Subassembly Identification and Motion Generation
for Assembly : A Geometric Approach

Raju S. Mattikalli

Pradeep K. Khosla Yangsheng Xu

Engineering Design Research Center
Carnegie Mellon University
Pittsburgh, PA 15213

1. Abstract

The long term goal of our research is to address the question: Can the
given MSA be assembled automatically with the given facilities? In order
to accomplish our goal we are developing techniques to model the
Mechanical System/Assembly (MSA), the available facilities and the
assembly process. In this paper, we address the first part of our goals and
develop a methodology to automatically determine the assembly sequence
from a 3-D geometric modeler description of the assembly. Our approach
consists of automatically determining a set of assembly operations, through
a disassembly procedure, that lead to the given assembly (MSA). We
present our work on identifying subassemblies that can be assembled using
combinations of translational and rotational motions.

2. Introduction

Software tools that evaluate the manufacturability of a design would
allow the designer to anticipate potential problems that may arise during the
manufacture of a product, i.e., they would help the designer to Design for
Manufacturability. By providing useful feedback to the designer during the
design of a product, these tools will help reduce the design-manufacture
cycle time. In our work, we address the process of assembly. Feedback
about assembly concerns could be as simple as a YES/NO answer regarding
the assemblability of the design on the given facilities, or, it could be
something more complex that would identify certain assembly tasks that
cannot be carried out and include suggestions for redesign of the
component. In either case, in order to be useful and practical, such tools
should have complete models of the assembly and the manufacturing
facility. A system that could critique a design and provide useful feedback
for redesign is still far from the horizon, but substantial amount of present
day research is being targeted towards the development of important parts
of such a system.

We are developing a system that will accept a 3-D geometric description
of an assembly and a model of assembly facilities, and reason about the
assembly to answer the question: Can the given assembly be automatically
assembled on the available facility? In order to answer this question we are
addressing issues that will allow us:

» (0 create a suitable representation of the assembly,

o to generate the sequence of assembly operations,

o {0 create a representation of the facility,

oto reason about the assemblability, using the assembly

operations and the facility model.

If the mechanical system can be assembled on the given facilities, each
assembly task is automatically planned and programmed as a sequence of
standardized actions corresponding to the the specific assembly task. These
programs could be downloaded onto the real assembly facilities to perform
the assembly. The block diagram in Figure 1 shows an overview of the
research.

Our research group in the Engineering Design Research Center, at

399

Assembly Cperations Facilities Model

Assembly
Sequence

Subtasks

design |] m [: robot
model — program

Reasoning System-1 Reasoning System-2 Yes Robot

Program Generator

-—

Figure 1: Research Overview

Carnegie Mellon, has developed a geometric modeler Noodles [3]. The
work described in this paper utilizes Noodles to create 3-D representations
of assemblies. Starting from this representation, we have developed a
strategy, based on kinematic constraints, that automatically determines the
assembly sequence of the given Mechanical System/Assembly (MSA).
Subasemblies that satisfy stability criteria and which are accessible for
manipulation are identified. By posing it as a problem of reasoning about
changes in degrees-of-freedom of geometric subassemblies due to their
movement within the assembly, sequences of rotational and translational
motions can be determined. We have developed algorithms that compute
such collision free motions. This work is an important step towards
developing software tools to evaluate the assemblability of mechanical
assemblies.

One of the early works in evaluating and reducing assembly costs is that
by Boothroyd and Dewhurst [1]. They rate the efficiency of a design based
on a classification of the various geometric features of the components
comprising the assembly. These features are used to estimate the full cost
of automation using hueristic knowledge. In our work, we propose to make
assembly evaluations based on knowledge about the details of the assembly
process. Using a geometric model of an MSA, we systematically determine
the assembly tasks that assemble the MSA. Two principal steps are
involved : (a) identifying subassemblies (a topologically connected group
of components), and (b) finding detailed assembly motions of each
subassembly. Knowledge about the capabilities of the available assembly
facilities and relative difficulty of each assembly task is used to make a
comprehensive evaluation of assemblability.

Based on the sequence of motions generated using the method presented
in this paper, every motion (or a sct of motions) of a subassembly can be
mapped to an assembly task. An assembly task represents a high level
assembly process plan which results in the motions that map onto the task,
A library of primitive assembly operations (referred to as subtasks) are
defined. Each task consists of a set of subtask instantiations. For each task,
the assemblability can be evaluated based on the facility model being
developed. In the case the design is not assemblable, design modifications
are suggested using the available facility model, or, additional facilities are
selected without modifying the design. When the design can be assembled,
the assembly task is automatically planned and programmed as a sequence

CH2872-0/90/0000-0399 © $1.00 1990 IEEE

of standardized subtasks.

This paper is organized as follows : Section 2 describes the model of the
MSA. Section 3 describes the gcometric Reasoning System-I which
generates a set of assembly actions and an assembly sequence from the
model. Algorithms for generating collision free translational and rotational
motions are described. The reasoning of the assembly operations vis-a-vis
the facilities (Reasoning System-II) has not been described in this paper. In
Section 4 an example of an MSA is considered and the generation of
assembly motions is illustrated. Section S summarizes this paper.

3. Representation of the MSA

In modeling MSAs for assembly analysis, the following attributes are of
importance : Form, Material, Dimensions, Surface Quality, Tolerances,
Geometric Features and Mating Conditions. Fundamental to most
abstractions of mechanical assemblies is the geometry and topology of the
various components and the mating between them. In our work, a 3-D
geometric model of the MSA is created using the geometric modeler
Noodles. This geometric model constitutes a representation in terms of low
level geometric primitives (i.e., nodes, edges, faces and regions). The
geometric representation jis augmented by a topological framework
(constructed within Noodles). Most of the higher level abstractions can be
derived from this topology and geometry rich model, while some others,
such as abstractions representing function and behavior, may require human
input to augment the model.

Of primary importance in our effort to determine assembly operations are
the geometric description and higher level abstractions relating to part
mating and spatial occupation. Such higher level attributes are represented
implicitly within the geometric modeler, although they involve varying
degrees of complexity to derive from the geometric model. Sedas and
Talukdar [12] used a stick model to represent spatial occupation and reason
about the disassembly. This 2-D abstraction limits the utility of their
approach to only symmetric MSAs and does not allow an easy extension to
3-D. In our work, inquiries about spatial occupation are made directly to
the 3-D Noodles model. Mating relationships play an important role in our
reasoning mechanism and are therefore represented explicitly in the form of
a graph.

The internal representation of Noodles facilitates the generation of other
abstractions of a MSA that are required for the reasoning system. Noodles
provides a very powerful representation scheme for describing the geometry
and topology of mechanical systems. Geometric models of individual
components are created by the designer using functions provided by
Noodles. The models of these individual components are then combined to
create a model of the MSA. In the sequel, we present a very brief
description of Noodles. A detailed report can be found in [3].

3.1. The Geometric Modeler Noodles

As described earlier, a model of the MSA is created using the geometric
modeling system Noodles. This modeler uses a surface boundary
representation scheme, i.e., it models objects by their enclosing shells. In
particular, it employs a non-manifold scheme for surface boundary
representation. The fundamental geometric elements (namely nodes, edges,
faces and regions) are interpreted as point sets in R3. The entire space is
categorized into disjoint point sets, consisting of these four fundamental
elements. Although these elements are disjoint, there is a relationship of
immediate neighborhood among them. The geometric data is augmented
with topological information using support elements. As a result of
attempting to categorize space and explicitly represent their topology,
Noodles demonstrates a significant improvement over contemporary
geometric modelers in its receptiveness to interrogations from the
Reasoning Systems I and II (in Figure 1) about the geometry and topology
of assemblies.

400

3.2. Abstractions from the Geometric Model

The two main abstraction created are the Component Graph and the
Disassembly Graph. Apart from the geometric model, an MSA is also
represented at another ievel of abstraction. The Component Graph
emphasizes the matings between components and subassemblies. The
purpose of this abstraction is to have a knowledge representation more
appropriate for the high level reasoning for assembly plan generation and
task generation. The assembly procedure is represented in the form of an
AND/OR graph (referred to as the Disassembly Graph) which could be
thought of as another abstraction of the MSA. The geometric
representation, however, forms the basis of these abstractions.

3.2.1. The Component Graph

The Component Graph is an undirected graph which represents the
mating between the components in a subassembly. Nodes in the graph
represent either individual components, subassemblies or void regions; links
represent the mating conditions between the nodes. Mating consists of the
faces that are shared by the two concerned nodes. One very useful addition
has been made to this graph. We introduce a node that represents the region
of space that surrounds the assembly. In the context of the graph, this
special node has links to all components which are accessible from the
outside. This information is valuable to the Reasoning System-I (Section 4).
This graph is constructed automatically by making inquiries into the
geometric model. Figure 2 shows a peg-in-hole assembly with the mating
faces which form part of the link between the two nodes.

The purpose of the component graph is to give fast and easy access to
information about the immediate ncighborhood of each component in a
given subassembly. Based on the mating conditions between a component
and its neighbors, an evaluation of the constraints on the degrees of freedom
of a component (or group of components) is made. This is used to
recognize groups of components as being part of a meaningful subassembly.

2

- | =
14 / /!

rating candinans

@iz, 15 L
T ampenentcz
component ot et
e

Figure 2: (a)A Peg-in-hole assembly. (b)The mating faces.
(c) The link between ¢l and c2.

Another merit in constructing this intermediate representation of part
matings is that it makes the assembly task generation routines independent
of the geometric modeling system.

During the reasoning process, when various subassemblies are being
considered for potential candidates for disassembly, the component graph is
modified to represent topologically connected groups of varying constituent
components. Since a number of different subassembly representations are
required, each for brief periods during the reasoming process, we have
devised a two tier graph. There exists a base component graph that was
created with each component as a node. When a subassembly with
components {C;, C,, ... C,) needs to be created, the nodes in the base
graph that represent the components {C;, C,, ... C,} are deactivated and a
new node is created at the upper tier.

Given the model of any MSA, our objective is to determine a sequence of
assembly tasks that would assemble the MSA. With a similar objective,
Lee and Ko [6) developed a method for automated generation of an
assembly procedure for an assembly. Their procedure requires the designer

to input the mating conditions and give qualitative descriptions of the kind
of mating (namely against, fits, tight-fits and contact) between components.
From the constructed graph they create a hierarchy of components based on
the number and type of links that connect to each node. Their approach
however does not involve any geometric considerations, such as
accessibility and ease for grasping, stability, etc. to determine meaningful
subassemblies. We believe that knowledge about the detailed geometry of
assemblies allows us to automate the evaluation of assembly characteristics
and behavior, without requiring detailed human input.

The central idea behind our method to generate assembly tasks is to
disassemble the MSA. The disassembly procedure is part of the reasoning
system and is described in the Section 4. The result of the disassembly
procedure (and possible alternatives) is recorded in the Disassembly Graph.
This graph represents the assembly tasks that would assemble the MSA.

3.2.2. The Disassembly Graph

The Reasoning System-I "disassembles” the MSA - it generates a set of
disassembly tasks. The affect of applying a disassembly task/operation on a
subassembly results in it being split into two smaller subassemblies. If this
splitting operation is applied recursively to each emerging subassembly that
consists of more than one component, we would have disassembled the
MSA. The disassembly procedure is represented using an AND/OR tree
like data structure, with the original MSA as the root, subassemblies as
branch points and components as leaves, with disassembly operations
represented on the interconnecting links. If similar subassemblies are
generated, they are represented as the same node, which makes the
AND/OR tree an AND/OR graph. If a given subassembly can be
disassembled in more than one way, then an OR node is formed, and each
of the immediate successors of the OR node represent AND nodes. Each
AND node represents one way in which the subassembly can be
disassembled.

The disassembly graph that is created, is similar to the one described in
(5] to represent assembly sequences. Note that within this task hierarchy,
there is an implicit hierarchy of subassemblies and components. Previous
work, such as that by Lee [6], has attempted to generate a hierarchy of
components, and then determine assembly operations based on this part
hierarchy. Arranging components in an hierarchical order and determining
assembly tasks from them is rather artificial. Imposing a hierarchy on sets
of components is rather like working in reverse, as the hierarchical
decomposition should emerge from the assembly process, and not the other
way around.

An example of an MSA and its corresponding Disassembly Graph is
shown in Figure 3. As can be seen, the root node represents the complete
assembly of four components. The first disassembly operation corresponds
to the unscrewing of component ¢4 from component c3. Since there is no
alternative disassembly operation, the root node would be an AND node. In
case some alternatives were found, the root node would be a OR node, with
each of its child nodes representing each alternative. In this case, the root
node gives rise to two child nodes, corresponding to the component ¢4 and
the rest of the assembly (components c1, ¢2 and c3). Since node nl
represents a single component, it is a terminal node. Node n2 can now be
treated as a new subassembly, and the splitting procedure is applied to node
n2. This process is continued to generate the complete component
hierarchy. In this case, since there is only one disassembly sequence, there
are no OR branches in the tree, but in general they would be present.

The definition of an assembly task depends on part motions as well as the
geometry of the components that are involved. Each assembly task can be
defined in terms of a set of primitive assembly operations which are
referred to as subtasks. The reasoning system-I determines feasible
subassemblies and their motions that lead to disassembly. Based on the
geometry and the motion of the moving subassemblies, a set of assembly
tasks are identified. Kondelon [11] studied a number of products and their

401

assembly methods and came up with a set of twelve primitive tasks

=~
dizxaembily operation
g N

@ &

Figure 3: (2)Example of an assembly (b)Disassembly Graph

associated with the assembly process. In our work we would like to define
tasks at a lower level of breakdown; at a level that more appropriately
reflects the exact manner in which these assembly tasks would be carried
out. For example, when a sliding motion occurs, we classify it based on the
number of degrees-of-freedom that the moving part possesses. Thus the
case of sliding contact with respect to only one plane would be classified as
a different task compared to sliding contact with respect to say two planes.
The difference is that the moving body is constrained differently in the two
cases; hence requiring different considerations during the actual assembly.
‘When we attempt to reason about the assembly tasks vis-a-vis the assembly
facilities, we must have available a detailed description of the assembly
tasks,

The next section describes the working of the Reasoning System-I : how
the abstractions are used, how subassemblies are generated, how the
disassembly algorithm works and how collision-free part motions are
determined. A more detailed description of Reasoning System-I is presented
in [10].

4, The Reasoning System-I

The reasoning system-I generates a sequence of assembly tasks using as
input a model of an MSA and its component graph. De Fazio and
Whitney [13] have described a method for generating all assembly
sequences, based on the response of the user to a set of questions. The
questions concern the order in which these assembly steps are performed
during the assembly process. In comparison, although our goal is not to
determine all assembly sequences, we adopt a more direct procedure -
determine assembly operations and their sequence, without attempting to
specify any precedence explicitly. Precedence relations fall out implicitly
as a consequence of performing a disassembly. Sedas and Talukdar [12]
have described a disassembly expert that imitates the human method of trial
and error to simulate a disassembly process. In most cases, the sequence of
assembly operations can be got by reversing the sequence of disassembly
operations.

We follow similar lines, in that assembly operations required to assemble
an MSA can be determined effectively by studying the way in which the
MSA is disassembled. Each assembly task can be thought of as being some
process by which the degrees of freedom of the components involved in that
operation get constrained. An unassembled component has six degrees-of-
freedom, 3 translational and 3 rotational. An assembly process has the
effect of constraining some or all of these degrees-of-freedom. The output
of this system is a Disassembly Graph accompanied by a graphic display of
the disassembly process.

The Reasoning System-I is best explained in terms of modules. Module
Split consists of three main parts: Find_Subassembly, Determine_Motions
and Identify_Tasks. Given an assembly, this module *splits’ it into two
subassemblies; those that are formed as a result of a disassembly operation.
Module Find Subassembly accepts a subassembly, consisting of say n

components, and finds a suitable division of these n components into two
groups (or two subassemblies) such that one of them possess some dof.
Once a suitable subassembly has been chosen, module Determine_Motions
starts moving the subassembly out of the parent assembly. Motions that
separate the subassembly from the rest of the MSA are determined. Based
on the two subassemblies that are generated, and the motions that bring
about a separation, module Identify Tasks identifies the set of primitive
assembly operations that generate the motions. It also defines the
parameters that define this primitive operation uniquely.

An important part of this splitting procedure is the determination of
collision free motion of the subassembly out of the parent assembly.
Module Determine_Motions performs this function. In case no collision
free motion ¢an be determined, a backtracking mechanism is initiated such
that other subassemblies can be generated by Find Subassembly. Our
method of determining collision free motions takes advantage of the nature
of the problem at hand. Any motion is composed of primitive translational
and rotational motions. This module outputs an ordered set of primitive
motions which when applied to the MSA would disassemble it. Section 4.1
of this paper describes this module in detail.

The module Identify_Tasks takes as input the set of primitive motions and
the description of the subassembly that is being disassembled. From these, it
identifies "assembly tasks" that bring about these motions. As described
earlier, a library of assembly subtasks is defined. A task represents an
action on a subassembly. The definition of each task contains a list of
primitive motions, each motion being generated by a subtask, which when
made to act on a subassembly results in the subassembly being assembled.
It also contains information on what kinds of geometric features need to be
present on the subassembly if this task could act on it.

4.1. Generating Valid Disassembly Motions - Translational and
Rotational

The degrees-of-freedom (dof) of nodes in a component graph can be
inferred from the links that connects that node to other nodes. This
information is used in identifying a suitable subassembly (S;) that can
potentially be disassembled, as well as in proposing a direction of motion of
the subassembly out of the parent assembly (A ;). But this does not ensure a
valid collision free path for the moving subassembly S,; a collision free
path for §; out of A; must be found. In its most general formulation, this is
thus a find-path problem.

Lozano-Perez et. al [7,8,9] have described the configuration space
approach to solve this problem. Brooks [2] represents free space as
generalized cones, and presents an algorithm to find collision free paths.
However, these methods are fairly difficult to implement for 3-D objects
that are translating and rotating. One very critical difference exists between
the kinds of problems we are solving in this application and the general
find-path problem, i.e., we are concerned with the motion of a subassembly
within its parent assembly that has/had constrained this subassembly in a
well defined manner, while the general find-path problem is to find a
continuous path of a polyhedron between two positions in space in the
presence of arbitrary polyhedral obstacles. Our problem of finding collision
free motions has obstacles that are in very close proximity of the moving
objects (in fact, they are usually in contact with the moving objects). It is
this proximity that we use to our advantage.

Through a systematic study of the geometric constraints imposed by the
stationary subassembly on the moving subassembly, we can formulate our
problem differently. If looked upon as a search for a valid path, in this new
premise, a generate and test approach does not involve extensive search.
Moreover, by augmenting the search using knowledge of the geometric
features that constrain the moving subassembly as well as those features
present on (and surrounding) the moving subassembly, the search can be
made fairly efficient. We pose ourselves the problem of reasoning about

402

changes in dof of subassemblies due to translational and rotational motions.
The heart of such a system requires collision detection capabilities between
moving objects and stationary obstacles. We have developed efficient
translational and rotational collision detection algorithms, which are
described in the following paragraphs. These would apply to any surface
boundary based geomeltric representation which approximates the object
shape using planar facets.

4.1.1. Determining Translational Motion

Given a subassembly and the direction in which it can potentially be
disassembled, this module detects whether motion of the subassembly in
that direction will cause a collision with the rest of the assembly, and if so,
the module determines the amount of allowable motion. The module uses a
simple swept volume method, ie., it generates a volume that is formed
when the subassembly moves in the given direction and checks whether this
volume intersects with any of the stationary components. Information about
containment shells of subassemblies, directions of the normals of facets,
bounding boxes, etc. is used to reduce the number of intersection
calculations (face-face, face-edge and edge-edge). Since we possess a
complete geometric model of the MSA, such information can be extracted
at will. Once a collision is detected, the subassembly is moved to the point
where the collision occurred and the process of finding new motions is
continued.

4.1.2. Determining Rotational Motion

This section describes an approach to efficiently compute rotational dof
within assemblies. Using this information, disassembly operations which
involve rotational motions can be deduced. One class of subassemblies that
potentially possess rotational dof are those that have a peg like cylindrical
shape feature, which mates with a cylindrical hole like feature (we will refer
to this as a cylindrical peg-in-hole type of mating). Thus, in order to check
for rotational dof, peg-in-hole type of mating features would have to be
identified. Currently we assume that such features can be identified using
either help from the user or some other automatic feature recognition
techniques. The axis of the cylindrical set of features is the axis of rotation
of the subassembly.

Given an axis (A) in space and a subassembly (S;) that has a rotational
dof about A, we need to determine the amount of rotation of §; about A.
The amount of rotation is determined by the state of the final position of S,
: either it cannot rotate any more (in which case a collision has occurred), or
its dof have changed to some desirable value. The actual rotation of §;
would result in it being completely disassembled, or, would lead to a state
where some subassembly (not necessarily S;) has its dof modified. Most
often, it is 8, that has one of its translational dof modified, which means
that after the rotation is performed on S, it can be translated to continue the
disassembly process. This is what is meant by desirable value of dof of §,.
A simple example is the twist-and-pullout action (eg. bayonet lock) which
requires a rotation of the peg by a certain amount resulting in a state in
which the peg in free to translate along its axis. The following paragraphs
outline an efficient method of determining the amount of rotation that a
subassembly can make about an axis before it collides with a part of the
remaining assembly.

Outline of an Algorithm to efficiently determine Rotational Intersections

Consider an assembly, say of n components. Let {C} be a set of stationary
components, and {C,} a set of components that is being rotated about axis
A. Note that {C,} is the complement of {C} about the set of all
components within the given assembly. The problem is to determine
whether (C,) collides with {C,} during the course of its rotation about A,
and if so, through what angle it rotates before collision occurs. The broad
outline of the algorithm is as follows. The description of the model is
transformed from the cartesian coordinate system to the cylindrical
coordinate system (actually the transformation is performed only for faces

and edges that form part of the outer shell of {C,} and relevant elements of
the shell of {C}). Cylindrical bounding boxes are created around such
edges and faces. The volume traversed by {C,) during rotation is swept out
by a subset of the edges and faces of {C,). The set {E,} of all such edges
and faces {F,} are identified. Faces and edges that belong to { C,} and that
form the neighborhood of the rotating subassembly are grouped into face set
(F,} and edge set (E;}. Each member of {E,} is checked for collision in a
rotating frame with the members of {F_}. In a similar fashion, each member
of (Ej} is tested with members of {F,}, but with the rotation in the reverse
direction. This final check is equivalent to keeping {C,)} fixed and rotating
{C,} in the opposite direction. This algorithm gives the amount of rotation
that {C,} can make about the given axis before collision. This method of
computing rotation collisions by using cylindrical coordinates
transformations and intersection algorithms between rotating edges and
stationary faces applies to any set of arbitrary polyhedral objects.

5. Example

The capabilities of the proposed disassembly method is demonstrated in
this section using an example which has been taken from [4]. Figure 4
shows a series of snapshots during the disassembly of the MSA, as
generated automatically by our program. The MSA consists of 4 parts : a
box which has a slotted block fitting inside it, a door which fits onto a
cylindrical bar which is on the box and acts like a hinge, and a key which
passes through the slot in the block and gets locked in the slot. The
program is supplied a model of the complete MSA (as in Figure 4(1)). The
purpose in selecting this example is to highlight the generation of
translational and rotational motions to disassemble an MSA.

2.
3. 4.
S, 6.

Figure 4: An example showing the disassembly process.

6. Summary

In this paper we have presented a method for automated generation of an
assembly procedure for a given assembly. The procedure is generated from
the parts geometry and topology model, and thus explicit specification of
mating relations between parts is not required. The approach not only
dispenses with the time consuming specification of mating relations by the
user, but also prevents from wrong mating relations being presented, and
makes unnecessary the need to check for validity. Moreover, the geometric
considerations in the generation of the assembly sequence makes it possible
to directly evaluate assembly performance and further to easily generate
detailed assembly plans, such as grasping, transferring, and manipulation,
based on the given geometry of the assembly.

We have presented algorithms to find a collision free path to yield

403

disassembly motions. To disassemble an MSA we determine the parts or
subassemblies that can separate themselves from the MSA after series of
translational and rotational motions. The problem of deducing such motions
is posed as one of determining changes in degree-of-freedom of
subassemblies due to either translational or rotational motion. We have
developed algorithms to determine locations at which collisions occur
between moving subassemblies and the rest of the parent MSA. After the
motions are deduced, a series of transformations is performed on the model
of the MSA to accomplish disassembly. The efficiency and feasibility of the
algorithms have been demonstrated through a case study. Our current work
is addressing the modeling of facilities and automatic generation of
downloadable code for executing on the assembly facility. The assembly
facility that we plan to use initially is the TROIKABOT system developed
by Westinghouse.

7. Acknowledgements

This research was supported in part by the Engineering Design Research
Center, an NSF Engineering Research Center at Carnegic Mellon
University.

References

1. G. Boothroyd, and P. Dewhurst. Design for Assembly. Boothroyd
Dewhurst Inc., 1972.

2. R.A. Brooks. "Solving the Find-Path Problem by Good Representation
of Free Space". IEEE trans. on Systems, Man and Cybernetics SMC-13,
No.3 (1983).

3. L. Gursoz., Y. Choi, and F. Prinz. Vertex-Based representation of Non-
Manifold Boundaries. In Geometric Modeling for Product Engineering,
North - Holland, New York, 1988, pp. 107 - 130.

4. R. Hoffman. Automated Assembly in a CSG Domain. Proc. IEEE
Conference on Robotics and Automation, 1989, pp. 210-215.

5. L. Homem de Mello, and A. Sanderson. "AND/OR Graph
Representation of Assembly Plans". Technical Report, The Robotics
Institute CMU-RI-TR-86-8 (1986).

6. K. Lee, and H. Ko. "Automatic Assembly Procedure Generation from
Mating Conditions". CAD 19, 1 (1987), 3-10.

7. T.Lozano-Perez. "Automatic Planning of Manipulator Transfer
Movements". IEEE trans. on Systems, Man and Cybernetics SMC-11
(1981), 681-698.

8. T. Lozano-Perez. "Spatial Planning: A Configuration Space Approach”.
IEEE trans. on Computers C-32, No.2 (1983), 108-120.

9. T.Lozano-Perez, and M.A. Wesley. "An Algorithm for Planning
Collision-Free Paths Among Polyhedral Obstacles". Comm. of the ACM 22,
No.10 (1979), 560-570.

10. R.S. Mattikalli, and P.K. Khosla. "A System to Determine Assembly
Sequences”. Technical Report, Engineering Design Research Center,
Carnegie Mellon University EDRC-24-16-89 (1989).

11. T. Owen. Assembly with Robots. Prentice Hall, 1982.

12. S. Sedas, and S. Talukdar. "Disassembly Expert". Technical Report,
Engineering Design Research Center, Carnegie Mellon University
EDRC-01-03-87 (1987).

13. D. Whitney, and T. DeFazio. "Simplified Generation of all Mechanical
Sequences”. IEEE Journal of Robotics and Automation RA-3, 6 (December,
1987).

