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Abstract

Kalman filtering has recently been proposed as a mechanism for
obtaining on-line estimates of depth from motion sequences. Previ-
ous applications of Kalman filtering to depth from motion have been
limited to estimating depth at the location of a sparse set of features.
In this paper, we introduce a new, pixel-based (iconic) algorithm that
estimates depth and depth uncertainty at each pixel and incrementally
refines these estimates over time. We describe the algorithm for trans-
lations parallel to the image plane and contrast its formulation and
performance to that of a feature-based Kalman filtering algorithm.
We compare the performance of the two approaches by analyzing
their theoretical convergence rates, by conducting quantitative exper-
iments with images of a flat poster, and by conducting qualitative
experiments with images of a realistic outdoor scene model. The re-
sults show that the new method is an effective way to extract depth
from lateral camera translations and suggest that it will play an im-
portant role in low-level vision.

1 Introduction

Using known camera motion to estimate depth from image
sequences is important in many applications of computer vi-
sion to robot navigation and manipulation. Many applications
require an algorithm that operates in an on-line, incremental
fashion. Such algorithms require a depth representation that
includes not only the current depth estimate, but also an esti-
mate of the uncertainty in the current depth map.

Previous work [3] [5] [7] [11] [17] has identified Kalman
filtering as a viable framework for this problem, because it in-
corporates representations of uncertainty and provides a mech-
anism for incrementally reducing uncertainty over time. To
date, applications of this framework have largely been re-
stricted to estimating the positions of a sparse set of track-
able features, such as points or line segments [6] [12]. While
this is adequate for many robotics applications, it requires re-
liable feature extraction and it fails to describe large areas of
the image. Another line of work has addressed the problem
of extracting denser depth or displacement estimates from im-
age sequences. However, these approaches either have been
restricted to two frame analysis [1] or have used batch pro-
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cessing of the image sequence, for example via line fitting [4]
or spatio-temporal filtering [8].

In this paper we introduce a new, pixel-based (iconic) ap-
proach to incremental depth estimation and compare it math-
ematically and experimentally to a feature-based approach we
developed previously [11]. The new approach represents depth
and depth variance at every pixel and uses Kalman filtering to
extrapolate and update the pixel-based depth representation.
The algorithm uses correlation to measure optical flow and to
estimate the variance in the flow, then uses the known camera
motion to convert the flow field into a depth map. It then
generates an updated depth map from a weighted combina-
tion of the new measurements and the prior depth estimates.
Regularization is employed to smooth the depth map and to
fill in underconstrained areas. The resulting algorithm is par-
allel, uniform, and can take advantage of mesh-connected or
multi-resolution (pyramidal) processing architectures.

The remainder of this paper is structured as follows. In
the next section, we give a brief review of Kalman filtering and
introduce our overall approach to Kalman filtering of depth.
We then describe our new, pixel-based depth from motion al-
gorithm and the feature-based algorithm to which it will be
compared. We then analyze the theoretical accuracy of both
methods, compare them both to the theoretical accuracy of
stereo matching, and verify this analysis experimentally using
images of a flat scene. We also show the performance of both
methods on images of realistic outdoor scene models. In the fi-
nal section, we discuss the promise and the problems involved
in extending the new method to arbitrary motion.

2 Estimation framework

Kalman filtering is a powerful technique for real-time esti-
mation in dynamic systems. The Kalman filter models the
current state of a system as a vector u and uses three sepa-
rate probabilistic models to generate an estimate of the current
state (Table 1). The system mode! describes the evolution over
time of the state vector u, as multiplication by a known transi-
tion matrix &, and addition of Gaussian noise with covariance
Q:. The measurement (or sensor) model relates a measurement
vector d; to the current state through a measurement matrix H,
and addition of Gaussian noise with covariance R;. The prior
model describes the knowledge about the system state iy and
its covariance Py before the first measurement is taken.

A Kalman filter algorithm operates in two phases: predic-
tion and update (Table 1 and Figure 1). At time ¢, the previous
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Table 1: Kalman filter equations

state and covariance estimates, #_; and P]_,, are extrapolated
to predict the current state and covariance, # and P;. The
predicted covariance is then used to compute the new Kalman
gain matrix K, and the updated covariance matrix P;. Finally,
the measurement residual d; — H;ii;” is weighted by the gain
matrix K, and added to the predicted state u; to yield the
updated state u;.

Kalman filtering is usually applied to systems with fairly
small numbers of state variables. In the domain of motion
sequence analysis, it has been used to track sparse features
[2] [3] [12], but has not previously been used in conjunction
with dense fields such as iconic depth maps. We will briefly
describe how this estimation framework is used in our depth
from motion algorithm. Section 3 describes the details of the
implementation for lateral camera motion; extensions to gen-
eral motion are considered in [13].

In our case, the system state is a representation of the
depth at every pixel (x,y) in the current image. We choose to
represent the inverse depth u(x,y) = 1/Z(x, y), which we call
“disparity”, plus the variance in the disparity, o?(x,y). There
are several reasons for representing disparity instead of the ac-
tual depth Z(x, y). Disparity can be linearly related to optical
flow measurements, it is better conditioned for distant objects,
and, for lateral camera motion, the scaled disparity and vari-
ance can be used directly to set search limits on correspondence
in the subsequent image.

The system model uses the current depth map and an esti-
mate of the camera motion to predict a depth map for the next
image in the sequence. This is implemented by using the pre-
dicted optical flow to warp the depth map, then resampling the
warped map to compute the predicted disparity at each pixel.
The measurement model simply produces a measurement of
the disparity at every pixel, so that H; = I. The disparity
measurement in turn is based on an optical flow measurement
obtained by a correlation-based flow estimator. Estimates of
the variance o3(x, y) of disparity measurements are computed
from the variance of the optical flow. These variance estimates
are essential because they characterize the difference between
reliable measurements and unreliable measurements, such as
the difference between measurements obtained in highly tex-
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Figure 1: Kalman filter block diagram

tured areas and those obtained in areas of uniform intensity.
The update phase combines the new disparity measurements
with the predicted depth map to generate an updated depth
map. Finally, the prior model embeds prior knowledge about
the scene. In particular, smoothness constraints, which require
nearby points to have similar disparity, can be modeled by off-
diagonal elements in the prior covariance matrix Po. This is
equivalent to modeling the disparity map as a Markov Random
Field [19].

3 Iconic depth estimation

Our implementation of this framework consists of four main
stages (see Figure 2). The first stage uses correlation to pro-
duce a measurement of the disparity at each pixel and an
estimate of the associated variance. The second stage inte-
grates this information with the disparity map predicted from
the previous time step. The third stage uses regularization-
based smoothing to reduce measurement noise and to fill in
areas of unknown disparity. The last stage uses known cam-
era motion to predict the disparity field that will be seen in
the next frame and re-samples the field to keep it pixel-based.
Here we deal only with camera translation parallel to the im-
age plane; in this case, estimating disparity is equivalent to
estimating optical flow. Extensions to arbitrary camera motion
are described in [13].

3.1 Measurement (correlation)

The problem of extracting optical flow from a sequence of in-
tensity images has been extensively studied in computer vision
[1] [8] [9). The approach used in this paper is a simple version
of correlation-based matching known as the Sum of Squared
Differences (SSD) method [1]. This technique integrates the
squared intensity difference between two shifted images over
a small area. For the case of lateral motion, this error measure
is

ed; x,y) = / / w(\, MU x—d+A, y+m)—fio1 X, y+m)) dA dn,

where f; and f,_; are the two intensity images and w(}, 7) is a

weighting function. This measure is computed at each pixel for
a number of possible disparity values d. In [1], a coarse-to-fine
technique is used to limit the range of possible flow values.
In our images, the possible range of values is small (since
we are using small-motion sequences), so a single-resolution
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Figure 2: Iconic depth estimation block diagram

algorithm is used. The resulting error surface e(d; x, y) is ap-
proximately parabolic around the minimum. The flow value
with the lowest error is taken as the estimator output d(x, y) and
the second derivative of the error surface is used to compute
its variance.

The implementation of the SSD algorithm is particularly
simple for flow parallel to the image raster. Each scanline of
the two image frames is first magnified by a factor of 4 by
cubic interpolation. The images are then shifted using sub-
pixel displacements d and the SSD measure ¢, is computed
using a 5 x 5-pixel square window. The minimum error (dy, e;)
is found and a parabola

ed)=ad* +bd+c

is fit to this point and its two neighbors (d;_,, €;_;) and
(@41, €441)- The minimum of this parabola establishes the flow
estimate (to sub-sub-pixel precision). The variance of the flow
measurement can be shown to be

Var(d) = 20%/a,

where ¢ is the variance of the image noise process [13]. Ad-
jacent flow estimates are correlated over both space and time
{13]; the significance of this fact will be considered in Section
5.1.

The raw flow and variance estimates are scaled to units
of inverse depth using knowledge of the camera motion and
the calibration parameters of a pin-hole camera model. This
facilitates the integration of information when the camera mo-
tion is not linear, e.g. for widening baseline stereo [23] or for
orthogonal camera motions (Section 5.2).

3.2 Update (integration)

The next stage in the iconic depth estimator is the integration
of the new disparity measurements with the predicted disparity
map. For now, we will assume that each value in the measured
or predicted disparity map is not correlated with its neighbors,
so that the map updating can be done at each pixel indepen-
dently.
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To update a pixel value, we first compute the variance of
the updated disparity estimate
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We then update the disparity value by using the Kalman filter
update equation

ui =u; +Kd—u)

where u;” and u; are the predicted and updated disparity es-
timates and d is the new disparity measurement. This update
equation can also be written as
o (W d
= —+— .
HEh <p." 03)

The latter form shows that the updated disparity estimate is
a linear combination of the predicted and measured values,
inversely weighted by their respective variances.

3.3 Smoothing (regularization)

The raw depth or disparity values obtained from optical flow
measurements can be very noisy, especially in areas of uni-
form intensity. We employ smoothness criteria to reduce the
noise and to “fill in” underconstrained areas. Such methods
have been discussed in [1], [9], [15], [16], and [21]. For our
application, smoothing is done on the disparity field, using the
inverse variance of the disparity estimate as the confidence
in each measurement. The smoother we use is the general-
ized piecewise continuous spline under tension [22], which
uses finite element relaxation to compute the smoothed field.
The algorithm is implemented with a three-level coarse-to-fine
strategy to speed convergence.

The smoothing stage can be viewed as the part of the
Kalman filtering algorithm that incorporates prior knowledge



about the smoothness of the disparity map. As shown in [19],
a regularization-based smoother is equivalent to a prior model
with a correlation function defined by the degree of the stabi-
lizing spline (e.g. membrane or thin plate). The resulting prior
covariance matrix contains off-diagonal elements modeling the
covariance of neighboring pixels. An optimal implementation
of the Kalman filter would require carrying this entire covari-
ance matrix, with non-zero correlations between the depths at
neighboring pixels, through the update and prediction stages.
This would significantly complicate our algorithm. Our ap-
proach of explicitly modeling only the variance at each pixel,
with covariance information implicitly modeled in a fixed reg-
ularization stage, has worked well in practice.

3.4 Prediction (warping and resampling)

The prediction stage of the Kalman filter must predict both
the depth and the depth uncertainty for each pixel in the next
image. We will describe the disparity extrapolation first, then
consider the uncertainty extrapolation.

Translating the camera laterally shifts each point x, =
(x,y) in the current image to the point X, = (x;+Tyls, y) in the
next image, where T is a constant depending on the amount of
camera motion and the focal length. This shift can be viewed
as warping the disparity map. In general, this warping process
will yield estimates of disparity in between pixels in the new
image, so we need to resample to obtain predicted disparity at
pixel locations. For a given pixel X' in the new image, we find
the pair of extrapolated pixels that overlap x' and compute the
disparity at x' by linear interpolation.

Uncertainty will increase in the prediction phase due to
errors from many sources, including uncertainty in the cam-
era motion, errors in calibration, and inaccurate models of the
camera optics. A simple approach to modeling these errors is
to lump them together by inflating the current variance esti-
mates by a small multiplicative factor in the prediction stage,

Py =(1+6)p}. @

In the Kalman filtering literature this is known as exponen-
tial age-weighting of measurements [14], because it decreases
the weight given to previous measurements by an exponential
function of time. We use this approach in our implementation.
We first inflate the variance in the current disparity map using
equation (1), then warp and interpolate the variance map in
the same way as the disparity map.

4 Feature-based depth estimation

The dense, iconic depth estimation algorithm described in the
previous section can be compared with existing depth estima-
tion methods based on sparse feature tracking [2] [5] [7] [11].
For lateral camera motion, the position of a feature on a scan-
line is a linear function of the distance moved by the camera,
since

Ax=Tydy & xi=x0+tT,dp

where x is the position of the feature in the first frame and dj
is the inverse depth of the feature. The epipolar plane image
method {4] exploits these characteristics by extracting lines in
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“space-time” (epipolar plane) images formed by concatenating
scanlines from an entire image sequence. However, sequential
estimation techniques like Kalman filtering are a more practical
approach to this problem because they allow images to be
processing on-line by incrementally refining the depth model
(31 [11].

The state vector for this approach contains the current im-
age position x; and depth estimate d; for each feature. Assum-
ing that the camera motion is exact and that measured feature
positions have normally distributed uncertainty with variance
o2, the initial state vector and covariance matrix are expressed
in terms of image coordinates as

xn = X
 RE—%
d = T
. _ o[ 1T
A= a‘[ T 2/1§

where T is the camera translation between the first and second
frame. The covariance matrix comes from applying standard
linear error propagation methods to the equations for x; and
a [14].

After initialization, if T is the translation between frames
t—1 and 1, the motion equations that transform the state vector
and covariance matrix to the current frame are

- _|x|_]1 T X o
s H‘[o IHd:_l St @
P =&,P_ 7. 3)

The superscript minuses indicate that these estimates do not
incorporate the measured edge position at time ¢. The newly
measured edge position ¥; is incorporated by computing the
updated covariance matrix Py, a gain matrix K, and the updated
parameter vector u;:

Pf = {(P7)'+5}"! where s=—17[0 0]
ozl 0 1
- Lpf 0
K= o“z”‘[l]
uf = uf +Kx —x1.

Since these equations are linear, we can see how uncer-
tainty decreases as the number of measurements increases by
computing the sequence of covariance matrices P;, given only
the measurement uncertainty 2 and the sequence of camera
motions T;,. This is addressed in Section 5.1.

S Evaluation

In this section, we compare the performance of the iconic and
feature-based depth estimation algorithms in three ways. First,
we perform a mathematical analysis of the reduction in depth
variance as a function of time. Second, we use a sequence
of images of a flat scene to determine the quantitative perfor-
mance of the two approaches and to check the validity of our
analysis. Third, we test our algorithms on images of a realistic
scene with complicated variations in depth.



5.1 Mathematical analysis

We wish to compare the theoretical variance of the depth es-
timates obtained by the iconic method of Section 3 to those
obtained by the feature-based method of Section 4. We will
also compare the accuracy of both methods to the accuracy
of stereo matching with the first and last frames of the image
sequence. To do this, we will derive expressions for the depth
variance as a function of the number of frames processed,
assuming a constant noise level in the images and constant
camera motion between frames. For clarity, we will assume
that T, = 1.

Iconic approach

For the iconic method, we will ignore process noise in
the system model and assume that the variance of successive
flow measurements is constant. For lateral motion, the equa-
tions developed in Section 2 can be simplified to show that the
Kalman filter simply computes the average flow [20]. There-
fore, a sequence of flow measurements Ax;, Axy, ..., Ax, is
equivalent to the following batch measurement equation

Ax 1
sz 1

Ax = = d=Hd.
Ax; 1

Estimating d by averaging the flow measurements implies that
= lHTAx =1 i Ax;. 4
! =
If the flow measurements were independent with variance
202/a, where o, is the noise level in the image [13], the re-
sulting variance of the disparity estimate would be
2
20 ) )
ta
However, the flow measurements are not actually independent.
Because noise is present in every image, flow measurements
between frames i — 1 and i will be correlated with measure-
ments for frames i and i + 1. It can be shown [13] that a
sequence of correlation-based flow measurements that track
the same point in the image sequence will have the following
covariance matrix:

2 -1
-1 2
-1

-1

2 -1
-1 2

where o2 is the level of noise in the image and a reflects
the local slope of the intensity surface. With this covariance
matrix, averaging the flow measurements actually yields the
following variance for the estimated flow:
1 202
20p — T -
of(H= t_2H P,H= 27

(©)
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This is interesting and rather surprising. Comparing equations
(5) and (6), the correlation structure that exists in the measure-
ments means that the algorithm converges faster than we first
expected.

With correlated measurements, averaging the flow mea-
surements in fact is a sub-optimal estimator for d. The optimal
estimator is obtained by substituting the expressions for H and
Pp, into the batch solution equations [14]

d=HP HY THTP Ax %)

and
of=HPH). ®)

This estimator does not give equal weight to all flow measure-
ments; instead, measurements near the center of the sequence
receive more weight than those near the end. The variance of
the depth estimate is
2
o3 = 2T
e+ D +2)a

The optimal convergence is cubic, whereas the convergence
of the averaging method we implemented is quadratic. Devel-
oping an incremental version of the optimal estimator requires
extending our Kalman filter formulation to model the corre-
lated nature of the measurements. This extension is currently
being investigated.

Feature-based approach

For the feature-based approach, the desired variance esti-
mates come from computing the sequence of covariance ma-
trices P;, as mentioned at the end of Section 4. A closed form
expression for this matrix is easier to obtain from a batch line
fit solution for xy and dj than from the Kalman filter formula-
tion and yields an equivalent result. Since we assume that the
measured edge positions %; are independent with equal vari-
ance o2, we find that

Tiol Yigi

2
0y Oxd 2
Pr = { * x2 J =0, [ t !
. .2
Oxd 04 Do Yol
The summations can be expressed in closed form, leading to
the conclusion that

-1

©

odn= 127
e+ 1)(+2)
The variance of the displacement or flow estimate dp thus de-
creases as the cube of the number of images. This expression
is identical in structure to the optimal estimate for the iconic
approach, the only difference being the replacement of the
variance of the SSD minimum by the variance of the edge po-
sition. Thus, if our estimators incorporate appropriate models
of measurement noise, the iconic and feature-based methods
theoretically achieve the same rate of convergence. This is
surprising, given that the basic Kalman filter for the iconic
method maintains only one state parameter (d) for each pixel,
whereas the feature-based method maintains two per feature
(xo and dp). We suspect that an incremental version of the
optimal iconic estimator will require the same amount of state
as the feature-based method.

(10)



Comparison with stereo

To compare these methods to stereo matching on the first
and last frames of the image sequence, we must scale the stereo
disparity and its uncertainty to be commensurate with the flow
between frames. This implies dividing the stereo disparity by
¢ and its uncertainty by 2. For the iconic method, we assume
that the uncertainty in a stereo measurement will be the same
as that for an individual flow measurement. Thus, the scaled
uncertainty is ,

ok = ff;
This is the same as is achieved by our incremental algorithm
that processes all of the intermediate frames. Therefore, pro-
cessing the intermediate frames as we do (that is, ignoring the
temporal correlation of the measurements) may improve the
reliability of the matching, but in this case it does not improve
precision.

For the feature-based approach, the uncertainty in stereo
disparity is twice the uncertainty o2 in the feature position; the
scaled uncertainty is therefore

2
2 20
ops(D) = ,2e .

In this case using the intermediate frames helps, since

O'F([) _ 1
ars(t) oW’

Thus, extracting depth from a small-motion image se-
quence has several advantages over stereo matching between
the first and last frames. The ease of matching is increased,
reducing the number of correspondence errors. Occlusion is
less of a problem, since it can be predicted from early mea-
surements. Finally, better accuracy is available by using the
feature-based method or the optimal version of the iconic
method.

5.2 Quantitative experiments: flat scenes

The goals of our quantitative evaluation were to examine the
actual convergence rates of the depth estimators, to assess the
validity of the noise models, and to compare the performance
of the iconic and feature-based algorithms. To obtain ground
truth depth data, we used the facilities of the Calibrated Imag-
ing Lab at CMU to digitize a sequence of images of a flat-
mounted poster. We used a Sony XC-37 CCD camera with a
16mm lens, which gave a field of view of 36 degrees. The
poster was set about 20 inches from the camera. The camera
motion between frames was 0.04 inches, which gave an actual
flow of approximately two pixels per frame in 480x512 im-
ages. For convenience, our experiments were run on images
reduced to 240x256 by Gaussian convolution and subsampling.
The image sequence we will discuss here was taken with ver-
tical camera motion. This proved to give somewhat better
results than horizontal motion; we attribute this to jitter in the
scanline clock, which induces more noise in horizontal flow
than in vertical flow.

Figure 3 shows the poster and the edges extracted from
it. For both the iconic and the feature-based algorithms, a

ground truth value for the depth was determined by fitting a
plane to the measured values. The level of measurement noise
was then estimated by computing the RMS deviation of the
measurements from the plane fit. Optical aberrations made the
flow measurements consistently smaller near the periphery of
the image than the center, so the RMS calculation was per-
formed over only the center quarter of the image. Note that
all experiments described in this section did not use regular-
ization to smooth the depth estimates, so the results show only
the effect of the Kalman filtering algorithm.

To examine the convergence of the Kalman filter, the
RMS depth error was computed for the iconic and the feature-
based algorithms after processing each image in the sequence.
We computed two sets of statistics, one for “sparse” depth and
one for “dense” depth. The sparse statistic computes the RMS
error for only those pixels where both algorithms gave depth
estimates (that is, where edges were found), whereas the dense
statistic computes the RMS error of the iconic algorithm over
the full image. Figure 4 plots the relative RMS errors as a func-
tion of the number of images processed. Comparing the sparse
error curves, the convergence rate of the iconic algorithm is
slower than the feature-based algorithm, as expected. The rel-
ative heights of the two curves will depend on the relative
sizes and shapes of the correlation window and the edge oper-
ator. In this particular experiment, both methods converged to
an error level of approximately 0.5% percent after processing
eleven images. Since the poster was 20 inches from the cam-
era, this equates to a depth error of 0.1 inches. Note that the
overall baseline between the first and the eleventh image was
only 0.44 inches.

To compare the theoretical convergence rates derived ear-
lier to the experimental rates, the theoretical curves were scaled
to coincide with the experimental error after processing the
first two frames. These scaled curves are also shown in Figure
4. For the iconic method, the theoretical rate plotted is the
quadratic convergence predicted by the correlated flow mea-
surement model. The agreement between theory and practice
is quite good for the first three frames. Thereafter, the experi-
mental RMS error decreases more slowly; this is probably due
to the effects of unmodeled sources of noise. For the feature-
based method, the experimental error initially decreases faster
than predicted because the implementation required new edge
matches to be consistent with the prior depth estimate. When
this requirement was dropped, the results agreed very closely
with the expected convergence rate.  Finally, Figure 4 also
compares the RMS error for the sparse and dense depth esti-
mates from the iconic method. The dense flow field is consid-
erably noisier than the flow estimates that coincide with edges,
though still just over two percent error by the end of eleven
frames. Thus, the iconic method also provides valuable depth
information at pixels not containing sharp edges.

5.3 Qualitative experiments: real scenes

We have tested the iconic and feature-based algorithms on
complicated, realistic scenes obtained from the Calibrated
Imaging Laboratory. Two sequences of ten images were taken
with camera motion of 0.05 inches between frames; one se-
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quence moved the camera vertically, the other horizontally.
The overall range of motion was therefore 0.5 inches; this
compares with distances to objects in the scene of 20 to 40
inches.

One of the images is shown in Figure 5a. Figure 5b shows
a depth map that combines the results of the iconic method
applied to both the horizontal and the vertical image sequences.
Lighter areas in the depth map are nearer. The combined depth
map reveals more scene structure than either the horizontal or
the vertical sequence would alone. Figures 5¢ and 5d show
3-D perspective reconstructions obtained from the iconic and
the feature-based methods, respectively. These were obtained
from depth maps that combined disparity estimates obtained
from horizontal and vertical motion, as in Figure 5b. The
depth map for the feature-based approach was produced from
the sparse depth estimates by regularization. It is difficult to
make quantitative statements about the performance of either
method from this data, but qualitatively it is clear that both
recover the structure of the scene quite well.

6 Conclusions

This paper has presented a new algorithm for extracting depth
from known motion. The algorithm processes an image se-
quence taken with small inter-frame displacements and pro-
duces an on-line estimate of depth that is refined over time.
The algorithm produces a dense, iconic depth map and is suit-
able for implementation on parallel architectures.

The on-line depth estimator is based on Kalman filter-
ing. A correlation-based flow algorithm measures both the
local displacement at each pixel and the confidence (or vari-
ance) of the displacement. These two “measurement images”
are integrated with predicted depth and variance maps using
a weighted least squares technique derived from the Kalman
filter. Regularization-based smoothing is used to reduce the
noise in the flow estimates and to fill in areas of unknown
disparity. The current maps are extrapolated to the next frame
by image warping, using the knowledge of the camera motion,
and are resampled to keep the maps iconic.
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Figure 5: CIL depth maps
(a) first frame (b) depth map for iconic method

(c) perspective view for iconic method (d) perspective view for symbolic method
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The algorithm has been implemented, evaluated math-
ematically and experimentally, and compared with a feature-
based algorithm that uses Kalman filtering to estimate the depth
of edges. The mathematical analysis shows that the iconic ap-
proach will have a slower convergence rate because it only
keeps one element of state per pixel (the disparity), while the
feature-based approach keeps both the disparity and the sub-
pixel position of the feature. However, an optimal implementa-
tion of the iconic method (which takes into account temporal
correlations in the measurements) has the potential to equal
the convergence rate and accuracy of the symbolic method.
Experiments with images of a flat poster have confirmed this
analysis and given quantitative measures of the performance
of both algorithms. Finally, experiments with images of a real-
istic outdoor scene model have shown that the new algorithm
performs well on images with large variations in depth and
intensity.

The algorithms described in this paper can be extended
in several ways. The most straightforward extension is to the
case of non-lateral motion [13]. This can be accomplished by
designing a correlation-based flow estimator that produces two-
dimensional flow vectors and an associated covariance matrix
estimate [1]. This approach can also be used when the camera
motion is uncertain or when the camera motion is variable (e.g.
for widening baseline stereo [23]).

- More research is required into the behavior of the corre-
lation based flow and confidence estimator. In particular, we
have observed that our current estimator produces biased esti-
mates in the vicinity of intensity step edges. The correlation
between spatially adjacent flow estimates, which is currently
ignored, should be integrated into the Kalman filter framework.
More sophisticated representations for the intensity and depth
fields are also being investigated [18].

Finally, the incremental depth from motion algorithms we
have developed can be used to initiate stereo fusion. Work is
currently in progress investigating the integration of depth-
from-motion and stereo [10]. We believe that the framework
presented in this paper will prove to be useful for integrating
information from multiple visual sources and for tracking such
information in a dynamic environment.
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