gyration. First
we construct the total forces F;, represented by the
regions Fi;, to the right of the line a', and F;_, to
the left. The point a is the desired acceleration cen-
ter, and the line @’ is the line of force that would
cause an angular acceleration of the peg about the
point a. Next we compute the contact forces T;.
Coulomb’s law dictates a line of force at each contact.
T; is represented by intersecting the + and — half-
planes for the two contacts to obtain the regions Tj;
and T;_ shown. Finally we compute effector forces
E; = F; © T;, obtained by taking E;; = Fiy N T;,
and E;. = F;_ NT;;. Any effector force passing be-
tween these two regions will move the peg down in
two point contact.

3 Synthesis of robot motions

This section explores a few problems in robot motion plan-
ning, describing application of the moment-labeling method,
with two examples. We consider the task domain of planar
positioning and assembly problems, with Coulomb friction.
The approach involves three steps:

1. Goals are first reduced to constraints on the instanta-
neous motion of the planar rigid body;

2. The method of the previous section is applied to obtain
a set of constraints on the force applied to the object;

3. Robot commands are derived to satisfy the constraints
on applied force.

This section describes an approach to the third step—
deriving robot commands to satisfy given constraints on ap-
plied force.

Example 1: tilting. Here we assume that the block is
against a wall in a tray, which can be tilted in any direction,
or, equivalently, that the direction of the gravity vector may
be controlled. We can apply any desired force, but no mo-
ment, to objects in the plane. That is, the line of applied
force always passes through the object center of mass. This
is represented by + and — regions each consisting of a single
point at the center of mass (Figure 5). To find an action
that will produce the desired motion, we can intersect the
set of feasible forces with the set of goal effector forces, de-
rived in Figure 3. Intersection of two sets is accomplished by
taking the convex hull of the two + regions, and of the two
— regions.

Example 2: pushing. To push the block along the wall,
several cases (twenty-four) must be considered, depending on
which feature of the block is pushed, and on the motion of
the finger relative to the block (left slip, no slip, right slip).
Of these twenty-four cases, four lead to solutions: pushing
the trailing edge with left slip, and pushing the outboard
trailing vertex with left slip, no slip, or right slip. Here
we illustrate by analyzing a single case, where the finger
is pushing the trailing edge of the block, with the finger
slipping left relative to the block. The set of feasible forces
can be described using the moment-labeling representation
Figure 6. By intersecting with the set of goal effector forces
calculated earlier in Figure 3, we obtain the solution pushing
motions.

The transformation from force constraint to command pa-
rameters is especially easy in these two examples. For tilting,
the direction of the line of force directly determines the tilt
azimuth. And for pushing, the location of the line of force
directly determines the contact location. Some other opera-
tions also fit this pattern. For compliant motions, we can use
a simple linear spring as a passive compliance. The force con-
straint directly determines the compliant motion: the com-
pliance center and the effector position must fall on the line
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Figure 5: Tilting the block along the wall. Since
gravity always acts through the center of mass, the
possible “effector” forces are represented by a + re-
gion and a — region each consisting of the single point
at the center of gravity. Next we show the desired ef-
fector forces E; derived in Figure 3. To find a good tilt
command, we can intersect the two force sets above,
yielding the set of forces that satisfies the task-level
force constraints, and can be obtained by a tilt. The
intersection is obtained by taking convex hull of the
+ regions and of the — regions. The desired gravity
vector has to pass between the resultant regions as
shown. A tilt in this direction will achieve the de-
sired motion.

Push motions
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Figure 6: Pushing the block along the wall. We as-
sume a left-sliding contact between the finger and the
trailing edge of the block. The feasible pushing con-
tacts (neglecting interference between the finger and
the wall) give a set of possible pushing forces. Next
we construct the desired effector forces E;, derived in
Figure 3. The solution must fall in the intersection
of the two sets above, obtained by taking the con-
vex hull of the moment-labelings. To move the block

along the wall, the finger must make contact between
the regions.




of force. For more general compliances, the compliance ma-
trix might allow us to map the force constraints to effector
motion constraints. For some other operations, such as fin-
ger slip, and multiple-contact pushing, the situation is not
so simple, but the fundamental mechanical relationships are
still most naturally expressed in terms of force. Finally, there
are operations which do not seem to fit at all. Some of these
are handled perfectly well by familiar programmed-motion
models of action. Others, such as handling flexible objects,
fit neither the conventional programmed-motion model, nor
the proposed force-constraint model.

4 Conclusion

The moment-labeling representation is a particularly simple
approach to problems in the mechanics of planar manipu-
lation and planar assembly problems. The respresentation
yields a multiple-contact friction cone.

The representation is suited to problems in the mechan-
ics of manipulation, and automatic planning of manipulator
programs.

The simplicity of the method, and the graphical nature,
means that humans can analyze these problems by hand, and
can more easily consider the implications of the analysis.
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