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Abstract. The parameters estimated by Structure from Motion (SFM)
contain inherent indeterminacies which we call gauge freedoms. Under
a perspective camera, shape and motion parameters are only recovered
up to an unknown similarity transformation. In this paper we investi-
gate how covariance-based uncertainty can be represented under these
gauge freedoms. Past work on uncertainty modeling has implicitly im-
posed gauge constraints on the solution before considering covariance
estimation. Here we examine the e�ect of selecting a particular gauge on
the uncertainty of parameters. We show potentially dramatic e�ects of
gauge choice on parameter uncertainties. However the inherent geomet-
ric uncertainty remains the same irrespective of gauge choice. We derive
a Geometric Equivalence Relationship with which covariances under dif-
ferent parametrizations and gauges can be compared, based on their true
geometric uncertainty. We show that the uncertainty of gauge invariants
exactly captures the geometric uncertainty of the solution, and hence
provides useful measures for evaluating the uncertainty of the solution.
Finally we propose a fast method for covariance estimation and show its
correctness using the Geometric Equivalence Relationship.

1 Introduction

It is well known that, for accurate 3D reconstruction from image sequences,
statistically optimal results are obtained by bundle adjustment [2,3, 5, 6, 13, 16].
This is just Maximum Likelihood estimation for independent, isotropic Gaus-
sian noise, and is also used by photogrammetrists. Current research generally
focuses on two areas: (1) simplicity of solution, which includes �nding a closed
form approximate solutions such as the Factorization method [4, 8{12], and (2)
e�ciency, which includes �nding fast or robust numerical schemes [1,2].

An important third area to address is the quantitative assessment of the re-
liability of the solution. While some work has incorporated uncertainty analyzes
of the results [9, 14{16], none has investigated the e�ect of parameter indetermi-
nacies on the uncertainty modeling. These indeterminacies are inherent to SFM



and have a signi�cant e�ect on parameter uncertainties. Our goal is to create
a framework for describing the uncertainties and indeterminacies of parameters
used in Structure from Motion (SFM). We can then determine how both these
uncertainties and indeterminacies a�ect the real geometric measurements recov-
ered by SFM.

The standard measure for uncertainty is the covariance matrix. However
in SFM there is a uniqueness problem for the solution and its variance due to
inherent indeterminacies: the estimated object feature positions and motions are
only determined up to a overall translation, rotation and scaling. Constraining
these global quantities we call choosing a gauge. Typically a covariance matrix
describes the second order moments of a perturbation around a unique solution.
In past work [9, 15, 16] indeterminacies are removed by choosing an arbitrary
gauge, and then the optimization is performed under these gauge constraints
and the recovered shape and motion parameters along with their variances are
expressed in this gauge.

In this paper we provide an analysis of the e�ects of indeterminacies and
gauges on covariance-based uncertainty models. While the choice of gauge can
dramatically a�ect the magnitude and values in a covariance matrix, we show
that these e�ects are super�cial and the underlying geometric uncertainty is
una�ected. To show this we derive a Geometric Equivalence Relationship be-
tween the covariance matrices of the parameters that depends only on the es-
sential geometric component in the covariances. Hence we are able to propose
a covariance-based description of parameter uncertainties that does not require
gauge constraints. Furthermore we show how this parametric uncertainty model
can be then used to obtain an uncertainty model for actual geometric properties
of the shape and motion which are gauge-invariant. Optimization is achieved
in an e�cient free-gauge manner and we propose a fast method for obtaining
covariance estimates when there are indeterminacies.

2 Geometric Modeling

2.1 Camera Equations

Here we describe an object and camera system in a camera{centered coordinate
system. Analogous equations could be derived in other coordinate systems. Sup-
pose we track N rigidly moving feature points p�, � = 1; : : : ; N , in M images.
Let p�� be the 2{element image coordinates of p� in the �th image. We iden-
tify the camera coordinate system with the XY Z world coordinate system, and
choose an object coordinate system in the object. Let t� be the origin of the
object coordinate system in the �'th image,R� be a 3�3 rotation matrix which
speci�es its orientation and s� be the coordinates of the feature point, p�, in the
object coordinate system. Thus the position of feature point p� with respect to
the camera coordinate system in the �th image is R�s� + t�.

Assume we have a projection operator � : R3 ! R2 which projects a point
in 3D to the 2D image plane. We can then express the image coordinates, of



feature p� as:

p�� = �[K�(R�s� + t�)] (1)

where K� is a 3� 3 internal camera parameter matrix [2] containing quantities
such as focal length for each image. While these parameters can be estimated
along with shape and motion parameters, for simplicity we ignore them in the
rest of the paper and assume K� is just the identity matrix for orthography
and diag([f; f; 1]) for perspective projection with focal length f . Various camera
models can be de�ned by specifying the action of this projection operator on a
vector (X;Y; Z)>. For example we de�ne the projection operators for orthogra-
phy and perspective projection respectively in the following way:
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Equation (1) can be applied to all features in all images, and then combined in
the form:

p = �(�) (3)

where p = (p>
11
;p>

12
;p>

13
; : : : ;p>MN)

> is a vector containing all the image feature
coordinates in all images, and � is a vector containing the shape and motion
parameters, R�, s�, t�, and possibly unknown internal camera parameters, for
all object features and images, and � is the appropriate combination of the
projection matrices. More details can be found in [7].

2.2 Parameter Constraints

Not all of the parameters in � are independent and some need to be constrained.
In particular the columns of each rotation matrix,R�, must remain unit orthog-
onal vectors. Small perturbations of rotations are parametrized by a 3-vector:
�
� which to �rst order maintain the rotation properties [3]. Let T be the man-
ifold of valid vectors � such that all solutions for � lie in T . T will be a manifold
of dimension n, where n is the number of parameters needed to locally specify
the shape and motion, 3 for each rotation, 3 for each translation, and 3 for each
3D feature point, plus any internal camera parameters that must be estimated.
So in general for just motion and shape, the number of unknown parameters is:
n = 3N + 6M .

2.3 Indeterminacies

The camera equations (1) and (3) contain a number of indeterminacies. There
are two reasons for these indeterminacies: �rst the object coordinate system can
be selected arbitrarily, and second the projection model maps many 3D points
to a single 2D point. These are speci�ed as follows:
Coordinate System Indeterminacies



If we rotate and then translate the coordinate system byR and t respectively,
we obtain the following transformed shape and motion parameters:

s0� = R>(s� � t); R0
� = R�R; t0� = R�t+ t�: (4)

We note that R0
�s
0
� + t0� = R�s� + t�, and hence irrespective of the projection

model, equations (1) and (3) must be ambiguous to changes in coordinates.
Projection Indeterminacies

Many di�erent geometric solutions project onto the same points in the image.
In orthography the depth or Z component does not a�ect the image, and hence
the projection is invariant to the transformation:

t0� = t� + d�k (5)

for any value d�. Orthography has a discrete re
ection ambiguity, but since
it is not di�erential we do not consider it. Perspective projection has a scale
ambiguity such that if we transform the shape and translation by a scale s:

s0� = ss�; and t0� = st�; (6)

we �nd that �p[K�(R�s
0
� + t0�)] = �p[K�(R�s� + t�)].

2.4 Solution Manifold

Since the camera equations contain these indeterminacies, then given the mea-
surement data, p, there is not a unique shape and motion parameter set, �, that
maps to this. Rather equation (3) is satis�ed by a manifold,M, of valid solutions
within T which are all mapped to the same p. This manifold has dimension, r,
given by the number of in�nitesimal degrees of freedom at a given point. From
the ambiguity equations (4-6) we obtain r = 7 for perspective projection and
r =M + 6 under orthography. Figure 1 illustrates a solution � 2M.

θ

MT C

θc

Fig. 1. An illustration of a curve representing a manifold M of solution vectors �, all
lying in the parameter space T . Choosing a gauge C, which intersects the manifold at
one point, de�nes a unique solution �C.



2.5 Gauge Constraints

In order to remove the ambiguity of the solution we can de�ne a gauge or man-
ifold of points: C. Let C contain all those points in T that satisfy a set of r
constraint equations:

ci(�) = 0 for 1 � i � r: (7)

The gauge C will thus have dimension n � r. We require that C intersect M
transversally and at most at one point per connected component of M. The
intersection of C andM thus provides unique solution within a connected com-
ponent of M, as illustrated in Figure 1. However there may be ambiguities
between components of M, such as the re
ection ambiguity in orthography.

For example, we could de�ne an arbitrary gauge with the following con-
straints:

NX
�=1

s� = 0; R1 = I;

NX
�=1

s>� s� = 1: (8)

This �xes the origin of the object coordinate system in its centroid, aligns the
object coordinate system with the �rst image, and �xes the scale. In orthography
the scale constraint is omitted, but we add the constraint set: tz� = 0 on the Z
component of translation.

We note that this, or any other choice of gauge is arbitrary, and does not a�ect
the geometry. It does a�ect our parameter estimates and their uncertainties, but
in ways that do not a�ect the geometric meaning of the results.

3 Uncertainty in Data Fitting

When there is noise in the measured data, there will be a resulting uncertainty
in the recovered parameters, which we would like to represent by a covariance
matrix. However, when indeterminacies exist, the solution will be a manifold
rather than a point, and standard perturbation analysis cannot be performed.
The usual approach, in dealing with this, is to choose a gauge and constrain
the solution to lie in this gauge. While this approach is a valid, it introduces
additional constraints into the estimation process, and the resulting uncertainty
values are strongly dependent on the choice of gauge. In this section we ask the
question: How can we estimate the geometric uncertainty without depending on
an arbitrary selection of a gauge? To answer this we introduce gauge invariants
whose uncertainty does not depend on gauge choice. We also derive a Geometric
Equivalence Relationship that considers only this \true" geometric uncertainty.
Along the way we derive the normal form for the covariance which gives us a
convenient way to calculate uncertainty without having to explicitly specify a
gauge.



3.1 Perturbation Analysis

First we derive an uncertainty measure in an arbitrary gauge. We assume that
the noise is small, and thus that the �rst order terms dominate. When the noise
is Gaussian the �rst order terms exactly describe the noise. The measured data,
p is a result of the true feature positions, �p, corrupted by noise, �p:

p = �p+�p: (9)

The noise �p is a random variable of the most general type, not necessarily
independent for di�erent points, but it is assumed to have zero mean and known
variance1:

Vp[p] = Ef�p�p>g: (10)

We note that in the special case when feature points are independent, V [p] will
be block diagonal with the 2�2 block diagonal elements giving the independent
feature covariances.

Given this uncertainty in the measured data, let �̂ be our estimator of the
shape and motion parameters. There is no unique true solution unless we restrict
our estimation to a particular gauge. If we choose gauge C our estimator can be
written as: �̂C = ��C + ��C, for true solution ��C and perturbation ��C . The
perturbation ��C and its variance, V [��C], both lie in the tangent plane to the
gauge manifold, T��C [C].

We expand equation (3) around ��C and get to �rst order:

rT
�
�(��C)��C = �p (11)

where rT
�
is the gradient with respect to � in the manifold T . We then split the

perturbations,��C into two components, those in T�C [M] and those in T�C [M]?

as shown in Figure 2:
��C = ��C

kM +��C
?M: (12)

The gradient rT
�
�(��) is orthogonal to the tangent plane of M and has rank

n� r. We can thus solve for the orthogonal perturbations:

��C
?M = (rT��(��C))

�
n�r�p; (13)

where \�" denotes the Moore-Penrose generalized inverse2 constrained to have
rank n � r. We call the covariance of this orthogonal component the normal

covariance:

V?M[�] = (rT
�
�(��))�n�rVp(r

T
�
�(��))�>n�r: (14)

The normal covariance is expressed at a particular solution, �, and depends on
our choice of parametrization and implicitly assumes a metric over parameter

1 We can extend this to the case when variance is known only up to a scale factor
2 The Moore-Penrose generalized inverse is de�ned such that if A = U�V > by SVD,
then A

�
N

= V �
�
N
U>, where ��

N
has the �rst N singular values inverted on the

diagonal, and the rest zeroed.



space. But it does not require explicit gauge constraints, (rather implicitly as-
sumes a gauge normal to the manifold), and as we shall see, it incorporates all
of the essential geometric uncertainty in the solution.

When the indeterminacies are removed by adding constraints the normal
covariance must be obliquely projected onto the appropriate constraint surface.
The uncertainty in the gauge will be in its tangent plane: ��C 2 T [C]. We
already know the perturbation, ��C

?M, orthogonal to T [M], and so it only
remains to derive the component parallel to T [M] as illustrated in Figure 2.

M

C

T[M]

T[C]

∆θc

θc

∆θ  M

∆θ  M

Fig. 2. An illustration of the oblique projection of perturbations along the solu-
tion tangent space, T [M], and onto the gauge manifold tangent space T [C]: ��C =
��C

?M +��C
kM. This projection transforms the normal covariance matrix into the

local gauge covariance.

Let U be a matrix with r columns spanning T [M] at �C , and let V be a
matrix with r columns spanning the space orthogonal to T [C] at �C . Then we
can express equation (12) as:

��C = ��C
?M + Ux: (15)

for some unknown coe�cients x. The fact that this perturbation is in the con-
straint tangent plane, implies that V >��C = 0. Applying this to (15) and elim-
inating x we obtain:

��C = QC��C
?M (16)

where QC = I � U (V >U )�1V > is our oblique projection operator along T [M].
The covariance of � in this gauge is then given by:

VC [�C ] = QCV?M[�C]Q
C>: (17)

3.2 Inherent Geometric Uncertainty

The camera equations provide geometric constraints on the measurements. Pa-
rameters containing indeterminacies correspond to entities not fully constrained



by the camera equations, whereas parameters which have a unique value over
the solution manifold are fully constrained. These fully constrained parameters
describe the \true" geometric entities. They can be uniquely recovered, (up to
possibly a discrete ambiguity), from the camera equations. Having a unique
value on the solution manifold means that the parameter is invariant to gauge
transformations on the solution. We call these gauge invariants.

Not only are the values of gauge invariants unique, but given the covariance
of the measured data, the covariance of the invariant is uniquely obtainable.
However, the covariance of parameters containing indeterminacies will not be
uniquely speci�ed and many possible \geometrically equivalent" covariances can
be obtained that correspond to the same measurement covariance. In this section
we derive a Geometric Equivalence Relationship for parameters that contain in-
determinacies. This permits us to test whether covariances of these parameters
under di�erent gauges correspond to the same underlying measurement covari-
ance or not. Finally we propose a fast method for covariance estimation and
show its correctness using the Geometric Equivalence Relationship.

Let us assume that we are measuring an invariant property, I(�), of the
solution. Consider the estimators in two gauges: �C and �C0 with uncertainties:
��C and ��C0 in their corresponding tangent planes. Let @�C

@�
C0

be the Jacobian

matrix that maps perturbations in the tangent plane of C0 to perturbations in
the tangent plane of C:

��C =
@�C
@�C0

��C0 : (18)

The invariant property will have the same value for both solutions: I(�C) =
I(�C0 ). Moreover, since I is invariant to all points inM, it must also be invariant
to in�nitesimal perturbations in M, and hence its gradient must be orthogonal
to the tangent plane of M:

rT� I 2 T [M]?: (19)

A perturbation of the invariant at �C can be written:

�I(�C) = r
T
� I��C = r

T
� I

@�C
@�C0

��C0 : (20)

The variance of the invariant can be calculated using both components of this
equation:

V [I] = rT� IV [�C ]r
T
� I

> = rT� I
@�C
@�C0

V [�C0 ]
@�C
@�C0

>

rT� I
>: (21)

The covariances of parameters with indeterminacies may have \non-geometric"
components along the tangent plane of the solution manifold. This equation
transforms these covariances into the uniquely de�ned covariance of a gauge
invariant.

We then apply the orthogonal constraint from equation (19) to both expres-
sions for V [I] and obtain the following result:

u>(V [�C ]�
@�C
@�C0

V [�C0 ]
@�C
@�C0

>

)u = 0; 8u 2 T�C [M]?: (22)



This means that the di�erence between the covariance and the transformed co-
variance: V [�C]�

@�C
@�

C0
V [�C0 ]

@�C
@�

C0

>
must lie in the the tangent space T�C [M]. Or

equivalently we can say that these two variances have the same orthogonal com-
ponent to T [M] at �C. We denote this relationship as: V [�C ] � V [�C0 ] modM.
Thus we have:

Geometric Equivalence Relationship The covariance matrices V [�C] and
V [�C0 ] are geometrically equivalent if and only if

V [�C] � V [�C0 ] modM: (23)

In essence this says that at a point � 2 M, it is only the component of the
covariance that is not in the tangent plane that contributes to the geometric
uncertainty. Any matrix satisfying this equivalence relationship captures the
geometric uncertainty of the parameters. The normal form of the covariance
calculated from equation (14) is a natural choice that captures this uncertainty
for a given parametrization, and does not require constraints to be speci�ed.
From this relationship we see that the covariance in any gauge is equivalent
to the normal covariance, i.e.: VC [�C ] � V?M[�] mod M. Thus the covariance
of an invariant can be calculated directly from either of these covariances by
transforming them with the invariant gradient, rT

�
I, as in equation (21).

4 Maximum Likelihood Estimation

It is known that Maximum Likelihood (ML) estimation is unbiased and obtains
the optimal shape and motion parameters. The ML solution is obtained by
minimizing the cost:

J = (p��(�))>V �1
p (p��(�))): (24)

where � 2 T . The minimum value of this will have the same camera indetermi-
nacies described in section 2.3, and hence determine a manifold,M, of geomet-
rically equivalent solutions. A unique solution can be obtained by choosing an
arbitrary gauge C.

4.1 Free-Gauge Solution

Instead of constraining our minimization process with our chosen gauge C, at
each step we would like to choose a gauge orthogonal to the solution manifold
M, and proceed in that direction. We expect this to give better convergence to
the manifoldM especially when our desired gauge C has a large oblique angle
to M. Once any point on M is achieved, it is easy to transform this solution
into any desired gauge.

Levenberg-Marquardt (LM) minimization is a combination of Gauss-Newton
and gradient descent. The gradient of J is obtained as

r�J = �2rT��(�)V �1p (p��(�)); (25)



and the Gauss-Newton approximation for the Hessian:

r2

�J �
1

2
Efr�Jr�J

>g = 2rT��(�)V �1p rT��(�)>: (26)

Gauss-Newton proceeds iteratively by solving the linear equation:

r2

�J�� = �r�J: (27)

However, in our case the Hessian, r2

�
J , is singular due to the ambiguity direc-

tions with rank n� r. Hence we take steps in the direction:

�� = �(r2

�J)
�
n�rrJ; (28)

which proceeds orthogonally towards the manifoldM. This is called free-gauge
minimization. To implement LM we add a gradient term.

At the solution, � 2 M, the covariance of the ML estimation of shape and
motion parameters is obtained as:

V [�] = Ef����>g = 2(r2

�J)
�
n�r (29)

=
1

2
(rT��(�)V �1

p rT��(�)>)�n�r (30)

It can be shown that this is identical to the normal covariance expression in
equation (14), V [�] � V?M[�], and not just up to a geometric equivalence, and
so we use this as an alternate expression to for the normal covariance.

4.2 E�cient Covariance Estimation

The calculation of the generalized inverse in equations (28) and (30) involves
use of SVD which takes O(n3) operations, and so for many feature points or
images is slow. The Hessian often has sparse structure and when it is multiplied
by the gradient, as in LM, the generalized inverse can be avoided and e�cient
minimization methods for J have been proposed [1, 2]. Here, however, we not
only want a fast LM method, but also an e�cient method to estimate the full
covariance. We propose an e�cient method in this section.

Let us assume that our parameter vector is divided into a shape and a motion
part, �s and �m respectively, such that � = (�>s ; �

>
m)

>. The Hessian is then split
into its shape and motion components:

r2

�J =

�
r2

�s
J r�smJ

r�msJ r2

�m
J

�
=

�
U W
W> V

�
: (31)

When noise in the feature points speci�ed by Vp are independent of each other, U
and V are full rank3 and sparse with O(N ) and O(M ) non-zero elements respec-
tively, where N is the number of features and M is the number of images [2].

3 U is full rank for a�ne and perspective projection, but not when homogeneous coor-
dinates are used as the general projective case, but then we do not obtain Euclidean
shape.



The cross-term matrix W is not sparse however, and so applying a standard
sparse techniques will not reduce the complexity of determining the generalized
inverse.

First we de�ne the full rank matrix T as follows:

T =

�
I 0

�W>U�1 I

�
(32)

and obtain the block diagonal matrix:

Tr2

�
JT> =

�
U 0
0 V �W>U�1W

�
: (33)

Then we de�ne the covariance VT [�] by:

VT [�] = T>(Tr2

�JT
>)�n�rT (34)

= T>
�
U�1 0
0 (V �W>U�1W )�m�r

�
T;

where m = 6M is the number of motion parameters. This can be obtained in
O(N2M +M3) operations which, when when the number of images is small (i.e.
M � N ), is much faster than the original SVD which is O(N3 +M3).

In order for VT [�] to be a valid description of the uncertainty, we must show
that it is geometrically equivalent to V?M[�]. Let A = 1

2
r2

�
J be half the Hessian,

and consider the equation:
Ax = u (35)

where u is in the column space of A. The general solution is a combination
of a unique particular solution, xp = A�u, in the column space of A, and a
homogeneous solution, xh, which is any vector in the nullspace of A, i.e.Axh = 0.
We left multiply equation (35) by T and rearrange to obtain:

(TAT>)T�>x = Tu: (36)

Then changing variables: y = T�>x, and solving for y we obtain: y = (TAT>)�Tu+
yh where (TAT>)yh = 0. Now transforming back to x we can decompose the
solution into the particular and homogeneous parts:

x = T>(TAT>)�Tu+ T>yh = xp + xh; (37)

where xp = A�u is the particular solution obtained in equation (35). It is easy
to see that T>yh is in the nullspace of A, and hence T>(TAT>)�Tu = xp+ x0h
for some vector x0h in the nullspace of A.

We now apply the geometric equivalence test to V?M[�] = A� and VT [�] =
T>(TAT>)�T . The change of constraint Jacobian is the identity: @�C

@�
C0

= I, and

the orthogonal component to the tangent space of M, T� [M]?, is spanned by
the columns of A and so u is any vector in the column space of A. Applying the
equivalence relationship we obtain:

u>(A� � T>(TAT>)�T )u = u>(xp � xp � x0h) = u>(�x0h) = 0; (38)



for all u in the column and row space of A, since x0h is in the nullspace. We thus
conclude that VT [�] can be e�ciently estimated and is geometrically equivalent
to the normal covariance V?M[�].

1 4 8 11

Fig. 3. Four images of an eleven image sequence with signi�cant noise added and the
scaled standard deviation of each point illustrated with an ellipse. (The lines connecting
points are only present for viewing). The synthetic object is shown bottom left. The
optimal reconstruction, given the noise estimates, is shown on the right with uncertainty
ellipsoids. These ellipsoids, corresponding to the 3� 3 block diagonal elements of a full
shape covariance, are signi�cantly correlated as shown in the full covariance matrix in
Figure 5.

5 Results

We give some sample synthetic and real results illustrating our uncertainty mod-
eling. A set of features in an image sequence with known correspondences is
shown in Figure 3. The synthetic object is also shown along with a sample op-
timal reconstruction and ellipsoids illustrating feature-based uncertainty. The
individual feature uncertainties are strongly correlated as illustrated in the sub-
sequent Figures.

The normal covariance for this shape and motion recovery is shown in Fig-
ure 4. This contains a full description of the uncertainty in the features, but
to experimentally con�rm it using Monte Carlo simulation requires that we se-
lect a gauge such as that in equation (8). In Figure 5 we show the predicted
covariance obtained by projecting the normal covariance into this gauge using
equation (17). Even though the normal covariance and the predicted covariance



have signi�cantly di�erent values and correlations, they contain the same ge-
ometric uncertainty (as they are equivalent under the Geometric Equivalence
Relationship) and will give the same predictions for uncertainties of gauge in-
variants. Figure 5 also contains the Monte Carlo covariance estimate in this
gauge, involving 400 SFM reconstruction runs. It is very similar to the predicted
covariance con�rming that our uncertainty model is correct. An easier way to
visually compare the covariances is to plot the square root of their diagonal ele-
ments. This gives the net standard deviation in each parameter in this gauge as
illustrated in Figure 6.
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Fig. 4. The predicted normal covariance matrix giving us the geometric uncertainty of
the reconstructed synthetic object. The scaled absolute value is shown by the darkness
of the shading. Here weak perspective was used and � is the recovered scale for each
image. We note that it can be altered by adding components in the tangent plane to
M without changing the underlying uncertainty, as we see in Figure 5.

The problem with the shape and motion covariance plots is their dependence
on choice of gauge. Gauge invariants, however, will give us unambiguous mea-
sures for the uncertainty of the results. We chose two invariants on our synthetic
object: an angle between two lines and the ratio of two lengths. Their statis-
tics are shown in Table 1, con�rming very good matching between predicted
uncertainty and actual uncertainty.

Table 1. Predicted and measured values, along with their uncertainties in standard
deviations, of two gauge independent properties of the synthetic object in Figure 3:
(left) the angle between two lines, and (right) the ratio of two lengths.

Angle Mean Uncertainty Ratio Mean Uncertainty

Predicted: 90:11� �2:10� Predicted: 0.9990 �0.0332
Recovered: 90:02� �2:10� Recovered: 1.0005 �0.0345
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Fig. 5. (Left diagram) The predicted covariance in an arbitrary gauge, see equation
(8). We note that the values and correlations are signi�cantly di�erent from the normal
covariance in Figure 4, and yet it still contains the same geometric uncertainty. The
Monte Carlo estimation of covariance in this gauge is shown on the right. It shows close
similarity to the predicted covariance in this gauge as can also be seen in Figure 6.

Next we show results for a real image sequence of a chapel in Figure 7 along
with the reconstructed shape from SFM. The feature correspondences were de-
termined manually. Not only can we obtain a texture-mapped reconstruction, we
can also obtain measurements of similarity invariant properties such as angles
with their uncertainties. We found the angle and its uncertainty (in standard
deviations) between two walls separated by a buttress: 117� � 3:2�, as well as
two other angles on the chapel: 46:2�� 2:1� and 93:2�� 2:6� as described in the
Figure caption. These quantities are exact and not only up to an unknown trans-
formation. We believe reporting this uncertainty measure is essential for most
quantitative analyzes of the shape, and can only be done for gauge invariant
properties.

6 Concluding Remarks

We have addressed the question of uncertainty representation when parameter
indeterminacies exist in estimation problems. The shape and motion parame-
ters estimated by SFM contain inherent indeterminacies. Hence to apply per-
turbation analysis, these parameters are �rst constrained by a gauge and the
covariance is estimated in this gauge. Unfortunately the choice of gauge will
have signi�cant e�ects on the uncertainties of the parameters, as illustrated in
our results. These e�ects, however, are \non-physical" and do not correspond
to changes in the actual geometric uncertainty which is una�ected by an arbi-
trary choice of gauge. Thus shape and motion parameter uncertainties contain
artifacts of the choice of gauge. The uncertainties of gauge invariant parameters,
however, are not a�ected by these indeterminacies and hence correspond directly
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Fig. 6. The square root of the diagonal elements of the covariances in Figure 5 are
shown here. This gives the net standard deviation of each parameter in the experi-
mental gauge (8) obtained from the diagonal of the covariance. The solid line is the
experimentally measured value and the dashed line is our prediction from the projected
normal covariance.

to the inherent geometric uncertainty. They thus provide unambiguous measures
for the solution uncertainty.

We derived a Geometric Uncertainty Relationship which permits us to com-
pare the geometric uncertainty contained in covariances described under di�erent
parametrizations and gauges. Using this relationship we showed that the nor-
mal covariance, whose estimation does not need explicit gauge constraints, fully
describes the solution uncertainty. We were also able to derive an e�cient es-
timation method for the solution covariance. Using the Geometric Uncertainty
Relationship, we showed that this estimate also fully captures the solution un-
certainty. Gauge invariant uncertainties can be calculated by transforming this
covariance.
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