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Abstract: Development of a reliable high-performance helicopter-based unmanned aerial
vehicle (UAV) requires an accurate and practical model of the vehicle dynamics.  This report
describes the process and results of the dynamic modeling of a model-scale unmanned helicopter
(Yamaha R-50 with 10 ft rotor diameter) using system identification. A complete dynamic model
was derived for both hover and cruise flight conditions.  In addition to standard helicopter flight
characteristics, the model explicitly accounts for the stabilizer bar, which has a strong influence on
the flight dynamics and is widely used in model-scale helicopters.  The accuracy of the developed
model is verified by the comparison between predicted and actual responses from the model and
the flight experiments (in both frequency and time domains), and between key identified
parameters and their theoretical values.  Scaling of the main characteristics of the R-50 model-
scale helicopter with respect to those of a UH-1H full-size helicopter was performed to determine
how the size influences the flight dynamics of helicopters.
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1 Introduction

Model-scale helicopters are increasingly popular platforms for unmanned aerial vehicles
(UAVs). The ability of helicopters to take off and land vertically, to perform hover flight as
well as cruise flight, and their agility and controllability, make them ideal vehicles for a range
of applications which can take place in a variety of environments. Existing model-scale
helicopter-based UAVs (HUAVs), however, exploit only a modest part of the helicopter’s
inherent qualities. For example, their operation is generally limited to hover and slow-speed
flight, and their control performance is in most cases sluggish. These limitations on HUAV
operation are mainly the consequence of a poor flight control system.

Throughout the 1990’s, most HUAVs used classical control systems such as single-loop PD
systems. The controller parameters are usually tuned manually for a distinct operating point
(generally hover flight). This situation is surprising given the abundance of effective
multivariable controller synthesis methods. One reason for this situation is that most
multivariable control methods are model-based, and that dynamic models for a particular
model-scale helicopter are not readily available.

The dynamic models used for controller synthesis or controller optimization have strict
requirements. The model must capture the effects that govern the performance and
maneuverability of the vehicle. High-bandwidth control requires models with high-bandwidth
accuracy. For helicopters, this implies that they must explicitly account for effects such as the
rotor/fuselage coupling. At the same time the model must be simple enough to be insightful
and practical for the control synthesis.

Using a standard first-principle based modeling approach, considerable knowledge about
rotorcraft flight dynamics is required to obtain the governing equations, and comprehensive
flight validations and model refinements are necessary before sufficient accuracy is attained.
Instead, in the helicopter community a modeling method based on system identification has
been developed and successfully used with full-scale helicopters. The experimental nature of
a system-identification based method enables the engineer to recognize the key flight-
dynamic characteristics of the vehicle, and thus allows the engineer to concentrate the
modeling effort on these characteristics.

Only a few examples of the application of system identification techniques to the modeling of
model-scale helicopters exist. The results obtained are limited compared with what is
regularly achieved with full-scale helicopters. For example, a low-order model (rigid body
dynamics) was identified using experiments with a rigged helicopter [1], or only the
longitudinal stability and control derivatives were identified [2].

This report describes the first comprehensive application of system identification techniques
to a model-scale helicopter. Both hover and cruise flight conditions have been treated and all
the effects which are important for the performance and maneuverability of a model-scale
helicopter have been captured. The experiments were conducted on Carnegie Mellon’s
HUAV, which is based on a Yamaha R-50 model scale helicopter. For the identification, a
frequency-domain method developed by the US Army and NASA was used (Comprehensive
Identification from FrEquency Responses CIFER  [3]).
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The report is organized as follows: In Section 2, we describe the principal physical and flight-
mechanical characteristics of the R-50 model-scale helicopter, as well as the instrumentation
and on-board systems. In Section 3, we present the  fundamentals of the CIFER

identification method. Section 4 describes the flight-testing performed for the collection of the
flight-data. In Section 5, we explain the identification process, concentrating on the definition
of the state-space model structure used in the identification. In Section 6, we present the
identification results: first, the agreement between the predicted frequency responses from the
identified model and the actual frequency responses from the flight-data; second the identified
model parameters, along with, when possible, a comparison of their values wtih the values
predicted by helicopter theory; and finally, the agreement between the predicted and actual
time responses. Then, we present analytical results: first the eigenvalues and dynamic modes,
and second a comparison between characteristic parameters of the model-scale helicopter and
those of a full-scale helicopter scaled to the same rotor diameter.

2 Description of the CMU Helicopter

2.1 Yamaha R-50 Helicopter

The Yamaha R-50 helicopter used in the HUAV project at Carnegie Mellon University
(CMU) (Figure 1) is a commercially available model-scale helicopter originally designed for
remote operated crop-dusting. Because of the adequate payload (20 kg) and the general ease
of operation, it has become a platform of choice for research in autonomous flight. General
physical characteristics of the R-50 are given in Table 1.

The R-50 uses a two-bladed main rotor with a Bell-Hiller stabilizer bar. The relatively rigid
blades are connected to a yoke through individual flapping hinges and elastomeric fittings.
The yoke itself is attached to the rotor shaft over a teetering hinge in an under-swung
configuration, reducing the Coriolis forces and the associated in-plane blade motion. The
teetering motion is also restrained by an elastomer damper/spring. This rotor system differs
from classical teetering rotors in that it is stiffer and combines teetered and separately hinged
blade motion.

The Bell-Hiller stabilizer bar is a secondary rotor consisting  of a pair of paddles connected to
the  rotor shaft through an unrestrained teetering hinge. It receives the same cyclic control
input as the main rotor but, due to its different design, it has a slower response than the main
blades and is also less sensitive to airspeed and wind gusts. The stabilizer bar flapping motion
is used to generate a control augmentation to the main rotor cyclic input. This augmentation is
implemented by the bell mixing mechanism. From a control theoretical point of view, the
control augmentation can be interpreted as a lagged rate (or “pseudo-attitude”) feedback in the

Figure 1 - Instrumented R-50 in hovering flight
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pitch and roll loops [4]. The low frequency dynamics are stabilized, which substantially
increases the phase margin for pilot/vehicle system in the crossover frequency range
(1 3− rad/s) [4]. The pseudo-attitude feedback also reduces the response of the aircraft to wind
gusts and turbulence.

2.2 Scaling Considerations

Stabilizer bars are common in model-scale helicopters because scaling down the helicopter
size increases the sensitivity of the dynamics to control inputs and disturbances, and reduces
the damping provided by the rotor on the angular pitch and roll motions. Rotor-induced
damping arises from the tendency of the rotor disc    therefore of the thrust vector   to lag
behind the shaft during pitching or rolling motions. This lag produces a moment about the
helicopter’s center of gravity opposite to the rolling or pitching direction and proportional to
the rolling or pitching rate. A smaller rotor has a smaller rotor time constant τ ; therefore, for a
given pitch or roll rate, it will lag less and thus produce less damping.

The R-50 is about 1/5-th the size of an average-size manned helicopter (a scale factor N=5
refers to a rotorcraft of 1/5-th the rotor diameter). The rotor time constant τ  is a function of
the non-dimensional blade lock number γ  and the rotor speed Ω  (τ γ= 16 Ω). A small
rotorcraft has a rotor speed which is about N  faster than the full-size counterpart in order to
achieve the same blade tip speed. This means that a small rotorcraft has a N  times smaller
rotor time constant and thus a N smaller rotor induced damping than does its full-size
counterpart. A smaller time constant also means a larger bandwidth.

Since the stabilizer bar is not used to produce lift, its dynamic characteristics can be adjusted
almost arbitrarily. This property is used in Radio Controlled (RC) helicopters to adjust the
flight-dynamic characteristics of the model helicopter to the skills of the pilot.

2.3 HUAV Instrumentation

Carnegie Mellon’s HUAV has a state-of-the-art instrumentation capable of producing high
quality flight data. The centerpiece of the helicopter onboard systems is a VME-based on-
board flight computer which hosts a Motorola 68060 processor board and a sensor I/O board.
All sensors and actuators of the helicopter connect through the I/O board with the exception
of the inertial measurement unit (IMU), which connects directly to the processor board

Dimensions see Figure (units: mm)

Rotor speed

Tip speed

850 rpm

449 ft/s
Dry weight

Instrumented (full
payload capacity)

97 lb

150 lb

Engine type Single cylinder, 2-
stroke, water
cooled

Flight autonomy 30 minutes

1,130

1,775

3,070

2,655

520

1,080

Table 1 – R-50 Physical Characteristics
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through a special serial port. The communication to the ground station takes place via
wireless Ethernet. This system runs under a VxWorks real-time operating system.

Three linear servo-actuators are used to control the swash-plate, while another actuator is used
to control the pitch of the tail rotor. The dynamics of all the actuators have been identified
separately. The engine speed is controlled by a governor which maintains the rotor speed
constant in the face of changing rotor load.

The HUAV uses three navigation sensors:

• a fiber-optic based inertial measurement unit (IMU), which provides measurements of the
airframe accelerations a a ax y z, , , and angular rates p q r, ,  (resolution: 0 002. g and 0 0027. °,
data rate: 400Hz)

•  a dual frequency differential global positioning system (GPS) (precision: 2cm, update
rate: 4Hz)

• a magnetic compass for heading information (resolution: 0 5. °, update rate: 2Hz)

The IMU is mounted on the side of the aircraft, and the GPS and compass are mounted on the
tail. Velocity and acceleration measurements are corrected for the position offset between the
helicopter center of gravity and the GPS, or IMU. A 12-th order Kalman filter running at 100
Hz is used to integrate the measurements from the IMU, GPS and compass to produce
accurate estimates of helicopter position, velocity and attitude.

3 Frequency-Domain Identification

Frequency responses fully describe the linear dynamics of a system. When the system has
nonlinear dynamics (to some extent all real physical systems do), system identification
determines the describing functions which are the best linear fit of the system response based
on a first harmonic approximation of the complete Fourier series. For the identification, we
used a frequency domain method, developed by the U.S. Army and NASA, known as CIFER

(Comprehensive Identification from Frequency Responses) [3]. While CIFER  was developed
specifically for rotorcraft applications, it has been successfully used in a wide range of fixed
wing and rotary wing, and unconventional aircraft applications [5]. CIFER  provides a set of
utilities to support the various steps of the identification process. All the tools are integrated
around a database system which conveniently organizes the large quantity of data generated
throughout the identification process.

The steps involved in the identification process are:

1. Collection of flight data. The flight-data is collected during special flight experiments
using frequency sweeps.

2. Frequency response calculation. The frequency response for each input-output pair is
computed using a Chirp-Z transform. At the same time, the coherence function for each
frequency response is calculated.

3 . Multivariable frequency domain analysis. The single-input single-output frequency
responses are conditioned by removing the effects from the secondary inputs. The partial
coherence measures are computed.

4. Window Combination. The accuracy of the low and high frequency ends of the frequency
responses is improved through optimal combination of frequency responses generated
using different window lengths.
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5. State-space identification. The parameters (derivatives) of an a priori-defined state-space
model are identified by solving an optimization problem driven by frequency response
matching.

6. Time Domain Verification. The final verification of the model accuracy is performed by
comparing the time responses predicted by the model with the actual helicopter responses
collected from flight experiments using doublet control inputs.

4 Flight Testing: Collection of Flight-Data

High quality flight data is essential to a successful identification. The principal concerns are
the accuracy of the state estimates (i.e., unbiased, disturbance free, no drop outs), the
information content of the flight data (i.e., whether the measurements contain evidence of all
the relevant flight-dynamic effects), and the compatibility of the flight data with the postulate
of linear dynamics used for the modeling. While the accuracy of the state estimates depends
on the instrumentation, the information content and compatibility depends on the execution of
the flight experiments.

The responses of the system to low frequency excitations are important for the identification
of the speed derivatives (0 1 1. − rad/sec) and the responses to high frequency excitations are
important for the identification of the coupled rotor/fuselage dynamics (8 14− rad/s). To
guarantee that the flight data captures the dominant flight-dynamic effects, a frequency-sweep
technique is used for the flight testing [6].

By adjusting the magnitude of the excitation, we make sure that the system response remains
within a region where the dynamics are predominantly linear. Also, it is important to select a
calm day to avoid unmeasured inputs.

A key metric to verify that the flight data is satisfactory for the purpose of system
identification is its coherence. The coherence γ xy  (or partial coherence for a multiple-input
multiple-output system) indicates how well the output y  (any of the estimated helicopter
state) is linearly correlated with a particular input x  over the examined frequency range. It is
computed together with the system’s frequency responses, from the cross spectrum Gxy, and
the input and output auto-spectrum Gxx  and Gyy  respectively (the partial coherence is derived
from the conditioned spectrum).

γ xy
xy

xx yy

G

G G
2

2

1= ≤ (1)

A coherence larger than 0 6.  is considered good. A poor coherence can be attributed to a poor
signal-to-noise ratio, nonlinear effects in the dynamics, or the presence of unmeasured inputs
such as wind gusts. The coherence is also used as a weighting function in the frequency
domain cost function used during the identification of the model parameters.

4.1 Flight-Test Procedure

Two series of flight experiments were organized for each the hover-flight and cruise-flight
operating point. For each flight in a series, the pilot applies a frequency sweep control
sequence to one of the four control inputs via the remote control (RC) unit. While doing so he
uses the other control inputs to hold the helicopter at the selected operating point. In order to
gather enough data, the same experiment is repeated several times.

The experiments are conducted open-loop, except for an active yaw damping system, and the
stabilizer bar which can be regarded as a dynamic augmentation. An input cross-feed is used
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by Yamaha between the collective input and the pedal input to compensate for coupling
effects between the heave and yaw dynamics.

A block-diagram representing the augmented R-50 dynamics is shown in Figure 2. The inputs
to the system are the four helicopter control inputs (cyclic longitudinal δ lon  and lateral δ lat ,
cyclic collective δ col  and pedal δ ped ) which enter the system via four actuators (three
swashplate actuators GS  and one tail actuator GT ). Both the yaw damping system and the
stabilizer bar are represented as dynamics augmentations. Only 6 rigid-body fuselage states
are illustrated (the three linear velocities u v w, ,  and the three angular velocities p q r, , ).

During the time of the experiment, all control inputs (stick inputs) and all helicopter states are
recorded (100Hz sampling rate). Flight-data from the best runs are then concatenated and
filtered (−3dB @ 10Hz) to remove undesired information such as structural vibrations. A
sample of hover condition flight-data of the longitudinal and lateral response for two
concatenated lateral frequency sweeps is shown in Figure 3.

The flight experiments for the hover condition are unproblematic; the helicopter is in the
proximity of the pilot and it is relatively easy to hold the operating point.

The cruise-flight experiments are more problematic. We used a fly-over technique: the pilot
accelerates the R-50 for a constant distance until the helicopter is directly overhead. At that
point, the pilot starts performing the different piloted sweeps while flying down the airstrip
and trying to maintain a constant airspeed. We encountered two problems during the cruise-
flight experiments. First, it was difficult for the pilot to maintain a precise airspeed because he
relied only on the visual sighting for helicopter attitude information. Second, the length of the
flight experiment was limited because the helicopter had to be kept in sight.

The record length is critical because it defines the low frequency content of the flight-data
(ω πmin = 2 trec ). Low frequency information (0 1 1. − rad/sec) is important for the identification of
quasi-steady derivatives, such as the speed derivatives. With our experimental method, trying
to push the record length degraded the stability of the airspeed. With this tradeoff, by allowing
the airspeeds to vary between 10 and 20m/s we were able to achieve a maximum record
length of 10s. These issues could be addressed in future experiments by conducting the flight
testing on a paved runway and using an automobile as a chase vehicle, or even by performing
closed-loop computer-controlled flight testing.

Figure 2 – Augmented R-50 dynamics
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4.2 Flight-Test Results

The frequency responses derived from the hover-flight data and the respective coherence
metrics are depicted in Appendix 2a. All on-axis responses attain a coherence close to unity
over most of the critical frequency range where the relevant dynamical effects take place. For
example, the two on-axis angular rate responses to their respective cyclic inputs achieve a
good coherence (≥0 6. ) up to the frequencies of 8 16− rad/s, where the important airframe/rotor
coupling takes place.

The frequency responses derived from the cruise-flight data and the respective coherence
metrics are depicted in Appendix 2b. Here again, all the on-axis responses achieve high
coherence values. The generally high coherence obtained for the key helicopter responses
speaks for the quality of the helicopter instrumentation, the successfully performed flight
experiments, and the dominantly linear behavior of the helicopter around the tested operating
conditions.

5 Application of System Identification

Using system identification, we want to achieve the best possible fit of the flight-data with a
model that is consistent with the physical knowledge and intuition. The first part of the
problem consists of the derivation of the dynamic equations that will define the state-space
model with the unknown parameters. Once this is accomplished, the parameters of the model
can be identified. Based on the results obtained, the model structure will be refined until
satisfactory results are achieved. The criteria used for this iteration are: (i) level of frequency
response agreement (frequency error costs), (ii) statistical metrics from the model parameters
(insensitivity and Cramer Rao percent), (iv) level of agreement of the system’s time responses
(time domain verification), and (v) when a specific model parameter has a physical meaning,
the level of agreement of the parameter with its theoretical value.

5.1 Building the State-Space Model Structure

The basic equations of motion for a linear model of the helicopter dynamics are derived from
the Newton-Euler equations for a rigid body that is free to simultaneously rotate and translate
in all six degrees of freedom. The external aerodynamic and gravitational forces are
represented by using a stability derivative form. In the simplest model, no additional states are

. .

Figure 3 – Sample flight data for two concatenated lateral frequency sweeps
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used, and the control forces produced by the main rotor and tail rotor are expressed by the
multiplication of a control derivative and the corresponding control input.

However, a key aspect of helicopter dynamics is the dynamical coupling between the main
rotor (which produces most of the control forces and moments) and the helicopter fuselage.
Omitting this coupling effect has been shown to limit the accuracy of the helicopter model in
the medium to high frequency range [7]. Therefore, for high-bandwidth control design or for
handling quality evaluations, it is essential to account for the dynamic coupling between the
rotor and the fuselage.

To include the rotor/fuselage coupling the rotor dynamics need to be modeled explicitly and
then coupled to the fuselage equation of motions. A standard way to achieve this is the
hybrid-model formulation [6] developed originally for full-scale helicopter modeling. Besides
the rotor, other effects involving additional dynamics sometimes need to be accounted for.
Examples are: the actuators; the engine/drive train system; and control augmentations (such as
the active yaw damping system or the stabilizer bar). A more refined model structure has
another benefit besides accuracy; the model is physically more consistent, i.e., the model
parameters are less lumped and thus physically more meaningful. Our goal was to explicitly
model the helicopter dynamics by breaking the system down according to the block-diagram
in Figure 2.

The frequency responses and coherence measures derived from the flight data provide cues
about what dynamic effects are dominant in the different parts of the frequency range as well
as dynamic coupling. Good example are the angular responses (roll rate p  and pitch rate q) to
the cyclic inputs (lateral input δ lat  and longitudinal input δ lon ). The corresponding frequency
responses, which are illustrated in Appendix 2a and 2b, show a pronounced lightly-damped
second-order behavior. This characteristic is present for both the on-axis and the off-axis
responses. The second-order nature of the response results from a dynamical coupling,
namely the coupling between the airframe angular motion and the regressive rotor flap
dynamics (blade flapping a b, ). The lightly damped characteristic is due to the presence of a
stabilizer bar [4].

Lateral and Longitudinal Fuselage Dynamic Equations

From the Newton-Euler equations we derive the four equations for the lateral and longitudinal
linear and angular fuselage motions:

˙ ( )u w q v r g X u X au a= − + − + +0 0 θ (2)

˙ ( )v u r w p g Y v Y bv b= − + + + +0 0 φ (3)

ṗ L u L v L bu v b= + + (4)

q̇ M u M v M au v a= + + (5)

The external aerodynamic and gravitational forces and moments are formulated in terms of
stability derivatives [8]. For example, the rotor forces are expressed through the rotor
derivatives X Ya b, , and the rotor moments through the flapping spring-derivatives L Mb a, .
General aerodynamic effects are expressed by speed derivatives such as X Y L L M Mu v u v u v, , , , , .
The centrifugal terms in the linear-motion equations, which are function of the trim condition
( u v w0 0 0, , ), are relevant only in cruise flight.

Rotor/Stabilizer-Bar Dynamics

The simplest way to represent the rotor dynamics is as a rigid disc which can tilt about the
longitudinal and lateral axis. This motion corresponds to the first harmonic approximation in
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the Fourier Series description of the rotor flapping equations. The resulting rotor equations of
motions are two first order differential equations, for the lateral and longitudinal flapping:

τ τ δ δf f a lat lat lon lonb b p B a B B˙ = − − + + + (6)

τ τ δ δf f b lat lat lon lona a q A b A A˙ = − − + + + (7)

In our initial application of system identification to the modeling of the R-50 [9], we were
treating the rotor/stabilizer bar as a lumped system. The resulting model was accurate.
However because the stabilizer bar has a major influence on the helicopter’s flight-dynamic
characteristics, we decided to explicitly model the stabilizer bar system. This will allow better
study of the effects of the stabilizer bar during flight control design or handling quality
evaluations.

The stabilizer bar can be regarded as a secondary rotor, attached to the rotor shaft above the
main rotor, through an unrestrained teetering hinge. The blades consist of two simple paddles.
The stabilizer bar receives cyclic inputs from the swash-plate in a similar way as the main
blades. Because of the teetering hinge and the absence of restraint, the stabilizer bar is
virtually not subject to cross axis effects (the stabilizer bar restoring forces are entirely
centrifugal, resulting in a resonant frequency for the flapping motion which is identical to the
rotor rotation speed. Therefore, independently of the amount of damping in the system, the
phase lag between the control input and the dynamic response is exactly 90°). We can write
the lateral (d ) and longitudinal (c) stabilizer bar dynamic equations using the same equations
as for the single rotor system (Eq. 6-7) but in an uncoupled form:

τ τ δs s lat latd d p D˙ = − − + (8)

τ τ δs s lon lonc c q C˙ = − − + (9)

Where Dlat  and Clon  are the input derivatives, and τs  is the stabilizer bar’s time constant,
which is a function of the paddle lock number γ s  and the rotor speed Ω .

The stabilizer bar does not exert any forces or moments on the shaft. The bar dynamics are
coupled to the main rotor via the bell mixer. The bell mixer is a mechanical mixer, which
superposes a cyclic command proportional to the amount of stabilizer bar flapping to the
cyclic commands coming from the swash-plate. The resulting augmented lateral and
longitudinal main rotor cyclic commands can be written as:

δ δlat lat dK d= +  and δ δlon lon cK c= + (10)

The gains Kd  and Kc  are the stabilizer bar gearing, which are functions of the geometry of
the bell mixer. Applying the Laplace transformation to the stabilizer bar lateral flapping
equations (Eq. 8-9) we obtain:

d
s

p
D

s
s

s

lat

s
lat= −

+
+

+
τ

τ τ
δ

1 1
(11)

which shows that the stabilizer bar does indeed act as a lagged rate feedback.

Using the same tip-path plane model formulation for the single rotor flapping equations, and
introducing the augmented cyclic commands gives:

τ τ δ δf f a lat lat d lon lonb b p B a B K d B˙ ( )= − − + + + + (12)

τ τ δ δf f b lat lat c lon lona a q A b A K c A˙ ( )= − − + + + + (13)

where B Blat lon,  and A Alon lat,  are the input derivatives, τ f  is the main rotor time constant, which
is a function of the main blade lock number γ  and the rotor speed Ω . Ba  and Ab account for
the cross-coupling effects occurring at the level of the rotor itself.
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In the final state-space model, the control augmentation is determined through the system’s
states. Therefore, we need to define the derivatives: B B Kd lat d=  and A A Kc lon c= . The relation
between the derivatives and the gearing of the bell-mixer are:

K
B

B
d

d

lat

=  and K
A

A
c

c

lon

= (14)

In reality, since the bell-mixer operates the same way independently of the rotor azimuth, the
gearing is the same for both axes. The gearing value was determined experimentally. This
relation of Eq. 14 could be used as a constraint between the derivatives Blat  and Bd  ( Alon  and
Ac ) to reduce the number of unknown parameters. However, since we were not certain about
our approach to the modeling of the stabilizer bar, we decided to leave them free (we will
compare the identified value to the value obtained experimentally).

Heave Dynamics

The frequency response of the vertical acceleration to collective (az/col in Appendix 2a and

2b), shows that a first order system should adequately capture the heave dynamics. This

agrees with the rigid body equations from the Newton-Euler equations:
˙ ( )w v p u q Z w Zw col col= − + + +0 0 δ (15)

The term in parenthesis same as in Eq. 2 and 3 corresponds to the centrifugal forces that a

relevant for the cruise conditions. Note that the response does not exhibit the peak in

magnitude caused by the inflow effects, typical of full-size helicopters. This is because the

flap frequency for the R-50 (1/rev= 89rad/s) is well beyond the frequency range of

identification and of piloted excitation (30  rad/s).
Yaw Dynamics

The yaw dynamics of the bare helicopter airframe can usually be modeled as the simple first
order system:

r N

s Nped

ped

rδ
=

−
(16)

where Nr is the bare airframe yaw damping coefficient and Nped  is the sensitivity to the pedal
control.

However, in our case, an artificial yaw damping system was used during the flight testing and
we would like to explicitly account for this dynamic augmentation.

Our yaw damping system is obtained through a yaw-rate feedback. Since, at the time of the
flight experiment, only the pilot pedal input δ ped  and the helicopter yaw rate r  were measured,
ground experiments were performed to isolate the dynamics of the tail actuator and yaw rate
gyro. The dynamics of the actuator and rate gyro were described by their respective frequency
responses Tact  and Tgyro . By expressing the yaw dynamics of the bare airframe as the frequency
response Trδ , we can formulate the frequency response of the augmented yaw dynamics as:

T
T T

T T T
r aug

r act

r act gyro
δ

δ

δ
, =

+1
(17)

Since Tr augδ ,  is known from the flight experiments we can solve for the unknown bare airframe
dynamics Trδ  using frequency response arithmetic.
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T
T

T T T T
r

r aug

act r aug act gyro
δ

δ

δ
=

−
,

,

(18)

The resulting frequency response for the bare airframe yaw dynamics Trδ  did not exhibit the
first order form of Eq. 16. From this we conclude that other dynamic effects, such as the
engine drive-train dynamics, influence the yaw dynamics.

To avoid increasing the complexity of the model, we decided to revert to the representation
we used in [9]. There, we assume that the augmented yaw dynamics could be modeled as the
first order bare airframe dynamics with a yaw rate feedback represented by a simple first
order low-pass filter:

r

r

K

s K
fb r

rfb

=
+

(19)

The closed loop transfer function for the augmented yaw rate response becomes:
r N s K

s K N s K N N Kped

ped rfb

rfb r r ped r rfbδ
=

+
+ − + −

( )

( ) ( )2       (20)

With the corresponding differential equations used in the state-space model:

˙ ( )r N r N rr ped ped fb= + −δ (21)

ṙ K r K rfb rfb fb r= − + (22)

Again, since we have only the measurements of the pilot input δ ped  and the yaw rate r , the
above representation is over-parameterized. One constraint between two parameters must be
added in order to avoid having problems during the identification due to correlated
parameters. As constraint, we stipulate that the pole of the low-pass filter must be twice as
fast as the pole of the bare airframe yaw dynamics:

K Nrfb r= − ⋅2 (23)

With this constraint, a low transfer function cost is attained. However the value obtained for
the bare airframe yaw damping Nr, is not necessarily physically meaningful. However, this
should not constitute a big limitation since the active yaw damping system can be retained in
future flight control designs as part of the bare airframe dynamics.

Offset Equations

In the speed equations (Eq. 2-3), the derivatives Xa  and Yb  should theoretically be equal
respectively to plus and minus the value of the gravity (g = 32 2. ft/s2). Enforcing that constraint
is possible only if the flight-data has been properly corrected for the position offset in the
sensor location relative to the C.G. Since, in our case, the C.G. location is not known with
sufficient accuracy, we have explicitly accounted for a vertical offset hcg by relating the
measured speeds (v um m, ) to the speed at the C.G. (v u, ).

v v h pm cg= − (24)

u u h qm cg= + (25)

Using this method, we were able to enforce the constraint − = =X Y ga b , and, at the same time,
identify the unknown vertical offset hcg .

Swash-Plate Actuator Dynamics

The swash-plate actuators are used to implement the main rotor collective control input as
well as the cyclic control inputs for the stabilizer bar and the bare rotor. Explicitly modeling
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the stabilizer bar exposes the fast dynamics of the bare rotor. To allow for an accurate
identification of the fast bare rotor dynamics, the dynamics of the swash-plate actuators must
be accounted for. The dynamics of the swash-plate actuators were identified during ground
experiments. An accurate fit of their frequency responses was achieved with a first order
transfer function:

G s
s

R ( ) =
+
15

15
 (26)

State-Space Identification

The full state-space model of the R-50 dynamics is obtained by collecting all the differential
equations in a matrix differential equation:

Mx Fx Gu˙ = + (27)

with state vector x  and input vector u . The system matrix F  contains the stability derivatives,
the input matrix G  contains the input derivatives, and the M  matrix contains the rotor time
constants for the rotor flapping equations. The full state-space system is depicted in Table 2.

From the coherence measure obtained during the multivariable frequency domain analysis, we
select the frequency responses that should be used for the state-space identification and, for
each response, what frequency range should be used for the fitting. The final structure is
obtained by adding and removing derivatives according to the quality of the frequency
domain fit and statistical information about the derivatives. The useful statistics are the
insensitivity of the cost function to each derivative and the correlation between the
derivatives. Insensitive and/or correlated parameters are dropped.

A helicopter responds differently in hover flight than it does in cruise flight. We observed
that, for our system, these differences did not significantly affect the model structure, but
rather were mostly absorbed in the derivatives. For the cruise flight condition, because of the
non-negligible speed, we had to account for the centrifugal acceleration terms which appear in
the equation of motion of the fuselage’s linear accelerations (Eq. 2-3). The average trim
condition for the forward flight experiments is u0 49 2= .  ft/s, v0 11= −  ft/s, and w0 0=  ft/s. All
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differences are visible in Appendix 1, which shows the parameter values and associated
statistics, and in s 3, which shows the costs achieved by each transfer function, and indicates
which frequency responses are relevant for the two operating conditions.

6 Results and Discussion

6.1 Frequency Response Agreement

The predicted frequency responses from the identified model show a good agreement with the
frequency responses from the flight-data, both in hover and cruise conditions. The transfer
function costs are given in Table 3 and the frequency response comparison is depicted in
Appendix 2a and 2b. Compared with the results obtained for the lumped rotor/stabilizer bar
[9], the off-axis angular responses (p  to δ lon  and q  to δ lat ) have been significantly improved
by explicitly modeling the stabilizer bar. This close agreement is better than what is usually
achieved in full-size helicopters. This can be attributed to the dynamics of the model-scale
helicopter being dominated by the rotor dynamics and to the absence of complex aerodynamic
effects.

6.2 Identified Model Parameters

The Table in Appendix 1 gives the numerical values of the identified derivatives and their
associated accuracy statistics: the Cramer-Rao percent (C.R.%) and the insensitivity (I%) of
the derivatives. These statistics indicate that all of the key control and response parameters are
extracted with a high degree of precision [6]. Notice that most of the quasi-steady derivatives
have been dropped, thus showing that the rotor plays a dominant role in the dynamics of
model-scale helicopters. This is also reflected by the number of rotor flapping derivatives ( )b

and ( )a. The term actuated helicopter is a good idealization of the dynamics of the model-
scale helicopter, where the rotor dominates the response.

Rotor Parameters

For the hover condition, the identified stabilizer bar and bare rotor time constants came out as
respectively τ s = 0 34. s and τ f = 0 046. s. These values are close to the theoretical values of
τ s = 0 36. s and τ f = 0 053. s, predicted from the lock numbers γ  of the respective blades and the
rotor speed Ω .

Hover Cruise Hover Cruise

VX  /LAT 15.741 - Q   /LON 41.308 9.696

VY  /LAT 18.424 - AX  /LON 27.915 48.752

VZ  /LAT - 71.105 AY  /LON 35.035 -

P   /LAT 61.539 12.955 AZ  /LON 33.805 44.240

Q   /LAT 50.376 18.468 P   /COL - 45.835

AX  /LAT 15.741 - Q   /COL - 19.143

AY  /LAT 17.363 23.469 R   /COL 35.217 -

R   /LAT 27.382 - AZ  /COL 55.276 78.184

AZ  /LAT 24.969 - AY  /PED - 10.278

VX  /LON 27.915 - VY  /PED - 39.134

VY  /LON 35.035 - R   /PED 18.841 23.542

VZ  /LON - 48.521 AZ  /PED 19.406 -

P   /LON 37.067 15.555 Average 31.492 33.925

Table 3 – Transfer Function Costs
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τ
γ

= 16

Ω
(28)

The blade lock number describes the ratio between the aerodynamic and inertial forces acting
on the blade.

γ ρ α=
−c c R r

I
p

b

( )4 4

(29)

It is defined by the air density ρ , the blade chord length cp , the lift curve slope cα , the inside
and outside radii of the blade r , R, and the blade inertia Ib .

For the main blade the effective lock number γ eff  was used to account for the inflow effects.

γ γ
σ να

eff
c

=
+1 16 0

(30)

where σ , is the rotor solidity, and ν0 is the inflow ratio derived from the thrust coefficient
(ν0 0 5 0= . cT ).

These results also validate our results from our earlier work, where the main rotor and
stabilizer bar were modeled as a lumped system. We can now state that the time constants
identified at the time (τ =0 38. s) belonged in fact to the stabilizer bar. This shows that the
stabilizer bar dominates the rotor response characteristics and behaves like a model following
controller.

In cruise condition the rotor time constants decreases to τ s = 0 26. s and τ f = 0 035. s, which is an
anticipated result.

The stabilizer bar couples to the main rotor, through the derivatives Bd  and Ac . By applying
Equation 14, we can calculate the equivalent bell-mixer gearing. The result of Kd = 10 92.  and
Kc = 12 88.  for, respectively, the lateral and longitudinal axes, are close to the real gearing
K = 13 58.  determined experimentally. In forward flight, the equivalent gearing become:
Kd = 10 73.  and Kc = 13 79. . Which agrees with the reality that the gearing is constant.

The identified roll and pitch rotor spring derivatives are respectively Lb = 166 1.   and
Ma = 82 57. , for hover conditions. Their values for cruise condition are about 30% larger:
Lb = 213 2.   and Ma = 108, which is an expected effect.

The lateral and longitudinal main rotor control derivatives have reasonable values with only
slight changes between hover and cruise conditions. The only exception is Blon , which is 45%
larger in cruise flight, indicating a higher cross axis activity. The stabilizer bar control
derivatives are almost identical for both flight conditions, which validates the idea that their
design is aerodynamically neutral.

These physically meaningful results indicate that the hybrid model structure with the
stabilizer bar augmentation accurately captures the rotor dynamics and its coupling with the
fuselage.

Quasi-Steady Derivatives

The speed derivatives X Yu v, , in the equations (Eq. 2-3), have the sign and relative magnitudes
expected for hovering helicopters, but the absolute magnitudes are all considerably larger (2-5
times) than those for full scale aircraft. This is expected from the dynamic scaling
relationships as discussed later. In cruise flight the longitudinal speed derivative Xu  increases
significantly. Note that this derivative has the highest insensitivity of all derivatives (29 6.  and
27 5.  for, respectively, hover and cruise flight), as well as a very high Cramer-Rao percent.
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Therefore, the identified value is unreliable. This poor result is related to the insufficient low
frequency information content of the flight data. It can be improved by longer record lengths.

The speed derivatives Lu , Lv  and Mu , Mv  in the angular rate equations (Eq. 4-5) contribute a
destabilizing influence on the phugoid dynamics. These derivatives were dropped for the
cruise conditions.

With the help of the offset equations (Eq. 24-25) we were able to constrain the force coupling
derivatives to gravity (− = =X Y ga b ) and, at the same time, identify the vertical C.G. offset which
came out to be hcg = −0 41.  ft in hover conditions and hcg = −0 32. ft in cruise conditions. The
difference of 0 09. ft ( 2 7. cm) can be attributed to fuel level changes or aerodynamic drag.

Yaw Dynamics

Little can be said with regard to the yaw dynamics since the model structure poorly reflects
the physical reality. We can note that the yaw damping has the correct negative sign, and that
the yaw rate feedback coefficients stay virtually constant between hover and cruise
conditions. The major changes are those affecting the yaw control derivative Nped , which
decreases, and the lateral speed derivative Nv  which increases drastically in forward flight.
Both results are consistent with the expectations. A time delay of was identified to account for
the high-frequency un-modeled dynamics.

Heave Dynamics

The heave damping derivative Zw has the correct sign. In cruise flight, the larger heave
damping and heave control sensitivity Zcol  is correct. The latter is directly related to the higher
efficiency of the rotor in cruise flight (translational lift).

6.3 Time Domain Verification

For the time domain verification, special flight experiments using doublet-like control inputs
were performed in hover and forward flight. The recorded inputs are used as inputs to the
identified model, and the helicopter responses predicted by the model are compared to the
responses recorded during the flight test. The results from the comparison are presented in
Appendix 3a and 3b, for, respectively, the hover and cruise condition. Overall, excellent
agreement is achieved both in hover and forward flight. However, two weak points are
noticeable.

First is the poor agreement of the yaw response to secondary inputs. The highest mismatch is
obtained for the response to the lateral cyclic input. This problem is due to the approximate
way the yaw dynamics and the active yaw damping system were modeled as well as the likely
omission of some aerodynamic effects.

The second weak point is the poor agreement for the speed and acceleration responses to
secondary inputs in the cruise condition. This is a direct result of the improperly identified
quasi-steady and speed derivatives, related to the insufficient low frequency content of the
cruise flight-data.

It is important to notice that the accuracy of the identified linear model is excellent up to fairly
large flight incidences and large excursions from the operating point. For example the
helicopter attitudes reach values up to 40degrees for roll and up to 20  degrees for pitch. The
cruise flight model covers a speed range from 10 to 20  m/s.
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6.4 Eigenvalues and Dynamic Modes

Important dynamic characteristics of the R-50 can be understood from eigenvalues and
eigenvectors computed from the identified model. Tables 4 lists the eigenvalues and the
dynamic modes obtained for the hover and the cruise condition.

We can relate some of the modal characteristics to our identified derivatives. For example, for
the hover conditions, the frequency of the coupled fuselage/rotor/stabilizer modes for pitch
and roll can be related to the square root of the pitch flap spring (Ma = 9 1. rad/s), respectively
the square root of the roll flap spring (Lb = 12 9. rad/s). Moreover, we can show that the small
damping ratio of these modes directly reflects the large rotor time constant introduced by the
presence of the stabilizer bar [4], for example, in the roll axis: ζ τroll flap s bL− = =1 2 0 11( ) . , and in
the pitch axis: ζ τpitch flap s aM− = =1 2 0 16( ) . .

6.5 Dynamic Scaling

To determine how the flight dynamics of a miniature helicopter compare with the flight
dynamics of its full-size counterpart, the key characteristics of the identified R-50 are
compared to those of a full-size helicopter, dynamically scaled to the same rotor diameter.
The Bell UH-1H was selected for the comparison because its design is similar to the R-50 (2
bladed teetering rotor equipped with a Bell stabilizer bar). Dynamic (or “Froude”) scaling was

Table 4a – Eigenvalues and modes for hover flight

λλλλ# Eigenvalue Location Mode Description for Hover Model

1-2 0.3061± 0.094 (ζ=-0.9562; ω=0.3201) unstable phugoid type mode involving the lateral and longitudinal
velocities and the pitch and roll angles

3-4 -0.4007± 0.086 (ζ=0.9778; ω=0.4098) stable phugoid type mode involving the lateral and longitudinal
velocities and the pitch and roll angles

5 -0.6079 damped yaw-heave mode

6-7 -1.699± 8.192 (ζ=0.2031; ω=8.366) lightly damped pitch mode with a 70% rolling component
corresponding to the coupled fuselage/rotor/stabilizer bar mode

8-9 -6.196± 8.198 (ζ=0.6029; ω=10.28) damped yaw mode (active yaw damping)

10-11 -2.662± 11.58 (ζ=0.2241; ω=11.88) lightly damped roll mode with a 50% pitching component
corresponding to the coupled fuselage/rotor/stabilizer bar mode

12-13 -20.17± 4.696 (ζ=0.9739; ω=20.71) critically damped high frequency roll mode with a 40 % pitching
component

Table 4b – Eigenvalues and modes for cruise flight

λλλλ# Eigenvalue Location Mode Description for Cruise Model

1 -0.1216 damped longitudinal mode

2 -0.9614 damped yaw-heave mode

3 -1.838 damped yaw-heave mode involving the lateral velocity (tail-fin
effect)

4-5 -2.321± 8.794 (ζ=0.2552; ω=9.095) lightly damped pitch mode with a 90% rolling component
corresponding to the coupled fuselage/rotor/stabilizer bar mode

6-7 -5.005± 8.133 (ζ=0.5241; ω=9.549) damped yaw mode (active yaw damping)

8-9 -3.396± 12.43 (ζ=0.2636; ω=12.88) lightly damped roll mode with a 10% pitching component
corresponding to the coupled fuselage/rotor/stabilizer bar mode

10-11 -27.04± 7.019 (ζ=0.9679; ω=27.94) critically damped high frequency roll mode with a 40 % pitching
component
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applied to ensure that the model scale and full-scale vehicles shared common ratios of inertia-
to-gravity and aerodynamic-to-gravity forces. The geometric and dynamic characteristics of
the model scale (subscript m) and full scale aircraft (subscript a) were then related via a well
known set of similarity laws [10] based on scale ratio N (e.g., N=5 refers to a 1/5–th scale
model):

Length: L L Nm a=

Time constant: T T Nm a=

Weight: W W Nm a= 3

Moment of inertia: I I Nm a= 5

Frequency: ω ωm a N=

Table 5 shows a comparison of the key configuration parameters and identified dynamic
characteristics for the R-50 with the model-scale equivalents for the UH-1H. The scale ratio is
N=4.76, or nearly 1/5-th scale. The R-50 is seen to be about twice as heavy as a scaled down
UH-1H. This is mainly due to the high payload weight (53lbs). This results in a higher
normalized thrust coefficient (CT/σ) than would otherwise be expected. The R-50 blades are
also relatively heavier, resulting in a lower Lock number than the UH-1H. These increased
relative weights appear to be typical of small-scale flight vehicles as seen from reference to
the scaled data for the TH-55 [11]. The higher flap spring is due to the elastomeric restraints
on the R-50, and the combination of a teetering and flapping hinge. This configuration results
in an effective hinge-offset of about 3%. The resulting roll/flap frequency is 20% higher than
the scaled equivalent UH-1H. Finally, the non-dimensional rotor time constants are essentially
identical (about 5 revs), showing the same strong effect of the stabilizer bar on both aircraft.
Despite some detailed differences, the R-50 is seen to be dynamically quite similar to the UH-
1H.

7 Conclusions

System identification techniques as used in full-scale helicopters have been successfully
applied to model-scale unmanned helicopters. The results are better than what is usually

Table 5 – Comparison of R-50 and dynamically-scaled UH-1H characteristics, N=4.76

Parameter UH-1H

full-scale

Scaling rule UH-1H

model-scale

R-50

R, rotor radius (ft) 24 1/N 5.04 5.04

W, weight (lb) 8000 1/N3 74 150

Ω ,  rotor speed (rad/s) 34 N 76.1 89.01

Ib  ,blade inertia,(s-ft2) 1211 1/N5 0.495 0.87

γb, blade Lock number 6.5 1 6.5 3.44

CT σ 0.0606 1 0.0606 0.0896

hrot/R , rotor hub height 0.29 1 0.29 0.36

Lb, flap spring (rad/s2) 19.2 N 96.77 166.1

ωroll-flap  (rad/s) 4.38 N 9.83 11.88

τsΩ, non-dim. rotor flap time

constant (rotor rev.)

5.7 1 5.7 4.84
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achieved with full-scale helicopters. This is partly due to the dominance of the rotor in the
dynamics and to the absence of complex aerodynamic and structural dynamic effects.

The same frequency-sweep flight testing method as for full-scale helicopters can be applied to
model-scale helicopters. The flight testing for hover flight conditions is not problematic. The
forward flight condition is more challenging, but reasonable results can be obtained by using
simple experimental methods.

Good results of system identification depend on a high quality instrumentation and an optimal
integration of the sensor information.

CIFER  system identification techniques were effectively used to derive an accurate high-
bandwidth model for the R-50 in both hover and forward flight conditions. The few
weaknesses of the models   which are well understood   could be addressed, if necessary.
The identified model should be well suited to flight control design, handling quality
evaluation, and simulation applications.

The R-50 was shown to be dynamically quite similar to the scaled UH-1H, that is, the
dynamics of miniature helicopter follow simple scaling rules. The R-50 is proportionally
heavier (aircraft weight and blade inertia) and has a small effective hinge-offset (3%) due to
the elastomeric restraints and the teetering/flapping hinge combination. The dynamics of both
helicopters are strongly influenced by the stabilizer bar.
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A1. Table of Identified Parameters

Hover Flight Cruise Flight

Value CR % Insens. % Value CR % Insens. %
h

M-Matrix
ττττf 0.04631 10.87 1.64 0.03463 31.7 2.370 0.75
hcg -0.4109 6.249 1.775 -0.3212 14.7 6.695 0.78
ττττ s 0.3415 7.346 0.8280 0.2591 6.52 0.7860 0.76

F-Matrix
Xu -0.05046 62.25 29.60 -0.1217 57.7 27.45 2.41
Xθθθθ, Xa -32.20 constrained to -g -32.20 constrained to -g

Xr -11 centrifugal term, constrained to v0
Yv -0.1539 22.92 10.90 -0.1551 32.66 6.844 1
Yφφφφ, Yb 32.20 constrained to -g 32.20 constrained to -g
Yr -49.2 centrifugal term, constrained to -u0
Lu -0.1437 12.30 3.071 - - - -
Lv 0.1432 19.49 6.541 - - - -
Lw - - - -0.2131 15.3 3.963 -
Lb 166.1 1.865 0.5996 213.2 0.00145 2.144 1.28
Mu -0.05611 20.19 5.626 - - - -
Mv -0.05850 14.49 4.230 - - - -
Mw - - - 0.07284 21.2 5.676 -
Ma 82.57 6.283 0.5918 108.0 0.0593 0.7864 1..31
Ba 0.3681 10.48 1.125 0.4194 11.5 2.182 1.14
Bd 0.7103 4.110 0.7824 0.6638 9.66 1.551 0.93
Ab -0.1892 11.67 4.469 -0.1761 21.9 9.386 0.93
Ac 0.6439 9.486 0.8188 0.5773 7.73 1.092 0.89
Zb -131.2 2.765 1.619 - - - -
Za -9.748 19.86 8.256 - - - -
Zw -0.6141 10.50 4.465 -1.011 4.72 2.065 1.65
Zr 0.9303 8.151 2.754 - - - -
Zp 11 centrifugal term constrained to -v0
Zq 49.2 centrifugal term constrained to u0
Np -3.525 14.22 3.664 - - - -
Nv 0.03013 32.51 9.082 0.4013 8.80 3.362 13.32
Nw 0.08568 14.14 5.091 - - - -
Nr -4.129 9.708 2.785 -3.897 10.57 3.673 0.94
Nrfb -33.07 Nrfb=-Nped -26.43 Nrfb=-Nped 0.8
Kr 2.163 4.417 1.736 2.181 7.747 2.695 1
Krfb -8.258 Krfb=2Nr -7.794 Krfb=2Nr 0.94

G-Matrix
Blat 0.1398 7.060 1.612 0.1237 16.3 2.637 0.88
Blon 0.01380 13.35 4.214 0.02003 17.8 6.696 1.45
Alat 0.03127 7.886 2.064 0.02654 8.19 2.544 0.85
Alon -0.1004 9.205 1.175 -0.08372 13.9 1.868 0.83
Zcol -45.84 4.315 1.839 -60.27 4.06 1.862 1.31
Mcol - - - 6.980 6.00 1.426 -
Ncol -3.329 10.63 3.667 - - - -
Nped 33.07 5.453 1.916 26.43 7.177 2.437 0.8
Dlat 0.2731 12.24 1.858 0.2899 12.5 2.358 1.06
Clon -0.2587 10.73 1.622 -0.2250 11.2 1.663 0.87

Yped - - - 11.23 21.92 4.659 -

ττττped 0.09910 13.21 6.086 0.05893 21.75 6.928 0.59
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A2a. Frequency Responses for Hover Flight

Comparison between the frequency responses computed from the identified hover model (dashed) and the frequency responses
derived from the hover flight-data (solid).
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A2b. Frequency Responses for Cruise Flight

Comparison between the frequency responses computed from the identified cruise model (dashed) and the frequency responses
derived from the cruise flight-data (solid).
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A3a. Time Domain Verification for Hover Flight

Comparison between the responses predicted by the identified hover model (dashed) and the responses obtained during flight
testing in hover condition (solid).

lat [%] lon [%]

θ [deg]

φ [deg]φ [deg]

θ [deg]

col [%]

φ [deg]φ [deg]

θ [deg]θ [deg]

ped [%]

p [deg/s]p [deg/s]

q [deg/s] q [deg/s]

p [deg/s]p [deg/s]

q [deg/s]q [deg/s]

r [deg/s] r [deg/s] r [deg/s] r [deg/s]

ax [ft/s2] ax [ft/s2]

ay [ft/s2] ay [ft/s2]

ψ [deg] ψ [deg]

az [ft/s2] az [ft/s2]

Time [s] Time [s] Time [s] Time [s]



25

A3b. Time Domain Verification for Cruise Flight

Comparison between the responses predicted by the identified cruise model (dashed) and the responses obtained during flight
testing in cruise condition (solid).
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