
sphere is identified as a coherent surface as shown in Fig-
ure 7(a). The four segmentations are the possible interpre-
tations of each surface being a disc or a sphere in the
scene. Figure 7(b) shows the best region grouping for the
stop-sign and cup image, and Figure 7(c) and (d) show,
respectively, the initial segmentation and final region
grouping of the mug image from Figure 1.

Note that in this implementation we do not filter or
prefer hypotheses based on the image data--e.g. we might
prefer planar hypotheses for regions of uniform intensity.
Therefore, the planar interpretation of the two spheres
image is as likely as the curved in the final hypothesis
graph shown in Figure 6(b). One line of research we are
pursuing is to adjust the edge weights based on the com-
patibility of the hypotheses with the image data. The
extraction algorithm would then prefer segmentations con-
taining hypotheses that better explain the appearance of
the scene. Incorporating this information does not change
the overall methodology and, in fact, is motivated by the
analysis of “weirdness” presented in [8].

8. Conclusions

We have successfully implemented a system based
upon the framework outlined in [8]. With only two
hypotheses implemented we are able to segment images

containing more complex objects than previous physics-
based algorithms. Furthermore, our approach is unique
among physics-based methods in that we attempt to find
regions corresponding to coherent surfaces rather than
regions of similar color. Future research includes expand-
ing the number of hypotheses per region, in particular to
incorporate specular highlights, and filtering hypotheses
based upon their compatibility with the image.
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Figure 7: (a) visualization of the best region
grouping for the sphere image, (b) best region
grouping for the stop-sign and cup, (c) initial seg-
mentation of, and (d) best grouping for the mug
image (missing areas are too dark for analysis).
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6. Creating the hypothesis graph

For the hypotheses used in our initial implementation
we can apply our three tests to obtain an estimate of
whether region pairs are part of the same object.

Once all possible hypothesis pairs are analyzed we
generate a hypothesis graph in which each node is a
hypothesis and edges connect all hypotheses that are adja-
cent in the image. We then assign to each edge the likeli-
hood that the two hypotheses it connects are part of the
same object. These likelihoods are a weighted average of
the results of the three compatibility tests, with the profile
analysis weighted more heavily than the other two tests.

Note, however, that each edge actually has two
weights associated with it. The weight assigned to the
edge is a likelihood that the two hypotheses are part of the
same object and should be merged in a segmentation.
However, there always exists the alternative that the two
hypotheses are not part of the same object and should not
be merged in a segmentation. In order to find “good” seg-
mentations, we must somehow assign a weight to the not-
merge alternative. Because of the [0..1] range of the com-
patibility tests, we select a value of 0.5 as the cost of not
merging two hypotheses. For edges such as those between
the two spheres with a weight of 0.35, this means that the
not-merge edge will be preferred in the final segmentation.

The hypothesis graph for Figure 3(a) is shown in Fig-
ure 6. The set of possible segmentations of the image
given the complete hypothesis graph is the set of sub-
graphs such that each subgraph includes exactly one
hypothesis from each region.

7. Extracting segmentations

A step-wise optimal algorithm exists for extracting
segmentations from a single-layer graph of nodes and
probabilities. Both LeValle & Hutchinson, and Panjwani
& Healey have used it to segment images containing tex-
ture [7][11]. At each step the algorithm merges the most
likely two nodes until it reaches a threshold based on the
number of regions or the likelihood of the best merge. We
have modified this algorithm to work on the multi-layer
hypothesis graph.

The addition of more layers to the graph, however,
means that there will almost always be more than one
“best” segmentation--defined as the segmentation with the
maximum sum of the likelihoods of all of the edges it con-
tains. We would like to be able to identify all of these best
segmentations, and guarantee that each hypothesis is
included in at least one segmentation.

Our solution is to run the algorithm onN different
graphs, whereN is the number of hypotheses in the image.
For each hypothesis , we set up a complete graph
and then remove all other hypotheses from the region con-
tainingh. This forces each hypothesis to be included in at
least one segmentation. The most likely segmentation
from this group we specify as the best grouping of image
regions. Because all discontinuous region pairs have a
likelihood of 0.5, there will almost always be multiple
equally likely segmentations with the same grouping of
regions but different hypotheses for the individual groups.
For example, in Figure 6(b), there are four possible seg-
mentations of the two-sphere image. In all four cases each
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5.5. Intensity profile analysis

So far, we have examined only calculated characteris-
tics of the image, not the actual image intensities. The
intensity profiles contain a significant amount of informa-
tion, however, which we attempt to exploit with the fol-
lowing assertion: if two hypotheses are part of the same
object and the illumination and shape match at the bound-
ary of the hypotheses, then, if the scale change due to the
albedo difference is taken into account the intensity profile
along a scanline crossing both hypotheses should be con-
tinuous. Furthermore, we should be able to effectively rep-
resent the intensity profile across both regions with a
single model. If two hypotheses are not part of the same
object, however, then the intensity profile along a scanline
containing both hypotheses is more likely to be discontin-
uous and representing the profile with two models should
be more appropriate.

To demonstrate this property, consider Figure 5(d),
which shows the intensity profile for the scanline from A
to A’. We can calculate the average reflectance ratio along
the border to obtain the change in albedo between the two
image regions. By multiplying the intensities from A” to

A’ by the average reflectance ratio we adjust for the differ-
ence in albedo. As a result, for this particular case the
intensity profile becomes smooth and a single model is a
good representation. On the other hand, for the scanline B
to B’, the scaled curves are disjoint, and two models are a
better representation as shown in Figure 5(b) and (c).

Rather than use the first or second derivatives of the
image intensities to find discontinuities, we take a more
general approach which maximizes the amount of infor-
mation used and is not as sensitive to noise and small-
scale texture in the image. Our method is based upon the
idea that if two hypotheses are part of the same object then
it should require less information to represent the intensity
profile for both regions with a single model than to repre-
sent the regions individually. We use the Minimum
Description Length [MDL], as defined by Rissanen [12],
to measure complexity, and we use polynomials of up to
order 5 to approximate the intensity profiles. The formula
we use to calculate the description length of a polynomial
model is given in equation (4), where xn is the data,θ is
the set of model parameters, k is the number of model
parameters, and n is the number of data points [12].

(4)

Our method for a single scanline s0 is as follows.

1. Model the intensity profile on scanline s0 for hypothe-
sis h1 as a polynomial. Use the MDL principle to find
the best order polynomial (we stop looking after order
5). Assign Ma the minimum description length.

2. Model the intensity profile on scanline s0 for hypothe-
sis h2 as a polynomial. Again, use the MDL principle
to find the best order and assign its MDL to Mb.

3. Model the scaled intensity profile of scanline s0 for
both h1 and h2 as a polynomial, find the best order
using MDL, and assign the smallest MDL to Mc.

4. Compare (Ma + Mb) to Mc. To normalize the results
of this test to the range [0,1], we use the measure of
merit given by (5),

(5)

and any result >1.0 gets set to 1.0.

To obtain a robust measure for a region pair, we aver-
age the result of this procedure over all scanlines contain-
ing a border pixel, looking either vertically or horizontally
depending upon the local border tangent. We then com-
pare this average to the median likelihood and take the
more extreme value (towards 0 or 1 depending on whether
the average is less than or greater than 0.5, respectively).
For more discussion of the profile analysis, see[9].
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Figure 5: (a) Test image, (b) fitting one polyno-
mial to B-B’, (c) fitting two polynomials to B-B’,
(d) fitting one polynomial to A-A’. In (b), (c), and
(d), the bottom line shows the error in the fit,
while the top two lines show the image intensity
overlaid by the least-squares polynomial.
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5.3. Reflectance ratio

One physical characteristic we use is the reflectance
ratio for nearby pixels as defined by Nayar and Bolle [10].

Consider two adjacent hypotheses h1 and h2 that both
specify colored dielectrics under white illumination. If h1
and h2 are part of the same piece-wise uniform object and
have a different color, then the discontinuity at the border
must be due to a change in the transfer function, and this
change must be constant along the border between the two
regions. Furthermore, along the border the two regions
must share similar shape and illumination. If h1 and h2
belong to different objects, than the shape and illumination
do not have to be the same.

The reflectance ratio is a measure of the change in
transfer function between two pixels that is invariant to
illumination and shape if latter two elements are similar at
each pixel. If the shape and illumination of two pixels p1
and p2 are similar, then the reflectance ratio, defined in
equation (3), where I1 and I2 are the intensity values of
pixels p1 and p2, reflects the change in albedo between the
two pixels [10].

(3)

For each border pixel p1i in h1 that borders on h2 we
find the nearest pixel p2i in h2. If the regions belong to the
same object, the reflectance ratio should be the same for
all pixel pairs (p1i,p2i) along the h1,h2 border. A simple
measure of constancy is the variance of the reflectance
ratio. If h1 and h2 are part of the same object, this variance
should be small, due mostly to the quantization of pixels,
noise in the image, and small-scale texture in the scene.

If, however, h1 and h2 are not part of the same object,
then the illumination and shape are not guaranteed to be

r
I1 I2–

I1 I2+
---------------

 
 
 

=

similar for each pixel pair, violating the specified condi-
tions for the characteristic. Differing shape and illumina-
tion should result in a larger variance in the reflectance
ratio. We can select an expected variance based upon the
noise, variance in object’s transfer functions, and quanti-
zation effects and use this expected variance to differenti-
ate between these two cases. Table 1 shows the variances
in the border reflectance ratios of the region pairs for the
test image of the stop-sign and cup.

We then use a chi-squared test to compare the vari-
ance for a particular region pair to the expected variance.
The result of the chi-squared test is a likelihood that the
variance in the reflectance ratio along the border is not
caused by differing shape and illumination. While this test
does not directly compare the shape and illumination of
the two regions, the variance of the reflectance ratio along
the border does implicitly measure their similarity.

The reflectance ratio can be used to compare all of the
hypothesis pairs in our current implementation.

5.4. Gradient direction

The direction of the gradient of image intensity can be
used in a similar manner to the reflectance ratio. The direc-
tion of the gradient is invariant to the transfer function for
piece-wise uniform dielectric objects--except due to bor-
der effects at region boundaries. Therefore, by comparing
the gradient direction of border pixel pairs for adjacent
regions we obtain an estimate of the similarity of the shape
and illumination. To avoid border effects, the algorithm
first calculates the gradient direction of non-border pixels
and then grows the results outwards.

As with the reflectance ratio, we sum the squared dif-
ference of the gradient directions of adjacent border pixels
to determine a sample variance for each hypothesis pair.
We then use the chi-squared test to compare the sample
variance to an expected variance chosen based on numer-
ous test images. Because of the conditions required for the
gradient directions of adjacent borders to be similar, we
interpret the result as a probability that the illumination
and shape are similar along the border of the two regions.

Not surprisingly, the effectiveness of this characteris-
tic is limited to regions with well-defined gradient direc-
tions. For planar or almost uniform surfaces with small
gradients the angle of the gradient is very sensitive to
noise and quantization errors. To avoid using noisy direc-
tion values, we only use border pixel pairs whose gradient
intensities are above a selected threshold. Furthermore, for
each hypothesis pair we require that a sufficient percent-
age of the applicable border pixels are above the gradient
intensity threshold or the results are considered invalid.

Like the reflectance ratio, the gradient direction can
be used to compare all of the current hypothesis pairs.

Table 1: Results of the reflectance ratio test for
Figure 3(b) with  = 0.004.

Region 1 Region 2 σ2 P(σ2<2)

Sign Letter S .4463 .0004 1.0

Sign Letter T .4449 .0005 1.0

Sign Letter O .4503 .0004 1.0

Sign Letter P .4541 .0006 1.0

Sign Cup .2107 .0125 0.0

Sign Pole .1709 .0710 0.0

Letter O O hole -.4358 .0008 1.0

Letter P P hole -.4562 .0004 1.0



tering or by simply growing the homogeneous regions. For
more details on the initial segmentation, see [9].

The overall goal of the initial segmentation algorithm
is to find regions that can be considered part of the same
surface or object. By locally growing the image regions
some variation in color is allowed, but the regions gener-
ally do not grow through discontinuities caused by small
variations in the transfer function or illumination.

Figure 4 shows the initial segmentations of the two
test images in Figure 3. Once the initial segmentation is
complete, the initial hypothesis list is assigned to each
region and the analysis and merger process begins.

4. Attaching hypotheses

For this implementation of the algorithm we use the
hypothesis list Hc = {(Colored dielectric, White Uniform,
Curved), (Colored dielectric, White uniform, Planar)} for
colored regions and the hypothesis list Hw = {(White
dielectric, White uniform, Curved), (White dielectric,
White uniform, Planar)} for white/grey regions. These
hypotheses are arguably the most important fundamental
hypotheses as they represent colored and white/grey
dielectric surfaces like plastic, paint, ceramics, and paper.

A region is labeled as white/grey if

(cnr - 0.33)2 + (cng - 0.33)2 + (cnb - 0.33)2 < 0.0016 (2)

where (cnr, cng, cnb) is the average normalized color of the
region defined by (1). This threshold was set based upon
the images in the test set. As the set of hypotheses consid-
ered in our current implementation all require white illu-
mination, the exposure times for the different color bands
were set so that a white board appeared white under the
illumination used for the test images.

5. Hypothesis analysis

Now we describe two methods for proceeding with
the analysis portion of the algorithm. The more obvious
and direct method we calldirect instantiation. This
involves finding estimates of and representations for the
specific shape, illumination environment, and transfer
function of each hypothesis. By directly comparing the
representations of two adjacent hypotheses, we obtain an
estimate of how similar they are. As this test compares the
intrinsic characteristics, the result is both necessary and
sufficient to decide whether to merge two hypotheses.

An alternative method of analysis,weak compatibility
testing, does not directly model the hypothesis elements.
Instead, it tests certain physical characteristics of adjacent
hypotheses. The similarity of these characteristics are nec-
essary but not sufficient tests of hypothesis compatibility.

By using multiple tests, however, weak compatibility test-
ing succeeds in finding most incompatible hypothesis
pairs. We have explored both of these alternatives and
found that this method, while less theoretically satisfying,
is the more practical alternative.

5.1. Direct instantiation

Direct instantiation was our first attempt at determin-
ing hypothesis compatibility. We tried to harness tradi-
tional methods of image analysis to obtain estimates of the
shape and illumination of adjacent hypotheses.

While this approach is theoretically attractive, direct
instantiation of hypotheses is difficult. We implemented
the direct instantiation approach for the hypotheses (Col-
ored plastic, White Uniform illumination, Curved) and
(White plastic, White Uniform illumination, Curved) for
which some tools of analysis do exist for finding both the
shape and illumination of a scene. We implemented Zhang
& Chellappa’s illuminant direction estimator [14] and Bis-
chel & Pentland’s shape-from shading algorithm [2]. For a
more extensive discussion of these experiments, see [9].

Our conclusion was that existing tools for analyzing
the intrinsic characteristics of a scene cannot, in general,
be used on small regions of an image because it violates
basic assumptions necessary for the tools to function prop-
erly. The traditional literature generally assumes that an
algorithm is applied to an entire object or image, not a
small portion of one object. Furthermore, if we attempt to
generalize direct instantiation to other hypotheses or more
complex situations, we are currently limited by the lack of
image analysis tools.

Another, perhaps even more important drawback of
direct instantiation is that it forces you make commitments
about hypothesis characteristics early in the segmentation
process when you have the least information about the
scene. Because of this, while direct comparison of the
hypothesis elements is sufficient to make merge/not-merge
determinations, it is more likely to be wrong.

5.2. Weak compatibility testing

An alternative to direct instantiation is to use the
knowledge constraints provided by the hypotheses to find
physical characteristics that have a predictable relationship
between hypothesis pairs that are part of the same object.
If the characteristics do not match the prediction, we can
rule out merging the adjacent hypotheses. These compari-
sons are necessary but not sufficient tests of compatibility.
As these physical characteristics are generally local, how-
ever, they are more appropriate for region-based analysis
than the direct-instantiation techniques. Furthermore, the
weak methods are more robust and give good results.



Figure 3: (a) Synthetic image of two spheres,
(b) image of a red and white painted wooden
stop-sign and a green plastic cup taken in the
Calibrated Imaging Laboratory, CMU.

After identifying the fundamental hypotheses and fur-
ther pruning them, we asked the question, which hypothe-
sis pairs could be part of the same surface? Using rules
based on physical constraints we created a table which
specified all compatible pairs for the 14 colored and 6
grey/white hypotheses. A key characteristic of this table,
discussed in [8], is that it is sparse, strongly constraining
which hypotheses can be considered part of the same sur-
face. Note that the table only specifies which hypotheses
are definitelynot compatible. All hypothesis pairs that can
potentially be merged must undergo further analysis based
on the physics of those hypotheses. In this sense, the table
follows a principle of least commitment, only ruling out
merges between hypotheses that are incompatible in all
cases.

Another result of our framework is that it allows us to
reason about different physical explanations without com-
pletely instantiating their representations. To obtain the
merger table, for example, we did not need to specify a
representation of shape or illumination, nor did we have to
specify exact values for a given representation. The broad
classes alone proved sufficient to reason about the hypoth-
esis elements and create a table of potential merges.

The rest of the paper describes the initial implementa-
tion of a segmentation algorithm based on our framework.
The algorithm proceeds as follows. First, we segment the
image using region growing based on normalized color.
Then the set of initial hypotheses are assigned to each
region. The next step analyzes all possible pairs of adja-
cent hypotheses to test if they are potentially part of the
same surface. Then, using the results of this step we create
a hypothesis graph whose edges represent the compatibil-
ity of adjacent hypotheses. Finally, from the information in
the hypothesis graph we extract the most likely final seg-
mentations of the image.

3. Initial partitioning algorithm

To test the segmentation method, we use pictures of
multi-colored objects on a black background. Figure 3(a)
and (b) are two example test images. Figure 3(a) is a syn-
thetic image created using Rayshade (a public domain ray
tracer). Figure 3(b) was taken in the Calibrated Imaging
Laboratory at Carnegie Mellon University, as was the pic-
ture of the mug in Figure 1. While obtaining the real
images, an attempt was made to include examples of only
the broad hypothesis classes used in this implementation.
The pole of the stop-sign is unpainted light wood, the stop-
sign itself is painted red with white lettering, and the cup is
green plastic. The lighting in the image comes from two
fluorescent panel lights; one is above and to the right, the
other above and left.

The initial segmentation is accomplished using a
region growing method with normalized color, defined by

(1)

as the descriptive characteristic. The algorithm traverses
the image in scanline order looking for seed regions where
the current pixel and its 8-connected neighbors have simi-
lar normalized color and none of these pixels already
belong to another region or are too dark. When it finds a
seed region, it puts the current pixel on a stack and begins
a region growing process based on normalized color.

When a region has finished growing, the search for
another seed region continues until all pixels in the image
have been checked. In the end, all pixels that are part of a
region are marked with their region id in the region map.
All other pixels are either too dark, or are part of a discon-
tinuity or rapidly changing portion of the image. For now
we simply ignore these pixels and concentrate on the
homogeneous regions. At the end of the overall analysis,
we can classify these pixels using k-nearest neighbor clus-
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Figure 4: Initial segmentations of the two test
images using chromaticity.



Model selection, or instantiation has only recently
been introduced to physics-based vision. Bretonet al.
have presented a method for instantiating models for both
the illumination and shape, however, they still consider
only a single model for material type (Lambertian) [3]. In
[8] we presented a framework for segmentation using mul-
tiple physical hypotheses for shape, illumination, and
material properties. Our model space incorporated general
parameterizations of the transfer function, illumination,
and shape, and our framework was based upon the divi-
sion of this model space into broad classes, or subspaces.
By reasoning about these subspaces, we proposed a
method for accepting or rejecting mergers between the
hypotheses of adjacent regions.

This paper describes an initial implementation of that
framework using a small set of hypotheses. With this set,
images containing multi-colored piece-wise uniform
dielectric objects can be segmented so that the final seg-
mentation more closely corresponds to surfaces, or objects
in the scene than segmentations found using only color.

2. Modeling scenes

Our model for a scene consists of three elements: sur-
faces, illumination, and the light transfer function or
reflectance of a point or surface in 3-D space. These ele-
ments constitute theintrinsic characteristics of a scene, as
opposed to image features such as pixel values, edges, or
flow fields [13]. The combination of models for these three
elements is ahypothesis of image formation. By attaching
a hypothesis to an image region we get ahypothesis
region: a set of pixels and the physical process which gave
rise to them. When an image region has multiple hypothe-
ses, we call the combination of the image region and the
set of hypotheses ahypothesis list.

Without prior knowledge of image content, no matter
how an image is divided there are numerous possible and
plausible hypotheses for each region. Variation in the color
of an image region can be caused by changes in the illumi-
nation, the transfer function, or both. Likewise, variation
in intensity can be caused by changes in the shape, illumi-
nation, transfer function, or any combination of the three.
Numerous algorithms that extract information from single
images--e.g., shape-from-shading and illuminant direction
estimation--work because they assume the image variation
is due to changes in only one element of the hypothesis
(shape) [2] [14].

In [8] we proposed a general parametric representa-
tion for each element of a hypothesis based upon the
known physical parameters. Because of their generality,
however, the raw parametric models do not provide any
guide to segmentation. Unlike the method of Bretonet. al.,
there are too many parameters in our models to undertake

a brute-force discretization of the space of possible models
[3]. Instead, we divide the parameter space for each ele-
ment into a set of classes, or subspaces. These subspaces
are broad enough to allow coverage of a large portion of
the general element models, and yet they provide enough
specificity to allow reasoning about the relationships of
adjacent hypothesis regions.

The possible combinations of the broad classes we
identify are shown in Figure 2 for a colored region. The
first branching indicates the transfer function, the second
the illumination. Each leaf of the tree has two hypotheses
depending on whether the surface class is curved or planar.
The set of 36 possible color-producing combinations of
the broad classes we have defined as the set offundamen-
tal hypotheses for a colored region. A similar set of 12
fundamental hypotheses exists for a white or grey region.
Each of the fundamental hypotheses is a valid explanation
for the appearance of a given region.

To denote a specific hypothesis we use the notation
(<transfer function>, <illumination>, <shape>). The three
elements of a hypothesis are defined as:

<transfer function>∈ {Colored dielectric [CD], White
dielectric [WD], Col. metal [CM], Grey metal
[GM]},

<illumination> ∈ {Col. diffuse [CD], White diffuse
[WD], Col. uniform [CU], White uniform [WU],
Col. complex [CC], White complex [WC]}, and

<shape> ∈ {Curved [C], Planar [P]}.

By reasoning about the relative merits of the funda-
mental hypotheses, we are able to identify a useful subset
containing 14 colored and 6 grey/white hypotheses. The
hypotheses within this subset are highlighted in Figure 2.
For a more extensive discussion of the generation and
selection of hypotheses, see [8].

C. General

36 Hypotheses

Colored Dielectrics

Colored Metals

White Diel.

White Metals

C. Diffuse
C. Uniform
C. General
C. Diffuse
C. Uniform

W. Diffuse

W. Uniform

W. General

C. Diffuse

C. Uniform

C. General

W. Diffuse

W. Uniform

W. General

C. Diffuse

C. Uniform

C. General

* Each leaf is two hypotheses: planar, curved

Figure 2: 36 fundamental hypotheses for a col-
ored region. The 14 “common” hypotheses are
highlighted.



Abstract
We previously presented a framework for segmentation of
complex scenes using multiple physical hypotheses for
simple image regions. A consequence of that framework
was a proposal for a new approach to the segmentation of
complex scenes into regions corresponding to coherent
surfaces rather than merely regions of similar color.
Herein we present an implementation of this new
approach and show example segmentations for scenes
containing multi-colored piece-wise uniform objects.
Using our approach we are able to intelligently segment
scenes with objects of greater complexity than previous
physics-based segmentation algorithms. The results show
that by using general physical models we obtain segmen-
tations that correspond more closely to coherent surfaces
in the scene than segmentations found using only color.

1. Introduction

Images containing multi-colored objects and multiple
materials are difficult to understand and segment intelli-
gently. Simpler scenes containing uniformly colored
objects of known material type can be segmented into
regions corresponding to objects using color and one or
two physical models to account for color variations due to
geometry and phenomena such as highlights [1] [4] [5].
Using these methods, a discontinuity in color between two
image regions is assumed to imply discontinuities in other
physical characteristics such as the shape and reflectance.

Multi-colored objects, like the mug in Figure 1, vio-
late this assumption, and thus cannot be segmented into
objects by previous physics-based segmentation methods.
The change in color between two image regions does not
imply a discontinuity in shape, illumination, or other char-
acteristics. To correctly interpret scenes containing more
complex objects such as the mug, multiple physical char-
acteristics must be examined to determine whether two
image regions of differing color are part of the same sur-

face. The most successful physics-based segmentation
methods to date do not attempt to solve this problem.
Instead, they place strong restrictions on the imaging sce-
nario they can address--especially material type and illu-
mination--to permit the effective use of one or two easily
distinguished models [1] [4] [5].

The difficulty inherent in segmenting images with
multiple materials and multi-colored objects is that by
expanding the space of physical models considered for the
shape, illumination, and material optics, a given image
region can be described by a subspace of the general mod-
els; each point within this subspace is a valid explanation
for the image region. In Figure 1, for example, one of the
squares on the mug, in isolation, could be explained as a
red object under white light, a white object under red light,
or a grey metal object reflecting a red environment. All of
these are valid explanations for the image region.

Therefore, to segment an image with multi-colored
objects and numerous possible materials, shapes, and
types of illumination, we must select not only the model
parameters, but also the models themselves. Furthermore,
we have to realize that the image may be ambiguous; we
cannot simply select a single hypothesis, but must enter-
tain several possibilities. In other words, we can never
expect to getthe single correct interpretation of an image,
only one or morepossible correct interpretations.
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Figure 1: A picture of a piece-wise uniform multi-
colored object under white illumination.
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