
Tractable Bayesian Learning of Tree Belief Networks
Marina Meil�a

Carnegie Mellon University

mmp@cs.cmu.edu

Tommi Jaakkola

Massachusetts Institute of Technology

tommi@ai.mit.edu

May, 2000

CMU{RI{TR{00{15

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

This work was funded by ONR contract number N00014-98-C-0326 and by NSF KDI
award number DMS{9873442.



Keywords: graphical models, spanning tree, Bayesian learning



Abstract

In this paper we present decomposable priors, a family of priors over struc-
ture and parameters of tree belief nets for which Bayesian learning with
complete observations is tractable, in the sense that the posterior is also
decomposable and can be completely determined analytically in polynomial
time. This follows from two main results: First, we show that factored
distributions over spanning trees in a graph can be integrated in closed
form. Second, we examine priors over tree parameters and show that a
set of assumptions similar to (Heckerman and al., 1995) constrain the tree
parameter priors to be a compactly parametrized product of Dirichlet distri-
butions. Besides allowing for exact Bayesian learning, these results permit
us to formulate a new class of tractable latent variable models in which the
likelihood of a data point is computed through an ensemble average over
tree structures.



1 Introduction

In the framework of graphical models, tree distributions stand out by their
special computational advantages. Inference and sampling from a tree are
linear in the number of variables n. While it is known that for many classes
of graphical models, as for example junction trees with cliquewidth > 2, the
problem of learning the optimal structure is NP-hard, for trees this problem
is solvable in only quadratic time. The latter result is due to [1] who present
an algorithm for �nding the structure and parameters of the tree that best
�ts a given distribution in the Maximum Likelihood (ML) framework. This
algorithm was generalized to Maximum A-Posteriori (MAP) learning [7, 5].

In this paper we present another remarkable property of tree graphical
models: the fact that Bayesian learning for a certain class of priors, called
decomposable1 priors, is also tractable. Essentially, decomposable priors are
priors that can be represented as a product of factors corresponding to the
edges of the tree. We show that if the prior is decomposable and we have
a data set consisting of N complete i.i.d. observations, then the posterior
distribution over all tree structures and parameters is also decomposable, is
expressible with a quadratic number of parameters that can be computed
exactly from data in O(n3 + n2N) operations. Evaluating the posterior for
a given tree takes then O(n) time. The �rst two results come from the fact
that, with the standard assumptions of likelihood equivalence, parameter
independence and parameter modularity, the prior for tree parameters is
constrained to be a product of Dirichlet distributions whose parameters
satisfy a set of consistency relations. The last result, i.e. the possibility of
computing the posterior exactly, is consequence of the fact that a factored
distribution over tree structures can be integrated exactly, using a theorem
from combinatorics called the Matrix tree theorem.

The paper starts by de�ning tree distributions and the problem of Bayesian
learning in section 2; it presents decomposable priors over tree structures
and parameters in sections 3 and 4; the pieces of the puzzle are put together
in section 5 where Bayesian learning is described; the previous results are
generalized to the case of several sets of independent variables in section
6; the next section, 7 exploits a di�erent set of possibilities opened by our
tractability results: it de�nes a new model, ensembles of trees, and shows
that it can be learned by gradient ascent in the ML framework; section 8

1The term decomposable prior will refer here to a prior over a family of graphical
models. It should not be confused with a decomposable model which is a distribution over
V .
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contains the �nal remarks.

2 Tree distributions and the Bayesian learning prob-

lem

In this section we introduce the tree model and the notation that will be
used throughout the paper. Let V = f1; : : : ; ng denote the set of variables of
interest. Let rv be the number of values of variable v 2 V , rMAX = max rv,
xv a particular value of v, and x an assignment to all the variables in V .

According to the graphical model paradigm, each variable is viewed as a
vertex of a graph. We shall call a graph that has no cycles a tree2 and shall
denote by E its edge set. If the tree is connected, e.g. it spans all the nodes
in V , it is called a spanning tree.

Now we de�ne a probability distribution T that is factored according to
a tree. Let us denote by Tuv and Tv the marginals of T :

Tuv(xu; xv) =
X

x:u=xu;v=xv

T (x)

Tv(xv) =
X

x:v=xv

T (x):

Let deg v be the degree of vertex v, e.g. the number of edges incident to
v 2 V . Then, the distribution T is factored according to the tree (V; E) if
it can be represented as:

T (x) =

Q
uv2E Tuv(xu; xv)Q
v2V Tv(xv)

degv�1
(1)

The distribution itself will be called a tree when no confusion is possible.
An equivalent representation for T in terms of conditional probabilities is

T (x) =
Y
v2V

Tvjpa(v)(xv jxpa(v)) (2)

where pa(v) represents the parent of v in the thus directed tree or the empty
set if v is the root of a connected component. The form (2) can be obtained
from (1) by choosing an arbitrary root in each connected component and

recursively substituting
Tv;pa(v)
Tpa(v)

by Tvjpa(v) starting from the root. We denote

2In the graph theory literature, our de�nition corresponds to a forest. The connected
components of a forest are called trees.
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such a directed tree structure by E. The directed tree representation has
the advantage of having independent parameters. The total number of free
parameters in either representation for a tree with p connected components
is X

uv2E

rurv �
X
v2V

(degv � 1)rv � p

In the forthcoming we shall use both representations. Which representation
we consider will be clear from the context in all cases of relevance.

We now turn to the problem of learning trees in the Bayesian frame-
work. In this framework, one assumes a prior P0(T ) over the set TV of all
tree distributions de�ned on the domain V . Learning from a dataset of com-
plete and independently generated observations D = fx1; x2; : : : xNg means
�nding the posterior distribution P (T jD) over the set of models TV . The
solution to this problem is given by the well known Bayes' formula

P (T jD) / P0(T )
NY
t=1

T (xt) (3)

Practically however, Bayesian leaning poses a number of signi�cant chal-
lenges. First, one needs to de�ne a distribution over the space of all models
to play the role of the prior. Such a distribution is composed of a discrete
distribution over the set of tree structures P0(E) and a probability density
over the continuous set of tree parameters P0(�jE). Here � consists of all
the parameters of T in some representation.

P0(T ) = P0(E)P0(�jE) (4)

The discrete space of all spanning tree structures over V has a super-
exponential number of trees (nn�2) which makes de�ning a distribution over
such a space a non-trivial task. Moreover, the second factor in the above
formula requires us to de�ne a prior distribution for the tree parameters for
each possible structure E. Thus, the �rst practical requirement is to have a
tractable representation for the prior. Even with a tractable representation,
the explicit computation of the posterior P (T jD) is usually intractable due
to the di�culty of computing the normalization constant in (3). Therefore
common practices in Bayesian learning are Maximum A-Posteriori (MAP)
estimation and approximations of the posterior around its peaks. An ex-
ception from this situation are the so-called conjugate priors. If a given
(graphical) model has a family of conjugate priors P then for P0 2 P the
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posterior is also in P . The property of having conjugate priors is character-
istic of the exponential family of distributions [2]. In this paper we set out
to �nd the conjugate prior for the family of spanning tree models TV .

According to (4), to de�ne a prior over TV one needs to de�ne a prior
over spanning tree structures and a prior for tree parameters, given the
structure. While it is not hard to see that for a �xed structure E a tree
distribution over discrete variables is an exponential model and thus has
conjugate priors, realizing the same fact when E also varies is by far less
obvious and constitutes the main contribution of this paper. In the next
section we establish the core theorem that allows us to do so.

3 Decomposable priors over tree structures

A decomposable distribution P over spanning tree structures E depends on
a set of parameters �uv = �vu � 0; �vv = 0; u; v 2 V by

P (E) =
1

Z

Y
uv2E

�uv: (5)

In the above, Z is the normalization constant

Z =
X
E

Y
uv2E

�uv : (6)

Note that in the distribution (6), each parameter �uv can be interpreted as
the weight of edge uv, and the probability of a structure E is the product
of the weights of all edges in E. Although this distribution is expressible
in a product form, it does not imply that the edges' occurrences in E are
independent, since the set E as a whole is constrained to be a tree structure.

This prior is simple and compactly parametrized, but to be completely
de�ned one needs to evaluate the normalization constant Z. Using formula
(6) is intractable, but the following theorems develop a practical and exact
method for doing so.

Theorem 1 (Matrix Tree Theorem) [9] Let G = (V;E) be a multigraph
and denote by auv = avu the number of undirected edges between vertices u
and v. Then the number of all spanning trees of G is given by jAuvj(�1)

u+v

the value of the determinant obtained from the following matrix by removing
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row u and column v3.

A =

2
66666664

degv1 �a12 �a13 : : : �a1;n
�a21 degv2 �a23 : : : �a2;n

: : : : : : : : : : : : : : :

�an;1 �an;2 �an;3 : : : degvn

3
77777775

(7)

In the following, we shall use the simplifying notation below to refer to a set
of real values each corresponding to a pair of variables in V

a = fauv; u; v 2 V; u 6= vg (8)

In addition, a � 0 will mean that auv � 0; auv 2 a and ab will denote
fauvbuv; u; v 2 V; u 6= vg for a; b de�ned as above. By extending the Matrix
Tree theorem to continuous valued A and letting the weights � play the role
of a in (7), one can prove

Theorem 2 [6, 4] Let P (E) be a distribution over spanning tree structures
de�ned by (5,6). Then the normalization constant Z is equal to jQ(�)j with
Q(�) being the �rst (n� 1) lines and columns of the matrix Q(�) given by:

Quv(�) = Qvu(�) =

(
��uv 1 � u < v � nPn

v0=1 �v0v 1 � u = v � n
(9)

This shows that summing over the distribution of all spanning trees,
when this distribution factors according to the trees' edges, can be done in
closed form by computing the value of a order n� 1 determinant, operation
that involves O(n3) operations. The proof of theorem 2 as well as the other
proofs appear in the appendices.

In the following it will be useful to think of Q(�) and Q(�) as functions
mapping a set of parameters � each corresponding to a pair of variables in
V to a matrix in the ways described by theorem 2.

The support graph. The factored form of the decomposable distribu-
tion makes it easy to test whether a given structure has non-zero probability.
If all the � parameters are strictly positive, then every tree structure is pos-
sible. Otherwise, the structures that will never appear are the structures
containing one or more zero-weight edges. We denote by Esup the set of

3Note that A as a whole is a singular matrix
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edges uv for which �uv > 0. The graph Gsup = (V;Esup) is called the sup-
port graph of P (E). If enough edges have zero weights, then Gsup may be
disconnected. In the following we shall assume that the support graph is
connected, leaving the discussion of the general case for section 6.

In the remainder of this section we develop a number of consequences of
theorem 2.

Computing averages under a decomposable distribution A de-
composable distribution is a (curved) [8] exponential model and lnZ repre-
sents its cumulant generating function or partition function; many quantities
of interest, like averages under P (E) can be expressed as derivatives of the
partition function. The next series of results exempli�es these possibilities.
We assume that Gsup is connected.

Lemma 3 [6] Let Z be given by equation (6) with � � 0, Q(�) be given by
theorem 2, Q�1 be the inverse of Q and M(�) be a symmetric matrix with
0 diagonal de�ned by

Muv = (Q�1)uu + (Q�1)vv � 2(Q�1)uv; u; v < n

Mnv = Mvn = (Q�1)vv; v < n (10)

Mvv = 0

Then the partial derivative of Z with respect to �uv is

@Z

@�uv
= Muv(�)jQ(�)j: (11)

We shall denote by < f >P the average of a function f under distribution
P . The following lemma states a useful fact about averages of additive
functions. An additive function f(E) satis�es

f(E) =
X
uv2E

fuv (12)

Lemma 4 [6] Let P (E); Q and M be given by (5), theorem 2 and (10)
respectively and f be an additive function of the structure E. Then the
average of f under P is

< f(E) >P =
X
E

f(E)P (E) (13)

=
X
u<v

fuv�uvMuv(�) (14)

= traceQ(f�)Q�1(�) (15)
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In (15), f is an overloaded notation representing the set ffuv ; u; v 2 V g in
the sense of (8). A similar but more obvious result holds for functions g(E)
that are multiplicative, i.e. g(E) =

Q
uv2E guv . For such functions we obtain

< g(E)>P =
jQ(�g)j

jQ(�)j
(16)

4 Decomposable priors over tree parameters

Now we examine priors over tree parameters, with the goal of �nding condi-
tions under which the priors can be tractably represented. The assumptions
we make are similar to those of Heckerman, Geiger and Chickering in [5]
(called HGC in the forthcoming) and so will be some of the results. In
addition, we will show that in the case of trees these assumptions are also
su�cient for tractable representation and learning.

In the following, without loss of generality, we will consider that both the
directed and the undirected tree representation are in the probability table
parametrizations, and we denote respectively

�v(j) = Tv(j) (17)

�uv(ij) = Tuv(ij) (18)

�E = f�uv(ij); uv 2 E; i = 1; : : :ru; j = 1; : : :rvg

�ujv(ijj) = Tujv(ijj) (19)

�
E

= f�ujv(ij); vu 2 E; i = 1; : : :ru; j = 1; : : :rvg

We will assume by convention that if v 2 V has no parent then �vjpa(v) = �v
and that pa(v) takes one value only.

First let us keep the distribution T �xed. As shown in section 2 this
distribution can be represented either by (1) or by (2), the latter represen-
tation having a distinct form for each possible choice of the root(s). These
representations however will assign exactly the same probability T (x) to an
observation x, so there is no way to distinguish between them from the point
of view of the data. Thus we shall require that the corresponding parameter
sets are also the same from the point of view of the prior. This leads to the
assumption of Likelihood equivalence:

Assumption 1 (Likelihood equivalence) Let T be a tree distribution hav-
ing structure E, E a directed tree structure obtained from E and �E ; �E the
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respective parameters of T . Denote by j
@�

E

@�E
j the Jacobian of the transforma-

tion �E ! �
E
. Then P0(�E(�E)jE)j

@�
E

@�E
j = P0(�E jE).

This assumption states that in all possible parametrizations consistent
with a given structure E the prior will assign the same probability mass to
any given (measurable) subset in parameter space. Thus, the prior treats
likelihood equivalent parametrizations as indistinguishable.

Likelihood equivalence has somewhat compressed the space that we have
the de�ne P0 on, but it still leaves us with the task of assigning a separate
prior for each (undirected) tree structure. We now transform this problem
into one of assigning a prior for each of the possible tree edges by making
the following additional assumptions:

Assumption 2 (Parameter independence) For any structure E and any
vu 2 E; j; j 0 = 1; : : :rv j0 6= j the parameter vectors �ujv(:jj) and �ujv(:jj

0)
are independent under P0. The parameters �ujv(:jj) are also independent
under (P0) of the parameter sets �u0jv0(:jj0)corresponding to any other edge

in E.

Assumption 3 (Parameter modularity) The prior P0(�ujvjE) is the same

for all structures E that contain the edge vu.

In other words, parameter independence states that the prior over pa-
rameters factors into a product over the edges; by stating in addition that
the prior for an edge is the same for all tree structures that contain that
edge, we have e�ectively removed the dependence on E from the parameters
prior. From now on, we will write P0(�E); P0(�E) instead of P0(�E jE) and
P0(�E jE) respectively. We shall call a prior P0 satisfying assumptions 1, 2
and 3 a decomposable prior for tree parameters. If both P0(E) and P0(�E)
are decomposable, the resulting prior over tree distribution is also called
decomposable. A decomposable prior is de�ned by a number of order n2

parameters only. Moreover, as we shall see next, the same assumptions also
constrain the functional form the prior can have. Again we assume that
Gsup is connected.

Assumption 4 (Connectivity) The support graph of P0(E) is connected.

Theorem 5 Let P (T ) = P (E)P (�E) be a decomposable distribution over
tree parameters, for which the support graph of P (E) is connected and
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P (�E) > 0 for �E > 0. Then for any tree T in any directed representa-
tion E; �

E
:

P (�
E
jE) =

Y
v2V

P (�vjpa(v)) (20)

P (�vju) =
ruY
i=1

D(�vju(:ji) ; N
0
vu(:i)) (21)

where D is the Dirichlet distribution and N 0
vu(ij) > 0 are its parameters.

The numbers N 0
uv(ij) = N 0

vu(ji) are de�ned for all edges uv with �uv > 0
and satisfy

ruX
i=1

N 0
uv(ij) = N 0

v(j) (22)

rvX
j=1

N 0
v(j) = N 0 (23)

The Dirichlet prior is de�ned over the parameter space �1; : : :�r ; (
P

j �j =
1; �j > 0; j = 1; : : :r) of a distribution over a discrete set by

D(�1; : : :�r;N
0
1; : : :N

0
r) =

1

ZD

rY
j=1

�
N 0
j
�1

j (24)

The numbers N 0
1; : : :N

0
r > 0 are the hyper-parameters of the Dirichlet prior,

their sum is denoted by N 0. The normalization constant ZD has the form

ZD =

Qr
j=1 �(N

0
j)

�(N 0)
(25)

with � denoting the Euler function �(p) =
R1
0 xp�1e�xdx.

The above line of reasoning parallels the one in HGC. The assumptions 1
{ 3 are the specialization for tree structures of their homonyms in HGC. But
unlike the case of general Bayes nets, where the prior is in general speci�ed
by an exponential number of parameters, in the case of tree graphical models
the prior can be speci�ed by a set of only O(n2r2MAX) \pairwise marginal
counts" N 0

uv(ij). This is possible because in the space of tree structures the
likelihood equivalence classes can be explicitly represented and the number
of possible parents for a variable is no larger than one. Therefore, not only
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the tree belief net itself, but also any decomposable distribution over trees
can be completely de�ned in terms of pairwise interactions4.

The same properties allow us to replace a fourth assumption made by
HGC, namely structure possibility, with the weaker assumption 4. Note
that if all �uv > 0, then all tree structures are possible, Gsup is connected
and our theorem 5 is an exact rewrite of the similar result in HGC. This last
assumption is not essential for our results. In section 6 we shall give a gen-
eral formulation of the above theorem that dispenses with the connectivity
assumption.

To summarize, starting with the assumptions 1{3 and aiming mainly at
obtaining a tractable and consistent prior representation, we have arrived at
the conclusion that the prior has to be a product of Dirichlet distributions.
This demonstrates that our initial requirement is essentially a drastic one;
the restrictions on the prior should be understood as restrictions on the type
of prior information about the model we are allowed to have. A Dirichlet
distribution means essentially that we only have knowledge about the values
of the parameters' means. This issue is further developed in HGC to which
we refer the reader. On the computational side however, the advantage is
enormous, since with the Dirichlet distribution Bayesian learning is possible
in closed form. The next section will exploit exactly this property to �nd
the posterior over tree distributions.

5 Bayesian learning with decomposable priors

From equations (1,2) we know that the likelihood can be written as a product
over tree edges. Theorem 5 proves the same thing about the decomposable
prior. It follows then that the posterior P (T jD) in equation (3) can also
be factored over the edges of T . We shall see that in addition P (T jD) is
decomposable and the normalization constant P (D) = ZD can be computed
tractably.

We shall use the following important property of a Dirichlet distribution:
Assume a discrete variable z that takes values 1 : : :r with probabilities � =
(�1; : : :�r), a prior for � that is Dirichlet with parameters N 0(1); : : :N 0(r)
and a set Dz of N independent observations for z, such that the value j

appears N(j) times in Dz . Then, the posterior of the parameters � is (see

4It is important to note that the parameters N 0
uv(ij) cannot be set arbitrarily. They

have to be proportional to the marginals of some distribution over V .
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e.g. [2]) is also a Dirichlet distribution with parameters N 0(j) +N(j).

P (�jDz) = D(�(:) ; N 0(:) +N(:)) (26)

This result applies immediately to the posterior of a tree. Let us denote
by Nuv(ij) and Nv(j) the su�cient statistics of the sample D, i.e. the
number of times u = i; v = j and respectively v = j in D. Then, from (26)
and theorem 5 we obtain

P (T jD) = (27)

=
P (T )P (DjT )

ZD

=
1

ZD

1

Z�

Y
uv2E

�uv
Y
v2V

rpa(v)Y
i=1

"
�(N 0

pa(v)(i))
Qrv
j=1 �(Nvpa(v)(ji) +N 0

vpa(v)(ji))

�(Npa(v)(i) +N 0
pa(v)(i))

Qrv
j=1 �(N

0
vpa(v)(ji))

� D(�vjpa(v)(:ji);Nvpa(v)(i:) +N 0
vpa(v)(i:))

i
Hence, P (T jD) is also a decomposable distribution over tree structures, and
its parameters are available directly from the parameters of the prior and
the su�cient statistics of the sample. It remains to show how to compute
the normalization constant ZD . For this, we will �rst keep the structure
E �xed and integrate over the parameters �

E
in some directed structure E

obtained from E. Since the parameters' posterior in (27) is already in the
form of a normalized distribution, which consequently integrates to 1, we
obtain after a simple calculation:Z
P (T jD)d�

E
= (28)

=
1

ZD

1

Z�

�(N 0)

�(N 0 +N)

Y
v2V

rvY
j=1

�(Nv(j) +N 0
v(j))

�(N 0
v(j))

�
Y
uv2E

2
4�uv ruY

i=1

�(N 0
u(i))

�(Nu(i) +N 0
u(i))

rvY
j=1

�(N 0
v(j))

�(Nv(j) +N 0
v(j))

ruY
i=1

rvY
j=1

�(Nuv(ij) +N 0
uv(ij))

�(N 0
uv(ij))

3
5

This quantity represents the marginal posterior P (EjD); as required by
likelihood equivalence, it is the same no matter how E is obtained from
E. Note also that P (EjD) decomposes into a product over the edges in E
preceded by a factor independent of E. We de�ne the weights Wuv as

Wuv =
ruY
i=1

�(N 0
u(i))

�(Nu(i) +N 0
u(i))

rvY
j=1

�(N 0
v(j))�(Nv(j) +N 0

v(j))
ruY
i=1

rvY
j=1

�(Nuv(ij) +N 0
uv(ij))

�(N 0
uv(ij))

(29)
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Now we can apply theorem 2 again, to the weights �W obtaining

1 =
X
E

P (EjD) =
1

ZD

1

Z�

�(N 0)

�(N 0 +N)

Y
v2V

rvY
j=1

�(Nv(j) +N 0
v(j))

�(N 0
v(j))

jQ(�W )j

(30)
From this we obtain that

ZD =
jQ(�W )j

jQ(�)j

�(N 0)

�(N 0 +N)

Y
v2V

rvY
j=1

�(Nv(j) +N 0
v(j))

�(N 0
v(j))

(31)

This completely de�nes the posterior distribution P (T jD). The posterior
probability of any tree distribution T can be now computed analytically
based on equations (27) and (31) while (28) and (31) give the posterior of
any tree structure E. Note that the weights Wuv are never 0, so that the
support graph of the posterior distribution coincides with the Gsup of the
prior.

To compute the posterior representation from the data set we need
O(n2r2MAXN) operations to obtain the su�cient statistics and to evaluate
the edge weightsWuv and an additional O(n3) to evaluate the normalization
constant ZD for a total of O(n2r2MAXN + n3) operations. Computing the
posterior of a tree (or tree structure) is now O(nrMAX).

Furthermore, to perform Bayesian averaging in computing the probabil-
ity of a new data point x one has to evaluate

P (xjD) =
Z
T (x)P (T jD)dT (32)

Just as before, we can �rst integrate the above expression over the parame-
ters for a �xed structure E and them perform a summation over structures.
The former step yields

Z Y
v2V

Tvjpa(v)(xvjxpa(v))
Y
v2V

rpa(v)Y
i=1

D(�vjpa(v)(:ji) ; N
0
vpa(v)(:i) +Nvpa(v)(:i)) =

=
Y
v2V

N 0
v;pa(v)(xvxpa(v)) +Nv;pa(v)(xvxpa(v))

N 0
pa(v)(xpa(v)) +Npa(v)(xpa(v))

(33)

=
1

N 0 +N

Y
v2V

[N 0
pa(v)(xpa(v)) +Npa(v)(xpa(v))]| {z }

w0(x)

� (34)
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Y
uv2E

N 0
uv(xvxu) +Nuv(xvxu)

[N 0
u(xu) +Nu(xu)][N 0

v(xv) +Nv(xv)]| {z }
wuv(x)

Again, we note that the result includes a structure independent factor w0(x)
and a product of factors corresponding to the tree edges wuv(x). Also, we
note that the �nal result is invariant to the particular orientation E of E.
Summing now over tree structures is a mere exercise now; we have

P (xjD) =
X
E

w0(x)

ZD

Y
uv2E

�uvwuv(x) (35)

=
w0(x)jQ(�w(x))j

ZD
(36)

The averaging involves computing the edge weights w(x) and evaluating a
determinant, so that the total computation is O(n3), a relatively large value
compared to the O(n) demands of the ML and MAP tree likelihood.

The result generalizes readily to the Bayesian averaging of the probability
of a set of more than one independent observations.

6 Disconnected support graph

Here we generalize the previous results to the case when the support graph
is disconnected. In other words, we discuss the case when the prior P (E)
enforces probabilistic independence between the edges and parameters cor-
responding to edges in di�erent components.

The intuition behind the following results stems from the fact that for
a disconnected support graph the domain V is e�ectively partitioned into
K subsets of variables V k; k = 1; : : :K each corresponding to a connected
component of Gsup. We denote these components by Gk = (V k ; Ek); k =
1; : : :K. We also introduce a notation similar to (8), to denote a set of values
corresponding to pairs of variables in a subset U of V .

aU = fauv; u 6= v; u; v 2 U � V g (37)

As we shall see, the subsets V k behave as separate and independent domains
from all points of view.

Because there can be no edges between the subsets, it is easy to see that

� =
K[
k=1

�V k (38)
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This holds in general for a function f de�ned over Esup.
A disconnected graph will have no spanning tree (hence the value re-

turned by the Matrix Tree theorem will be 0) but it will have maximal trees,
i.e. trees having a maximal number of edges5. A maximal tree is composed
of spanning trees corresponding to each Gk . Therefore the number of dis-
tinct maximal trees in Gsup is the product of the numbers of spanning trees
in its connected components:

# maximal trees(Gsup) =
KY
k=1

# spanning trees(Gk) (39)

The above remarks allow us to prove a generalization of theorem 2.

Theorem 6 Let P (E) be a distribution over maximal tree structures de�ned
by (5,6) with � � 0. Then the normalization constant Z is equal to

Z =
KY
k=1

jQ(�V k)j (40)

The proof of this theorem is an easy consequence of theorem 2 and of the
previous remarks and therefore it is omitted.

Intuitively, one can imagine rede�ning Q(�) as a block diagonal matrix
of dimension n � K consisting of blocks Q(�V k); k = 1; : : :K. Then, one
can rewrite (40) so as to obtain a form identical with the one in theorem 2

Z = jQ(�)j (41)

If one de�nes M(�V k) to correspond to each Q(�V k) in a way similar to
equation (10), then one has

@

@�uv
jQ(�V k)j = Muv(�V k)jQ(�V k)j for u; v 2 V k (42)

Now assembling M(�V k) for k = 1; : : :K in a block diagonal matrix M(�)
with

Muv(�) =

(
Muv(�V k ); for u; v 2 V k

0; otherwise
(43)

one can formally recover equation (11):

@Z

@�uv
= Muv(�)

KY
k=1

jQ(�V k)j = Muv(�)jQ(�)j: (44)

5This number is n�K.
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It is also worth making the following point: M(�V k) (orM(�) in the case of
a connected Gsup) are de�ned only when jQ(�V k)j is non-zero. However, the
derivative of jQ(�V k)j exists in all cases and is de�ned in terms of the minor
determinants of the elements of Q(�V k). The minor A�

uv of a square matrix
A is obtained by deleting row u and column v from A and computing the
determinant of the remaining matrix. Assume that to obtain Q(�V k) from
�Q(�V k) we delete row and column nk. Then, for every u; v 2 V k we have

@

@�uv
jQ(�V k)j =

8><
>:

Q�
uu(�V k) + Q�

vv(�V k)� 2Q�
uv(�V k); if u; v 6= nk

Q�
vv(�V k); if v 6= nk; u = nk

Q�
uu(�V k); if u 6= nk ; v = nk

(45)
Similarly to (13), for the average of an additive function f we obtain

< f(E) >P =
KX
k=1

X
u;v2V k;u<v

fuv�uvMuv(�V k) =
X
u<v

fuv�uvMuv(�) (46)

Finally, if g is multiplicative, equation (16) becomes

< g(E)>P =

QK
k=1 jQ(�V kgV k)jQK
k=1 jQ(�V k)j

=
jQ(�g)j

jQ(�)j
(47)

7 Ensembles of trees

In this section we consider a new probability model, called ensembles of
trees that naturally extends the tree graphical model. To best describe this
model, imagine that a tree distribution is de�ned in two steps: �rst a set of
parameters � and second the structure E. Because E is not known at the
time when we choose �, we need to specify a parameter set that is su�ciently
large, so that for any E we can afterwards extract from � the actual set of
parameters �E . This can be done easily via the same idea that allowed us
to de�ne a decomposable prior in section 4; we choose

� = f�uv(ij); u; v 2 V; i= 1; : : :ru; j = 1; : : :rvg

[ f�v(j); v 2 V; j = 1; : : :rvg (48)

such that

ruX
i=1

�uv(ij) = �v(j) 8 u 2 V (49)
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rvX
j=1

�v(j) = 1 8v 2 V

Now, changing the notation of equation (1) to emphasize the dependence on
� and E, and rearranging the factors, we write the tree distribution as

T (xj�; E) =
Y
uv2E

�uv(xu; xv)

�u(xu)�v(xv)

Y
v2V

�v(xv) (50)

The ensemble of trees R(x) is a weighted average of all the possible tree dis-
tributions sharing the same parameters �. To ensure tractability, the weights
will represent a decomposable distribution over spanning tree structures as
in (5).

R(x) =
X
E

P (E)T (xj�; E) (51)

If we use the notations

wuv(x) =
�uv(xu; xv)

�u(xu)�v(xv)
(52)

w0(x) =
Y
v2V

�v(xv) (53)

for the edge dependent and respectively edge independent factors in (50)
then, by theorem 2, R(x) has an alternative, tractable form

R(x) = w0(x)
jQ(w�)j

jQ(�)j
(54)

The ensemble of trees can be seen as a mixture model whose components
are the trees over V parametrized by �. The weighted averaging corresponds
then to the presence of a hidden variable z taking as many values as there
are structures, each with probability Pr[z = E] = P (E). Therefore, the
(generalized) EM algorithm [3] can be considered as a possibility for learning
the parameters. We shall not pursue this issue in detail, but we will mention
the following: the E step of the algorithm is tractable and straightforward
given equation (51); the M-step however cannot be performed exactly and it
is not known if the expression to be maximized has a unique local maximum.

But if we assume a set of complete observations D as before, the like-
lihood of this data set, denoted by R(D), can be optimized w.r.t. the
parameters � and � by gradient ascent. We shall denote by Muv(�) and
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Muv(�w(xt)) respectively the values in equation (10) that correspond to
Q(�) and Q(�w(xt)). Using lemma 3 we obtain

@ logR(D)

@�uv
=

NX
t=1

wuv(x
t)Muv(x

t)

jQ(�w(xt))j
�NMuv(�) (55)

@ logR(D)

@�uv(ij)
=

�uv
�u(i)�v(j)

X
t:xtu=i;xtv=j

Muv(x
t) (56)

@ logR(D)

@�v(j)
=

1

�v(j)

X
t:xtv=j

[1�
X
v02V

wvv0(x)Mvv0(xt)] (57)

Note that the parameters � need to satisfy (49) and therefore we will need to
perform a constrained maximization of R(D) using e.g. Lagrange multipliers
and that this method will converge to only a local optimum of the log-
likelihood.

8 Discussion

This paper has presented decomposable priors, a class of priors over tree
structures and parameters that makes exact Bayesian learning tractable. A
decomposable prior is expressed as a product of factors, each corresponding
to an edge of the tree. The same edge contributes the same amount in
every tree structure that includes it. This property allows (1) representing
the prior by order n2 parameters and (2) using the Matrix tree theorem to
integrate the prior in closed form.

It is remarkable that for trees, the standard assumptions of HGC are
su�cient to ensure tractability. In fact, these assumptions are no stronger
than the assumptions of functional independence implicit in the original
Chow and Liu algorithm [1, 7].

But is worth highlighting again that these assumptions are restrictive, in
the sense of drastically limiting the type of prior knowledge that can be used
e�ciently in the Bayesian learning of trees. Prior knowledge that violates
assumptions 1{3 is e.g. knowledge that two edges are more likely to appear
simultaneously than separately in a tree structure, or knowledge that two
edges have the same parameters. This problem is not speci�c to trees, but
to Bayes nets in general. Therefore, a worthwhile area of future research is
discovering tractable methods to deal with such type of knowledge in the
case of tree structures or in the case of general Bayes nets.
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We have also introduced ensembles of trees as a tractable extension to
the tree model. Ensembles of trees can be learned in the ML framework.
Exploring the properties of the new model and of the learning algorithm
itself are areas of continuing research.

A Proof of Theorem 2

Theorem 2 Let P (E) be a distribution over spanning tree structures de�ned
by (5,6). Then the normalization constant Z is equal to jQ(�)j with Q(�)
being the �rst (n � 1) lines and columns of the matrix Q(�) given by:

Quv(�) = Qvu(�) =

(
��uv 1 � u < v � nPn

v0=1 �v0v 1 � u = v � n
(58)

Proof We shall prove the result �rst for positive integer values of �, then
for positive rational values. Then, because the determinant is a continuous
function it will follow that the theorem is true for any real, positive values
�.

Assume � are integers. Then �uv can represent the number of edges
between u and v of a multigraph over V . The degree of node v equals the
number of edges incident to v; this number is

P
u6=v �uv . Thus, by theorem

1, the total number of spanning trees in this graph is Z1 = jQ(�)j. We now
show that Z1 = Z (where Z is de�ned by (6)).

Z1 =
X
E

# distinct trees having structureE (59)

=
X
E

Y
uv2E

�uv

= Z

Assume now that � are all rational. Let m be the common denominator
of �, such that �uv = auv=m with auv integer. Then Q(a) = mQ(�) is a
matrix of integers and by virtue of (59) we have that

jQ(a)j =
X
E

Y
uv2E

auv (60)

But jmQ(�)j = mn�1jQ(�)j and therefore

jQ(�)j =
1

mn�1

X
E

Y
uv2E

auv
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=
X
E

Y
uv2E

auv
m

=
X
E

Y
uv2E

�uv

= Z

B Proof of lemma 3

Lemma 3 Let Z be given by equation (6) with � � 0, Q(�) be given by
theorem 2, Q�1 be the inverse of Q and M(�) be a symmetric matrix with
0 diagonal de�ned by

Muv = (Q�1)uu + (Q�1)vv � 2(Q�1)uv; u; v < n

Mnv = Mvn = (Q�1)vv; v < n (61)

Mvv = 0

Then the partial derivative of Z with respect to �uv is

@Z

@�uv
= Muv(�)jQ(�)j: (62)

Proof The proof uses the fact that, for any nonsingular matrix with elements
Aij

@jAj

@Aij

= jAj(A�1)ij (63)

Then, for u; v < n, taking into account that the only elements of Q(�) that
depend on �uv are Quu; Qvv ; Quv and Qvu we have successively:

@Z

@�uv
=

@jQ(�)j

@�uv
=

X
i;j2V

@jQ(�)j

@Qij

@Qij

@�uv
= jQ(�)j[(Q�1)uu+(Q

�1)vv�2(Q
�1)uv]

(64)
Similarly, if u = n; v < n, then �vn appears only in Qvv . Hence

@Z

@�uv
= jQ(�)j(Q�1)vv (65)
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C Proof of lemma 4

Lemma 4 Let P (E); Q and M be given by (5), theorem 2 and (10) respec-
tively and f be an additive function of the structure E. Then the average of
f under P is

< f(E) >P =
X
E

f(E)P (E) (66)

=
X
u<v

fuv�uvMuv(�) (67)

= traceQ(f�)Q�1(�) (68)

Proof We �rst introduce the following lemma:

Lemma 7 [6] If P (E) is given by equation (5) and f is an additive function
of E then

< f(E) >P =
1

Z
@jQ(�e�f)j

@�

���
�=0

(69)

This lemma can be easily proved by equating Q(�e�f) with its de�nition (9)
and then taking derivatives of both sides.

Then, to obtain the result of lemma 4, equation (67) we use (63) again,
conveniently grouping the terms involving fuv afterwards. To derive to com-
pact form (68) we notice that (67) represents the sum of element-wise prod-
ucts of Q(f�) and Q�1(�) and use the well-known matrix identity:X

ij

AijBij = traceABT (70)

D Proof of theorem 5

Theorem 5 Let P (T ) = P (E)P (�) be a decomposable distribution over tree
parameters, for which the support graph of P (E) is connected and P (�) > 0
for � > 0. Then for any tree T in any directed representation E; �

E
:

P (�
E
jE) =

Y
v2V

P (�vjpa(v)) (71)

P (�vju) =
ruY
i=1

D(�vju(:ji) ; N
0
vu(:i)) (72)
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where D is the Dirichlet distribution and N 0
vu(ij) > 0 are its parameters.

The numbers N 0
uv(ij) = N 0

vu(ji) are de�ned for all edges uv with �uv > 0
and satisfy

ruX
i=1

N 0
uv(ij) = N 0

v(j) (73)

rvX
j=1

N 0
v(j) = N 0 (74)

Proof Begin by �xing two variables u; v 2 V such that �uv > 0 and a

structure E containing edge uv. Denote by E
1
and E

2
the orientations of

E where u and respectively v are root. Thus E
1
and E

2
di�er only in the

orientation of edge uv. Let �1 and �2 be two parametrizations corresponding

to E
1
and E

2
respectively, such that �1 and �2 produce the same distribution

T . For every �1 there will be a unique �2 (obtained by applying (1) and (2))
satisfying this condition. Moreover,

�1wjpa(w) = �2wjpa(w) for all w 6= u; v: (75)

The prior distribution of �1 is

P 1
0 (�

1) = P 1
0 (�

1
u)P

1
0 (�

1
vju)

Y
w 6=u;v

P 1
0 (�

1
wjpa(w)) (76)

Similarly, for �2 we have

P 2
0 (�

2) = P 2
0 (�

2
v)P

2
0 (�

2
ujv)

Y
w 6=u;v

P 2
0 (�

2
wjpa(w)) (77)

The likelihood equivalence assumption, together with the change of variable
formula, imply

P 1
0 (�

1) = P 2
0 (�

2(�1))
��� @�2

@�1

��� (78)

In the above, j@�
2

@�1
j denotes the Jacobian of the transformation �1 ! �2. Due

to the equality (75) this Jacobian has the following structure:

j@�
2

@�1
j = @�2v

@�1u

@�2
ujv

@�1u
0 0 : : : 0 = @�2v

@�1u

@�2
ujv

@�1u

@�2v
@�1

vju

@�2
ujv

@�1
vju

0 0 : : : 0 @�2v
@�1

vju

@�2
ujv

@�1
vju

0 0 1 0 : : : 0
0 0 0 1 : : : 0
: : : : : : : : : : : : : : : : : :
0 0 0 0 : : : 1
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Let us denote the resulting determinant by

���� @(�2v;�2ujv
)

@(�1u;�
1
vju

)

����. The above equality
together with (76{78) implies

P 1
0 (�

1
u; �

1
vju) = P 2

0 (�
2
v(�

1
u; �

1
vju); �

2
ujv(�

1
u; �

1
vju))

���� @(�2v;�
2
ujv

)

@(�1u;�
1
vju

)

���� (79)

Now we have reached our �rst partial goal, because by theorem 7 in HGC
(79) implies that P0(�uv) as well as P

1
0 (�

1
u; �

1
vju) and P

2
0 (�

2
v ; �

2
ujv) are Dirichlet.

Let us denote by N 0
uv(ij); i = 1; : : :ru; j = 1; : : :rv the parameters of P (�uv)

and by N 0
u(i) and N 0

v(j) their sums over j and i respectively. It is easy to
show then that

P 1
0 (�

1
u) = D(�1u(:) ; N

0
u(:)) (80)

P 1
0 (�

1
v ju) =

ruY
i=1

D(�1vju(:ji) ; N
0
uv(i:)) (81)

P 2
0 (�

2
v) = D(�2v(:) ; N

0
v(:)) (82)

P 2
0 (�

2
ujv) =

rvY
j=1

D(�2ujv(:jj) ; N
0
uv(:j)) (83)

By parameter modularity, these identities are true for any tree structure
containing an edge between u and v. Therefore, all that remains to be
shown is that N 0 =

P
j2
v

N 0
v(j) has the same value for all v 2 V .

Let u 6= v be another variable in V . We prove thatX
i2
u

N 0
u(i) =

X
j2
v

N 0
v(j) (84)

We distinguish two cases: �uv > 0 and �uv = 0. The former is already
solved, by virtue of the �rst part of the proof. It remains to show that (84)
holds when �uv = 0 and no tree structure will contain edge uv.

Indeed, because Gsup is connected, there will exist at least a path between
u and v in Gsup. Now we can easily show (84) by induction over the length
of the path.

This theorem and its proof are easily extended to multiply connected
Gsup. In that case, each component of the graph will have its own equivalent
sample size N 0k.
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