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Abstract

We have developed an integrated framework of iter-
ative revision and knowledge acquisition for schedule
optimization, and implemented it in the CABINS sys-
tem. The ill-structuredness of both the solution space
and the desired objectives make scheduling problems
difficult to formelize and costly to solve. In CAB-
INS, situation-dependent user’s preferences that guide
schedule revision are captured in cases together with
conteztual information. During iterative repair, cases
are exploited for multiple purposes, such as (1) repair
action selection, (2) repair result evaluation and (3)
recovery from revision failures. The contributions of
the work lie in erperimentally demonstrating in a do-
main where neither the human expert nor the program
possess causal knowledge that search control knowledge
can be acquired through past repair cases to improve
the efficiency of rather intractable iterative repair pro-
cess. The ezperiments in this paper were performed in
the context of job-shop scheduling problems.

1 Introduction

Recently there has been increased interest in ap-
proaches of planning by incrementally modifying pre-
vious plans in order to accommodate parts of specifi-
cations in old plans or recover from execution failures.
[4, 5, 9, 10] Most current approaches have the follow-
ing common characteristics: (1) they are motivated
solely by considerations of computational efficiency,
(2) they are concerned only with preserving correct-
ness, and (3) they assume the existence of a strong
domain model that is utilized to guide modification
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and repair. These characteristics are limiting in inter-
esting real world tasks since the existence of a strong
domain model can almost never be assumed and qual-
ity of a plan (as opposed to only correctness) is often
a crucial consideration.

We present an approach, implemented in CABINS,
to demonstrate that reuse of previous relevant ex-
periences is effective to efficiently repair a plan for
quality improvement without strong domain model.
Through case-based reasoning (CBR), CABINS learns
three categories of concepts: (1) what combinations
of effects of application of a particular repair action
constitutes an acceptable or unacceptable repair out-
come, (2) what heuristic repair actions to choose in
a particular repair context, and (3) when to give up
further repair. Those concepts are exploited to en-
hance the incomplete domain model in CABINS and
improve efficiency of problem solving and quality of re-
sultant plans. This distinguishes CABINS from previ-
ous case-based planning systems. For example, CHEF
[4] assumes existence of a model-based simulator for
evaluating a derived plan and detecting failure and
well-studied domain rules for repair tactic selection.
Works by (5, 9] are based on the hypothesis that the
plan built by their planner is causally and teleologi-
cally correct, and use CBR to find the satisfying plan
efficiently. Moreover, in contrast to case-based knowl-
edge acquisition systems, such as PROTOS [1], where
the program requires causal explanations from an ex-
pert teacher to acquire domain knowledge, in our ap-
proach neither the user nor the program are assumed
to possess causal domain knowledge. The user cannot
give a solid explanation as to her/his selection of re-
pair action, because s/he cannot predict the effects of
the selected action on the plan caused by tight inter-
actions. In other words, the user doesn’t have control
knowledge to guide a plan repair process. The user’s



expertise lies in his/her ability to perform consistent
evaluation of the results of problem solving and impart
to the program cases of problem solving experiences
and histories of evaluation tradeoffs.

CABINS has been evaluated in the domain of itera-
tive optimization of job shop schedules. [7] In contrast
to approaches that utilize a single repair heuristic [6]
or use a statically predetermined model for selection
of repair actions [8] in scheduling, our approach uti-
lizes a repair model that is incrementally learned and
encoded in the case base. Learning allows dynamic
switching of repair heuristics depending on the repair
context. In [10] plausible explanation based learn-
ing has been successfully used to learn schedule re-
pair control rules for speed up. But, the only concept
their system can learn is selection between two repair
heuristics, which is inappropriately weak for general
optimization problems, while it might be sufficient for
constraint satisfaction problems where they evaluated
their system. CABINS can learn to select among any
number of repair heuristics and giving-up further re-
pair.

In this paper we experimentally demonstrate that
in a domain where neither the human expert nor the
program possess domain causal knowledge, such as job
shop scheduling, control knowledge can be acquired
through past cases to improve the efliciency of rather
costly iterative optimization process while preserving
the quality of results.

2 Schedule optimization in CABINS

Scheduling assigns a set of tasks over time to a set of
resources with finite capacity. One of the most difficult
scheduling problem classes is job shop scheduling. Job
shop scheduling is a well-known NP-complete prob-
lem [3]. In job shop scheduling, each task (heretofore
called a job or an order) consists of a set of activities
to be scheduled according to a partial activity order-
ing. The dominant constraints in job shop scheduling
are: temporal precedence constraints that specify the
relative sequencing of activities within a job and re-
source capacity constraints that restrict the number
of activities that can be assigned to a resource during
overlapping time intervals.

The activity precedence constraints along with a
job’s release date and due date restrict the set of ac-
ceptable start times for each activity. The capacity
constraints restrict the number of activities that can
use a resource at any particular point in time and cre-
ate conflicts among activities that are competing for
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the use of the same resource at overlapping time in-
tervals. The goal of a scheduling system is to produce
schedules that respect temporal relations and resource
capacity constraints, and optimize a set of objectives,
such as minimize tardiness, minimize work in process
inventory (WIP) (i.e., the time an order spends in a
factory waiting to be processed), maximize resource
utilization etc.
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Figure 1: Example of tight interactions
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Figure 2: Example of conflicting objectives

CABINS incrementally revises a complete but sub-
optimal schedule to improve its quality. Revision con-
sists in identifying and moving activities in the sched-
ule. Because of the tight constraint interactions, a
revision in one part of the schedule may cause con-
straint violations in other parts. It is generally im-
possible to predict in advance either the extent of the
constraint violations resulting from a repair action,
or the nature of the conflicts because of interacting
influences of constraint propagations. For example,
in figure 1 moving forward the last activoty of OR-
DERS3 creates downstream cascading constraint vio-
lations. Therefore, a repair action must be applied
and its repair outcome must be evaluated in terms
of the resulting effects on scheduling objectives. The
evaluation criteria are often context dependent and
reflect user judgment of tradeoffs. For example, WIP
and weighted tardiness are not always compatible with
each other. As shown in figure 2, there are situations
where a repair action can reduce weighted tardiness,



but WIP increases. Trade-offs are context-dependent
and therefore difficult to describe in a simple manner.
In CABINS, the user’s repair process on a sub-optimal
schedule is used to incrementally acquire context de-
pendent schedule evaluations and their justifications.
These are recorded in the case base and can be re-used
to evaluate future repair outcomes. Hence, user pref-
erences are reflected in the case base in two ways: as
preferences for selecting a repair tactic depending on
the features of the repair context, and as evaluation
preferences for the repair outcome that resulted from
selection and application of a specific repair tactic.

2.1 CABINS overview
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Figure 3: CABINS Architecture

Figure 3 depicts the overall architecture of CABINS
implementation. CABINS is composed of three mod-
ules: (1) an initial schedule builder, (2) an interactive
schedule repair (case acquisition) module and (3) an
automated schedule repair (case re-use) module.

To generate an initial schedule, CABINS can use
one of several scheduling methods including tradi-
tional dispatching rules and constraint-based sched-
uler. But any scheduler can’t always produce an opti-
mal solution to the job shop scheduling problem, be-
cause the complete knowledge of the scheduling do-
main model and user’s preferences are not available to
the scheduler. In order to compensate for the lack of
those types of knowledge, CABINS gathers the follow-
ing information in the form of cases through interac-
tion with a domain expert in its training phase.

e A suggestion of which repair heuristic to apply :
a user’s decision on what repair heuristic to be
applied to a given schedule for quality improve-
ment.

e An evaluation of a repair result : a user’s overall
evaluation of a modification result.
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o An explanation of an evaluation : when a user
evaluates the modification result as unacceptable,
s/he indicates the set of undesirable effects that
have been produced. The explanation given to
CABINS consists of the numerical rating of each
identified effect.

Our basic assumption on knowledge acquisition
through CBR is that, in spite of ill-structuredness
of the problem, the following three types of domain
knowledge are available and constitute useful case fea-
tures.

o Repair tactics : a set of local patching heuristics
that can be applied to a schedule.

o Descriptive features : attributes of a schedule
that describe a particular scheduling situation
and might be useful in estimating the effects of
applying repair heuristics to the schedule. These
features will be described in detail in section 2.2.

¢ Evaluation criteria : quantification of different as-
pects of the effects of applying repair heuristics to
the schedule. The degree of importance on these
criteria is in general user- and state-dependent.

In the following sections, we explain the implemen-
tation of CABINS as an application system of the case-
based reasoning methodology.

2.2 Case representation

In each repair iteration, CABINS focuses on one ac-
tivity at a time, the focel_activity, and tries to repair it.
A case in CABINS describes the application of a par-
ticular modification to a focal_activity. Figure 4 shows
the information content of a case. The global features
reflect an abstract characterization of potential repair
flexibility for the whole schedule. High 'Resource Uti-
lization Average’, for example, often indicates a tight
schedule without much repair flexibility.

Associated with the focal activity are local features
that we have identified and which potentially are pre-
dictive of the effectiveness of applying a particular
repair tactic. For example, 'Predictive Shift Gain’
predicts how much overall gain will be achieved by
moving the current focal_activity earlier in its time
horizon. In particular, it predicts the likely reduc-
tion of the focal_activity’s waiting time when moved
to the left within the repair time horizon. Because
of the ill-structuredness of job shop scheduling, local
and global features are heuristic approximations that
reflect problem space characteristics.
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Figure 4: CABINS Case Representation

The repair history records the sequence of applica-
tions of successive repair actions, the repair outcome
and the effects. Repair effect values describe the im-
pact of the application of a repair action on scheduling
objectives (e.g., weighted tardiness, WIP). A repair
outcome is the evaluation assigned to the set of ef-
fects of a repair action and takes values in the set ['ac-
ceptable’, ’infeasible’, 'unacceptable’]. Typically the
outcome reflects tradeoffs among different objectives.
The outcome of application of a repair tactic is ’infea-
sible’, if the application of repair heuristic results in
an infeasible schedule, i.e. a schedule that violates do-
main constraints. If the application of a repair tactic
results in a feasible schedule, the result is judged as
either acceptable or unacceptable with respect to the
repair objectives by a domain expert. An outcome is
’acceptable’ if the user accepts the tradeoffs involved
in the set of effects for the current application of a
repair action. Otherwise, it is ’unacceptable’. The
effect salience is assigned when the outcome is 'unac-
ceptable’; and it indicates the significance of the effect
to the repair outcome. This value is decided by a do-
main expert subjectively and interactively. The user’s
judgment as to balancing favorable and unfavorable
effects related to a particular objective constitute the
explanations of the repair outcome.

2.3 Case acquisition

To gather enough cases, sample scheduling prob-
lems are solved by a scheduler. CABINS identifies jobs
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that must be repaired in the initial sub-optimal sched-
ule. Those jobs are sorted according to the significance
of defect, and repaired manually by a user according
to this sorting. For example, if the user’s optimization
criterion is to minimize order tardiness, the most tardy
order is repaired first. The user selects a repair tactic
to be applied. Tactic application consists of two parts:
(a) identify the activities, resources and time intervals
that will be involved in the repair, and (b) execute
the repair by applying constraint-based scheduling to
reschedule the activities identified in (a).

After tactic selection and application, the repair ef-
fects are calculated and shown to the user who is asked
to evaluate the outcome of the repair. If the user
evaluates the repair outcome as ‘acceptable’, CAB-
INS proceeds to repair another focal_activity and the
process is repeated. If the user evaluates the repair
outcome as 'unacceptable’, s/he is asked to supply an
explanation in terms of rating the salience/importance
of each of the effects. The repair is undone and the
user is asked to select another repair tactic for the
same focal activity. The process continues until an
acceptable outcome for the current focal activity is
reached, or the repair is given up. Repair is given
up when there are no more tactics to be applied to
the current focal_activity. When repair of the current
focal_activity is given up, CABINS carries on repair of
another activity. The sequence of applications of suc-
cessive repair actions, the effects, the repair outcome,
and the user’s explanation for failed application of a
repair tactic are recorded in the repair history of the
case. In this way, a number of cases are accumulated
in the case base.

2.4 Case re-use

Once enough cases have been gathered, CABINS
repairs sub-optimal schedules without user interac-
tion. CABINS repairs the schedules by (1) recog-
nizing schedule sub-optimalities, (2) focusing on a fo-
cal_activity to be repaired in each repair cycle, (3) in-
voking CBR with global and local features as indices
to decide the most appropriate repair tactic to be used
for each focal_activity, (4) invoking CBR using the re-
pair effect features (type, value and salience) as indices
to evaluate the repair result, and (5) when the repair
result seems unacceptable, deciding whether to give
up or which repair tactic to use next. Experiments of
using different indexing schema in case of failure are
described in the following section.

In CABINS concepts are defined extensionally by
a collection of cases. The similarity between i-th case



and the current problem is calculated as follows :

F PF;
ezp(~ Z(SL* —55, ")
where SL: is the salience of j-th feature of i-th case

3
in the case-base, and its value has been heuristically

defined by the user. CF;' is the value of j-th feature of
i-th case, PF; is the value of j-th feature in the cur-
rent problem, E_D); is the standard deviation of j-th
feature value of all cases in the case-base. Feature val-
ues are normalized by division by a standard deviation
of the feature value so that features of equal salience
have equal weight in the similarity function.

3 Learning control knowledge

In job shop schedule repair, we don’t know how
many different features are necessary to precisely pre-
dict the most successful tactic to be applied. But,
since scheduling constraints are tightly interconnected
the necessary number of features for fully representing
a problem must be very large. Therefore, the number
of features in the current case representation could be
insufficient. But we should keep the number of fea-
tures moderate, because if a case has a large number
of features, the number of cases required for training
increases drastically (dimensionality problem). There-
fore, with moderate number of features and training
cases, we can’t avoid making some wrong predictions
by using inductive learning. To compensate for the
lack of a large number of case descriptive features, we
can use failure experiences to derive useful information
(i.e. retrieve more similar cases from the case base) to
improve predictive accuracy.

Our hypothesis is that CBR enables CABINS to (1)
learn a control model of repair action selection from
cases that are created from superficial rules and (2)
improve its competence both in repair quality and ef-
ficiency by utilizing failure information recorded in the
cases. To analyze the correctness of our hypothesis, we
divided cases into three categories: immediate success
cases where the first application of a repair tactic was
evaluated as success, eventual success cases where a
focal_activity was repaired after several failed tactic
applications, and failure cases where a focal_activity
couldn’t be repaired. We experimentally implemented
the following three repair strategies: One-shot repair,
Ezxhaustive repair and Limited ezhaustive repair.

In One-shot repair, CABINS selects a repair tactic
by retrieving the most similar immediate success cases,
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applies it to a focal_activity and proceeds to repair the
next focal_activity regardless of repair outcome.

In Exhaustive repair, CABINS selects a repair tac-
tic and applies it to repair a focal_activity. If the re-
pair outcome is deemed either unacceptable or infea-
sible, another tactic is selected from eventual success
cases to repair the same focal_activity, using as indices
global and local case features, the failed tactic, and the
indication of the failed outcome. This CBR invocation
retrieves similar past failures of the tactic that were
eventually successfully repaired and the tactic that
was eventually successful in fixing the past failure. For
example, when a repair result is judged as unaccept-
able by a user after application of the left_shift tactic,
another case that has the most similar global and local
features is retrieved from eventual success cases where
left shift has failed. The tactic that finally succeeded
in repairing the selected case is retrieved and used to
repair the current activity. The intuition here is that a
similar outcome for the same tactic implies similarity
of causal structure between the past and current case.
Therefore, the eventually successful tactic of a simi-
lar failure can potentially be successful in the current
problem.

In Limited exhaustive repair, CABINS gives up fur-
ther repair when it determines that it would be a
waste of time. To decide whether to give up further
repair, failure cases are utilized in conjunction with
immediate success cases and eventual success cases to
determine case similarity. If the most similar case
is a failure, CABINS gives up repair of the current
focal_activity, and switches its attention to another
focal_activity. Since, in difficult problems, such as
schedule repair, failures usually outnumber successes,
if both case types are weighted equally, overly pes-
simistic results could be produced (i.e., CBR suggests
giving up too often.) To avoid this, we bias (nega-
tively) the use of failure cases by placing a threshold !
on the similarity value. Failure experiences whose sim-
ilarity to the current problem is below this threshold
are ignored in similarity calculations. Since the sim-
ilarity metric selects the tactic which maximizes the
sum of the most similar k (in current implementation
k = 5) cases, this biases tactic selection in favor of suc-
cess cases which are moderately similar to the current
problem.

3.1 Experiments

To verify our hypothesis and compare the above
three repair strategies, we performed 6 sets of con-

1Currently its value is heuristically fixed as 0.75.



trolled experiments where job shop schedule parame-
ters, such as number of bottlenecks, range of due date,
and activity durations were varied to cover a broad
range of job shop scheduling problems. To ensure that
we had not unintentionally hardwired knowledge of
the problem into the solution strategies, we generated
10 job shop scheduling problems at random for each
problem set.Each problem has 5 resources and 10 jobs
of 5 activities each.

In the experiments reported here, we used minimiz-
ing weighted tardiness 2, as an objective function to
evaluate the performance of CABINS. We built a rule-
based reasoner (RBR) that goes through a trial-and-
error repair process to optimize a schedule in terms of
weighted tardiness based on the tactic selection rules
acquired from a human scheduler. Since the RBR was
constructed not to select the same tactic again after
tactic failure, it could go through all the tactics 3 be-
fore giving up repairing an activity. For each repair,
the repair effects are calculated and the repair out-
come is correctly determined by comparing the change
in the objective function. Since RBR knows the exact
objective function for evaluation, it can work as an
emulator of a human scheduler, who cannot repair a
schedule in the most efficient way but can make consis-
tent evaluations of repair results. Therefore, we used
RBR not only for generating the case base for CAB-
INS but also for making a comparison baseline for the
CABINS experiment results to see whether CABINS
can learn effective control rules from the cases made
by an inefficient teacher. So far, CABINS has been
trained with 1,000 cases by RBR.

To make an accurate determination of CABINS’
capabilities, we applied a two-fold cross-validation
method. Each problem set in each class was divided in
half. One half was repaired by RBR to gather cases.
These cases were used to iteratively repair the other
half of the problem set. We repeated the above pro-
cess interchanging the sample set and the test set. OQur
results are the average of the two sets of results using
case-based repair.

3.2 Evaluation of three repair strategies

The graphs in figure 5 show comparative re-
sults with respect to schedule quality improvement
(weighted tardiness) and repair efficiency (in CPU
secs) among limited exhaustive repair, exhaustive re-
pair, one-shot repair and rule-based repair, which is an

20f course, CABINS does not know this metric but has to
guess it from the contents of the case base.

3The tactics currently available in CABINS are: left_shift,
left_shift_into_alt, swap, swap_into_alt.
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emulation of repair by a human scheduler. The results
show that one-shot repair is the worst in quality (even
compared to rule-based repair) but best in efficiency.
Exhaustive repair outperformed one-shot repair and
rule-based repair in quality. But, the efficiency of ex-
haustive repair was worse than that of one-shot repair
or rule-based repair. We attribute the increase in CPU
time for exhaustive repair to two reasons: (1) greed-
iness - exhaustive repair applies the tactic from the
most similar success cases no matter how small their
similarity is, and (2) stubbornness - exhaustive repair
continues to repair the current focal activity without
giving up when the problem seems difficult.

The quality of repairs by limited exhaustive repair
is only slightly worse than that by exhaustive repair,
but is still comparable with that of rule-based repair.
The efficiency of limited exhaustive repair is much
higher than either rule-based repair or exhaustive re-
pair. Although the efficiency of limited exhaustive re-
pair is comparable with that of one-shot repair, the
quality of repairs by limited exhaustive repair is much
better than that of one-shot repair. One potential rea-
son for these results is that, as described in section 2,
the effects of schedule repair are pretty unpredictable
and there is a good chance that another application
of repair tactic may make the problem, which once
seemed difficult, easier by changing the existing sched-
ule fundamentally so that we can go back to the prob-
lem afterwards and repair it without wasting much
effort. With respect to repair quality, we can observe
the following: (1) immediate success cases alone do
not have enough information to induce a complicated
causal model of schedule repair process, and (2) pre-
diction accuracy of repair tactic selection can be im-
proved by using information about failed application
of a repair tactic as additional index feature.

4 Conclusions

We described and experimentally validated a frame-
work for acquisition and reuse of past problem solving
experiences for control of plan revision in domains,
such as job shop scheduling, that do not have a strong
domain model. We examined various ways of exploit-
ing past repair experiences in such a domain. Our
experimental results show that our methodology can
improve its own performance by: (1) using a failure ex-
perience as a contextual index of the problem, and (2)
trading off the use of success and failure cases depend-
ing on the context in which a repair tactic is applied.
This use of CBR in the space of failures is a domain
independent method of acquiring control knowledge
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Figure 5: Effect of repair strategies in quality and efficiency

that allows the problem solver to improve its efficiency
while preserving solution quality in domains without
strong domain knowledge. We believe the CABINS
approach can be effectively applied to a wide range of
problems, such as layout design and personal calendar
management[2).
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