
Cached Su�cient Statistics for Automated Mining

and Discovery from Massive Data Sources

The Auton Lab (http://www.cs.cmu.edu/�AUTON)
Andrew Moore, awm@cs.cmu.edu, 412-268-7599 (Principal Investigator)

Je� Schneider, schneide@cs.cmu.edu, 412-268-2339 (Principal Investigator)
Brigham Anderson, brigham@cs.cmu.edu

Scott Davies, scottd@cs.cmu.edu
Paul Komarek, komarek@cs.cmu.edu
Mary Soon Lee, mslee@cs.cmu.edu
Marina Meila, mmp@ai.mit.edu
Remi Munos, munos@cs.cmu.edu
Kary Myers, kary@cs.cmu.edu
Dan Pelleg, dpelleg@cs.cmu.edu

Carnegie Mellon University
Robotics Institute and School of Computer Science

Pittsburgh, PA 15213

July 6, 1999

There many massive databases in industry and science. There are also many ways that decision
makers, scientists, and the public need to interact with these data sources. Wide ranging statistics
and machine learning algorithms similarly need to query databases, sometimes millions of times
for a single inference. With millions or billions of records (e.g. biotechnology databases, inven-
tory management systems, astrophysics sky surveys, corporate sales information, science lab data
repositories) this can be intractable using current algorithms.

The Auton lab (at Carnegie Mellon University) and Schenley Park Research Inc. (a start-
up company), both jointly run by Andrew Moore and Je� Schneider, are concerned with the
fundamental computer science of making very advanced data analysis techniques computationally
feasible for massive datasets.

The computational challenge

How can huge data sources (Gigabytes up to Terabytes) be analyzed automatically? There is no
o�-the-shelf technology for this. There are devastating computational and statistical di�culties;
manual analysis of such data sources is now passing from being simply tedious into a new, funda-
mentally impossible realm where the data sources are just too large to assimilate by humans. This
situation is ironic given the large investment the US has put into gathering scienti�c data. The
only alternative is automated discovery.

It is our thesis that the emerging technology of cached su�cient statistics will be critical to
developing automated discovery on massive data. A cached su�cient statistics representation is a
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data structure that summarizes statistical information in a database. For example, human users,
or statistical programs, often need to query some quantity (such as a mean or variance) about some
subset of the attributes (such as size, position and shape) over some subset of the records. When
this happens, we want the cached su�cient statistic representation to intercept the request and,
instead of answering it slowly by database accesses over billions of records, answer it immediately.

The interesting technical challenge is: given that there are uncountably many potential statisti-
cal queries, how could we hope to precompute them all in advance? And wouldn't it require hopless
amounts of memory to pre-store the answer to every possible question just on the o�-chance that
each question is asked? Happily there are some algebraic tricks such that for an increasingly large
class of traditional data mining and statistical operations, it is possible to do this. By means of
AD-trees (All-dimensions trees) (Moore & Lee, 1998; Anderson & Moore, 1998) we can now do
constant-time counting queries for up to hundreds of dimensions. And by means of MRKD-trees
(multiresolution k-dimensional trees) (Deng & Moore, 1995; Moore, Schneider, & Deng, 1997) (an
extension of KD-trees (Friedman, Bentley, & Finkel, 1977)) we can perform clustering, and a very
wide class of non-parametric statistical techniques on enormous data sources several thousand times
faster than previous algorithms (Moore, 1999).

We are currently researching extensions to the theory and data structures within projects within
CMU. And within SPR we are extending the capabilities of cached su�cient statistics in new ways
tailored to commercial application.

The consequence of this ability to do statistics at several orders of magnitude faster are inter-
esting. We can now a�ord to search amongst millions of potential correlations (or, in statistical
terms, among millions of potential models) in the time that would have previously only permitted
thousands. Thus, (whilst being careful to avoid over�tting|statistically insigni�cant correlations)
we can be much more aggresive about �nding surprising patterns in all kinds of corners of the
database.

1 Cached Su�cient Statistics

Problem. Consider a huge data matrix (e.g. Figure 1) in which there are millions of rows, each
corresponding to one galaxy. There are one or two hundred columns, each specifying a galaxy
property. What questions, or tasks, will astrophysicists want to ask of the data?

� A range of counting queries such as \how many elliptical galaxies, with a redshift above 0.3,
are there?", \what is the mean and variance of ellipticity among radio galaxies within clusters
of galaxies compared to outside clusters of galaxies?" or \how does the distribution of galaxy
colors observed on May 1st 1999 compare to those seen on June 1st 1999?"

� Simple visualization queries such as \give me a smoothed map of all X{ray detected galaxies".

� Sophisticated statistical queries which require the clustering, classi�cation, regression and
newer probabilistic inference techniques.

Many such questions could be answered easily if there were few records. But with O(109) records,
even simple individual counts may take hours. Much worse, the visualization and statistics each
require at least thousands of these individually time-consuming counts, and so become unthinkable,
computationally. We propose a di�erent approach to counting, visualization and statistics based on
Cached Su�cient Statistics. The job of a cached su�cient statistic is to pre-compute certain cached
information that will allow questions to be answered without a need for scanning the database. The
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science and technology of cached su�cient statistics is in its infancy and must be extended in many
ways for practical use, especially for problems as big as those connected with astrophysics. We must
extend the range of possible questions they can service. We must permit them to scale so that the
cached su�cient statistics themselves don't require intractable amounts of memory, or time to build,
or time to access. And we must make them compatible with the kinds of real statistics and analysis
that statisticians and scientists currently can do on small datasets but cannot do on our datasets.
It is important to note that this same architecture and software will be applicable for many other
domains such as bioinformatics, marketing, manufacturing process monitoring (Atkeson, Moore, &
Schaal, 1997).
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Figure 1: A massive datasource, containing hundreds of attributes: some numeric, some categorical,

and some exotic (bitmaps and spectra). There are many millions of rows, and there are missing values in

some �elds of some records.

Current State of the Art. Simple cached su�cient statistics have been in use for decades. The
simplest is binning (also known as histogramming) in which statistics about single or pairwise
attributes are precomputed (Ioannidis & Poosala, 1995). Although often useful, this doesn't help
if queries involve three-or-more attributes or are speci�c to an arbitrarily-chosen subset of the
records (e.g. \give me the mean intensity of galaxies that are Spiral, in this part of the sky, and
have below average X-ray emissions"). Another simple cached su�cient statistic is to merely use
a small sample of the data instead of the full data, and hope that answers to questions about the
sample generalize to the full dataset (e.g., (Haas, Naughton, Seshadri, & Stokes, 1995; Ganguly,
Gibbons, Matias, & Silberschatz, 1996)). This is an immensely common approach, brought about
by necessity, but it loses the ability to make �ne distinctions, or notice rare events or anomalies.
More advanced technology that could be called Cached Su�cient Statistics include

� Frequent sets (Agrawal, Mannila, Srikant, Toivonen, & Verkamo, 1996; Mannila & Toivonen,
1996). These are often applied to supermarket data analysis, and typically require that all
attributes are sparse in order to remain tractable.

� DataCubes (Harinarayan, Rajaraman, & Ullman, 1996) maintain actual and marginal dis-
tributions in n attributes. The Data Firehose (John & Lent, 1997) is a similar idea. For
example, consider a table with attributes (x-bin, y-bin, galaxy-type), after x and y have been
binned. Then, an un-optimized implementation of the Datacube would have the counts of
galaxies, for all the possible combinations of the attribute values, including 'don't cares'.
This naive representation explodes exponentially with the number of attributes and although
ingeneous ordering of the attributes have allowed datacube technology to extend to about
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seven joint attributes (Gray, Bosworth, Layman, & Priahesh, 1996), current methods are not
applicable for the hundreds of attributes in our galaxy datasets.

� Indexing structures in database management systems such as kd-trees (Bentley, 1980; Moore,
1990), R-trees (Guttman, 1984), Ball-trees (Omohundro, 1987, 1991) or hash-tables, can be
used to select a subset of records from the full dataset, which can then be processed. This
approach is promising for fast extraction of relevant data and we plan to consider it in our
proposed work. Our goal is to extend it, so that it can handle the statistical queries we want
to ask in our astrophysics databases.

� AD-trees: This new data structure, introduced in (Moore & Lee, 1998), uses the algebra of
su�cient statistics and contingency tables to store enough information so that any counting
query can be answered in constant time, independent of the number of records in the dataset.
An important proviso is that this data structure assumes that all attributes are categorical,
so any numerical values in the dataset must be quantized into a discrete set of values. This
task of being able to answer any question in constant time would be easy if time to build and
memory to store the cached su�cient statistic were unlimited; the cached su�cient statistic
would be simply a precomputed list of answers to all possible questions. That simple solution
is completely intractable in practice because the number of possible questions is, in the best
case, exponential in the number of attributes. The main innovations in ADtrees allow the
memory and build time to be massively reduced (in one case from 1038 bytes down to 106

bytes) by storing only very rare surprises, and deducing any other count by a combination of
additions and subtractions of surprise values. We have proved that we can still answer any
counting query in constant time and that the worst-case and average-case memory and time
bounds for an ADtree are exponentially better than those for the naive approach.

ADtrees empirically give a 50-fold to 5000-fold computational speedup for machine learning
methods such as Bayes net structure �nders (Moore & Lee, 1998), rule learners (Anderson &
Moore, 1998) and feature selectors operating on large datasets of up to 100 attributes.

� Multiresolution kd-trees Kd-trees (Bentley, 1980) and R-trees (Guttman, 1984) have long
been used as methods for e�ciently indexing large databases involving spatially distributed
records. They allow the user, or the statistics engine, to e�ciently �nd all the records in some
region. This can greatly accelerate the answering of certain statistical queries provided that
the set of records found by the query is small. In our multiresolution work (Deng & Moore,
1995; Moore et al., 1997), we have extended these data structures so that they can also ef-
�ciently answer questions that match large fractions (i.e. possibly millions) of records, and
that can answer questions about locally distance weighted combinations of records. We have
shown that the costs are asymptotically logarithmic in the dataset size, even if all queries
involve a substantial fraction (e.g. 30%) of the data. These include kernel density queries,
locally weighted regression, cased-based queries, many forms of mixture-model queries. Mul-
tiresolution kd-trees are e�cient for anywhere between one to twenty dimensional spaces,
with higher dimensionalities possible if the attributes are highly interrelated.

The augmentation over previous methods includes, at each node, the su�cient statistics to
perform a Bayesian regression analysis on all the points inside the node. Without needing
to rebuild the tree, it can make fast predictions with arbitrary local weighting functions,
arbitrary kernel widths and arbitrary queries. This gives a new, faster, algorithm for exact
answers to questions. But, often more more usefully, we can also introduce an approximation
that achieves up to a two-orders-of-magnitude extra speedup with negligible accuracy losses.
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Figure 2: An illustration of the work done by the kd-tree-based clus-

terer on 100,000 datapoints in two dimensions during one iteration

of the EM algorithm. Instead of performing 100,000 center updates

on the individual points, it only \visits" the rectangles shown and

updates centers according to cached statistics within each rectangle.

In this small problem we achieve a 150-fold computational speedup,

but since costs are logarithmic in the dataset size, we anticipate much

larger speedups on the galaxy data.

(i) Fast, Tractable Clustering. The usual method for �nding the parameter estimates {
called the EM algorithm { is too slow to be useful for our large data sets. We are developing a
new method that uses a new version of MRKD-trees that is many times faster. This preliminary
work (started at the same time this proposal was started) has resulting in an algorithm which,
for Gaussian mixture models, is many times faster than conventional implementations, yet does
exactly the same statistics, not an ad-hoc approximation. Figure 2 shows a simpli�ed example.
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