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Abstract

In computer vision we often estimate a 3D model of an object, and its uncertainty,
up to an unknown scale factor. This unknown scale factor means that we cannot directly
infer positions and lengths on the model, nor their uncertainties. In order to make
quantitative distance measurements on this model, we must obtain the unknown scale
factor. However, how we determine the scale factor will affect the accuracy of the
rescaled model. In this paper we study the problem of estimating the absolute scale of
an object and its uncertainty, starting from a 3D reconstruction up to a scale factor, and
a reference length. The theory derived here can be used both to correctly transform
a model covariance matrix under rescaling, and to select a good length on the object
from which to obtain the scale, and so maximize accuracy.
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1 Introduction

Methods for imaging objects have been used since ancient civilizations to make quan-
titative measurements of the world. The classic example is trigonometry, where eleva-
tion angles and distance measurements are used to calculate the height of a difficult-
to-measure object. Modern computer vision provides tools for combining many mea-
surements to obtain more sophisticated andaccurate estimates of the 3D world [4, 10]
including, for instance, ancient archeological structures [11]. However, many image-
only methods estimate 3D only up to a scale factor, and so do not give direct length
estimates. An additional step is needed to estimate the scale factor of the 3D world.
In this work, we investigate how the accuracy of 3D estimates are affected by this
unknown scale factor.

A covariance matrix is a widely used measure for the uncertainty of a model. We
assume that our image-based 3D shape modeling algorithm returns a shape estimate
and a covariance matrix, but that there is a global unknown scale factor that must be
determined before the model and the real object can be made the same size. This un-
known scale factor in 3D estimation has caused no great concern in the computer vision
field. It is thought that we can measure a length of the real object, find the unknown
scale factor, and then use this as a change-of-variables transformation to rescale both
the model and the covariance as illustrated in Figure 1. This widely held assumption,
however, is false. In section 2, we show that this in general gives the wrong covariance
matrix, and that other covariances, like those illustrated in Figure 2 may result from
rescaling to object.

The goal of this paper is to find the correct transformation of a covariance matrix
that rescales it and also takes the measurement information into account. The aspect
that makes this problem interesting, and not simply a change-of-variables, is the scale
indeterminacy. Recently, gauge theory [8, 9, 10, 13] has been developed in the com-
puter vision context to correctly treat indeterminacies in problems like this. This work
on gauge theory has claimed that only gauge invariant properties are properly described
by a model and its covariance matrix when it has indeterminacies or gauge freedoms.
However, in this paper we will show that with the additional information obtained by a
measurement, we can obtain an exact covariance matrix for the shape with no indeter-
minacy. We derive the correct transformation for obtaining the true covariance matrix
and we illustrate this on a real example. Finally we derive some guidelines to maximize
the final accuracy.

It is a surprise, that how the scale factor is determined, is critically important to
covariance analysis. Previous work that dealt with shape uncertainties ignored the
unknown scale factor [14, 12] or stated that how it is determined is unimportant [5].
But, as will be shown in this paper, the method by which the model scale is determined
will significantly affect the accuracy of the model.
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(a) (b)

Figure 1:(a) An object in the plane is shown by feature points, and its uncertainty is represented
by the ellipses. (b) A standard change-of-variables is used to rescale the object and its covariance.
We show in this paper that when the object is known only up to a scale factor, this in general is
not the correct way to rescale the covariance of the object.

(a) (b)

Figure 2:If the object in Figure 1 is known only up to a scale factor, then there are many ways to
rescale it which will not affect the final scale, but will change the covariance. Here two different
methods are used to rescale the object, and pictured are the resulting covariances.
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2 Problem Statement

Let us represent the shape of our object with a vector,s, that contains all of thex, y,
andz coordinates of all the individual feature points:

s =

0
B@

s1
...
sN

1
CA ; where si =

0
@ xi

yi
zi

1
A : (1)

Here,si denotes the 3D position of theith feature point. Let us assume further that the
total shape,s, is known only up to an unknown scale factor, and that its uncertainty,
�s, has zero mean and a covariance matrix,Vs:

Vs = E[�s�s>] ; (2)

whereE[�] denotes the expectation.
Since our model is known only up to a scale factor, we perform an additional mea-

surement in order to specify the model exactly. Say we measure the distance between
feature points,i andj, on the real object and find that its value isd0. We conclude that
for our model,s, to correspond to the true object, it must be rescaled by a scale factor
given by:

a =
d0

ksi � sjk
: (3)

The new model is then:
s0 = as : (4)

Our question is: Now that we know the scale, what is the covariance,Vs0 , of the
rescaled model?

2.1 Naive Solution

A direct answer may be obtained as follows. Perturbations of the new model are given
by:

�s0 = a�s ; (5)

and so its covariance is:

Vs0 = E[�s0�s0
>

]

= a2Vs : (6)

Thus we would conclude that we can rescale the covariance with the square of the
scale factor. This is exactly a change-of-variables transformation. It is correct way to
transform the covariance matrix if we are changing the measurement units. Hence one
might suppose this is how we should rescale a covariance matrix in general, and so, for
example, obtain the result in Figure 1.
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2.2 Contradiction

However, it is easy to see that there is something wrong with equation (6). We have
measured the distance,d0, between pointsi andj on our rescaled model,s0. Assum-
ing no errors in the measurement ofd0,1 then this distance has no uncertainty and so
must have zero variance. But in our new model,s0, we have:d0 = ks0i � s0jk, and so
perturbations ofd0 are expressed:

�d0 = rs0d0
>

�s0 : (7)

Then, using the covariance in equation (6), the variance ofd0 would be:

�2d0 = rs0d0
>

Vs0rs0d0 ; (8)

where we have defined the gradient of a scalard0 to be:

rs0d0 =

0
B@

@d0=@s0x1
...

@d0=@s0zN )

1
CA : (9)

This calculated variance,�2d0 , could be zero for a special covariance,Vs, and choice
of features, but in general it will not be zero. By assumption, however, this distance has
zero variance, and so there is a contradiction. We conclude that even though we have
the correct scale factora, unless the variance,�2d0 , between the points we chose is zero,
simply scaling the covariance bya2, as in equation (6), is the wrong transformation.

3 Shape up to a scale factor

When the shape of an object is recovered by an image-based method such as Structure
from Motion, its scale is arbitrary. The object may have been larger and further away
from the camera, or smaller and closer to the camera without changing the measure-
ments at all. This indeterminacy is called agauge freedom. In this section we will
describe the basics of gauge theory and how invariants are able to capture the essential
information of a model and its covariance. A more detailed description of gauge theory
can be found in [7, 8, 10]. We will use this to show how the measurement of a length
of an object should fix the scale and transform the covariance.

3.1 Gauge Orbits

When a model space,S, is defined only up to an unknown transformation, such as
scale, we say the space is filled withgauge orbits. A gauge orbit is a manifold within
the model space,Gs 2 S, where all points on the gauge orbit are the same under
the model interpretation.2 We say all the points on a gauge orbit aregeometrically

1We show in section 3.6 how to incorporate measurement uncertainties, but for simplicity we do not
consider that here.

2Mathematicians call such an orbit aleaf, and a space filled with leafs afoliation.

4



equivalent. A gauge transformation, g, takes one point,s 2 Gs to another point on
the orbit:s0 2Gs and is expressed as:

s0 = g(s) ; 8g 2 G (10)

whereG is the group of gauge transformations. Figure 3(a) illustrates a point on its
gauge orbit. In our case scale acts as a linear gauge transformation,g(s) = as, and
points on the gauge orbit correspond to models that are identical except by a scale
factor.

3.2 Constraints and Covariance Subspace

The covariance matrix provides a first order perturbation analysis around a point in the
parameter space. This error probability is illustrated by ellipses representing contours
of equal probability in Figure 3(a). However, our shape belongs not to a single point,
but to an orbit of points, all geometrically equivalent. Thus it does not make sense
that ellipses with different probability could intersect an orbit, all of whose points are
equivalent and so have equal probability. In order to speak, then, of perturbation anal-
ysis we need to add a set of constraints that restricts the shape to a unique point on the
orbit. In our case, the gauge freedom is one dimensional, and so a single constraint on
the shape will suffice. Denote this as:

c(s) = 0 : (11)

This defines agauge manifold, or simplygauge, C, of points satisfying this constraint
and having dimension3N � 1. Enforcing a constraint like this, we callgauge fixing
or choosing a gauge. Perturbations must be in the tangent space of this manifold, as
illustrated in Figure 3(b). Thus the rank of the covariance matrix,Vs, that governs these
perturbations must be at most3N � 1. Derivations of how to obtain this covariance
can be found in references [7, 8, 10].

3.3 Problem Reformulation

We started with a shape,s, and covariance,Vs, in an unknown gauge,C. We made a
measurement,d0, and will use this as a constraint on our model:

d0 � ks0i � s0jk = 0 ; (12)

and as such it defines a new gauge,C0. We obtained a rescaled shape,s0 = as, that
belongs to the same gauge orbit,Gs, and also satisfies the constraint of this new gauge,
C0. Now we want the covariance,Vs0 , at s0 that lies in the tangent space ofC0. To
obtain this covariance, we will derive a geometric equivalence relationship using gauge
invariants.

3.4 Perturbations of Invariants

Now we consider gauge invariants as a way to extract the true information from the
shape and its covariance. Agauge invariantis a function of the model parameters,
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Figure 3: Plot (a) shows the contradiction we obtain when we use a full rank covariance to
describe perturbations of a point on a gauge orbit. Ellipses of different probability intersect the
gauge orbit, all of whose points are equivalent and hence have equal probability. Instead, we
must choose a gauge by imposing a constraint that reduces our parameter space to the gauge
manifold,C, which intersects the gauge orbit at a single point, as shown in (b). Perturbations are
now restricted to the tangent plane to the gauge manifold, shown by the dashed line. (These plots
are two dimensional for clarity only. In our case, the vector,s, is 3N dimensional, the gauge
orbit,Gs, is one dimensional, and the gauge,C, is 3N � 1 dimensional.)

I(s), that is the same for all points on the gauge orbit:

I(s) = I(as) 8a 6= 0 : (13)

Since our model is defined “only up to a scale factor,” it must be gauge invariants that
are the true quantities described by the shape. Properties that are invariant to scale
include angles and ratios of lengths.

Since an invariant remains constant on a gauge orbit, its gradient along the gauge
orbit must be zero. This means:

rsI 2 T [Gs]
? (14)

whereT [Gs] is the tangent space to the gauge orbit ats, and “?” refers to the orthog-
onal complement. This is true for all invariants.

We can now analyze the transformation of perturbations in one gauge,C, to another
gauge,C0. The result will be used to transform the covariances.

A perturbation of an invariantI(s) can be expressed as:

�I(s) = rsI(s)
>�s : (15)

But sinceI(s) = I(s0), wheres0 = as, equivalently:

�I(s) = rs0I(s0)>�s0 = rsI(s)
>

@s

@s0

>

�s0

= rsI(s)
>
1

a
�s0 ; (16)
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Figure 4: Perturbations in the tangent planes to two gauges,C andC0, are shown whena =

1. These perturbations are geometrically equivalent when their difference,�s � �s0=a, is
orthogonal to all vectorsu 2 T [Gs]

?.

where we represent the Jacobian matrix for a change-of-variables as:

@s

@s0
=

1

a
I (17)

andI is the identity matrix. Now from equations (15) and (16) we have:

rsI(s)
> (�s�

1

a
�s0) = 0 : (18)

Both perturbations,�s and�s0, give the same perturbation of the invariantI. We say
two perturbations aregeometrically equivalentif they give the same perturbation of
any invariant. We now state the following theorem governing this equivalence:

Geometric Equivalence

Theorem 3.1. Two perturbations,�s 2 T [C] and�s0 2 T [C0], wheres0 = as, are
geometrically equivalent if and only if:

u>(�s�
1

a
�s0) = 0 8u 2 T [Gs]

? : (19)

Proof. From equation (14) we know thatif equation (19) is true, then equation (18) fol-
lows for all invariants, and so the perturbations are geometrically equivalent. Further-
more, we can construct a set of invariants whose gradients spanT [Gs]

?, for example:
Ii(s) = si=s1, for i = 2; : : : ; 3N , wheresi is theith element ofs. Thus if equation
(18) is true for all invariants, equation must (19) follow. ut

Geometric equivalence is illustrated pictorially in Figure 4. Here we see that to be
geometrically equivalent means that the difference between the perturbations,�s �
�s0=a, lies in the tangent space to the gauge orbit,T [Gs].
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3.5 Gauge Fixing

Our initial covariance,Vs, describes perturbations,�s, tangent to the unknown gauge,
C. We now want to find geometrically equivalent perturbations,�s0, tangent to our new
gauge,C0.

One solution to the geometric equivalence relationship, in equation (19), is a simple
rescaling of the perturbation�s0 = a�s. But this is not the only solution, and in
general the resulting perturbation will not be tangent to the new gauge,C0. The full
solution is:

�s0 = a�s+ b (20)

whereb is any vector in the tangent to the gauge orbit:T [Gs]. The gauge orbit is
defined ass0 = as, for variations ina. Its tangent direction ats0 is given by:

@s0

@a
= s : (21)

Thus we can writeb = xswith some unknown coefficientx, which we will now solve
for.

Let v be a vector orthogonal to the gauge tangent space,v 2 T [C0]?. One such
vector is given by the gradient of the constraint:

v = rs0c(s0) (22)

where the constraintc(s0) = 0 is defined by equation (12). We knowv is orthogonal
to�s0, and so can write:

v>�s0 = 0 : (23)

Applying this to equation (20), lettingb = xs, and solving forx, we obtain:x =
�(v>s)�1v>a�s. Then substituting this into equation (20) we get:

�s0 = a�s� s(v>s)�1v>a�s

= aQ�s ; (24)

where

Q = I �
sv>

v>s
: (25)

The matrixaQ is an oblique projection operator as illustrated in Figure 5. It takes any
perturbation�s to a geometrically equivalent perturbation�s0 in a new gaugeC0.

We can now state our result for the transformation of a covariance matrix when we
measure one of the lengths on the object:

Vs0 = E[�s0�s0
>

]

= a2QVsQ
> : (26)

The resulting matrix,Vs0 is geometrically equivalent to the original covariance,Vs,
and also it satisfies our measurement constraint to first order. It thus gives the true
uncertainty of the shape after we make measurementd0.
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Figure 5:An oblique projection onto the tangent space of the gauge manifoldC0: �s0 = a�s+b

= aQ�s, here shown whena = 1.

3.6 Measurement Uncertainty

We can now ask what happens when there is uncertainty in the measurement of length
d0 on the object. We expand our basic scale equation (4) including a perturbation term,
�a, on scale itself:

�s0 = aQs+ s�a : (27)

The second term is simplified as follows. The scale isa = d0=d whered = ksi � sjk,
and so�a = �d0=d. If d0 is measured with standard deviation�m, then substituting
for �a into equation (27), and finding the covariance we obtain:

Vs0 = a2QV sQ
> + �2m

ss>

d2
: (28)

We see that the measurement component to the variance is inversely weighted by the
length on the object that is measured. Thus measuring longer lengths reduces this
component of the error.

3.7 Choosing a Good Gauge

The choice of gauge affects the final accuracy of our results. It is natural to want to
choose a gauge that maximizes theaccuracy of the model. In this section we consider
two measures of final accuracy and how gauges should be chosen to optimize these.

Optimizing Overall Accuracy

One measure for accuracy is the trace ofVs0 , which is the sum of the individual 3D
feature-point variances. Reducing this corresponds to improving the overallaccuracy,
but ignoring cross-correlation effects. IfVs includes off-diagonal elements, the anal-
ysis becomes complicated, and so we approximate it with uniform and uncorrelated
noise:Vs = �2

0
I. Now we ask: If we can measure the distance,d0 = ks0i � s0jk, be-

tween any two pointsi andj, which two points should be used to minimize the trace:
Tr[Vs0 ]?
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The vectorv, from equation (22), is zero except for theith andjth elements which
are: (si � sj)=d and (sj � si)=d respectively. From this we get:v>s = d and
v>v = 2, andsv> is a square matrix whose only two, non-zero, diagonal blocks are:
si(si�sj)

> andsj(sj�si)>. Using these, and substituting forQ andVs in equation
(28), we obtain:

Tr[Vs0 ] = (3N � 2)a2�2
0
+ (2a2�2

0
+ �2m)

ksk2

d2
: (29)

We see that given constant measurement error,�m, the longer the length on the model
we choose,d, the smaller the total uncertainty.

Optimizing One-Length Accuracy

For real models, there is typically strong correlation between features and so the ap-
proximation thatVs is uncorrelated may be poor. Also, we may be interested in the
accuracy of only part of the model, and in some cases just one length. Let us say that
our goal is to estimate a certain length,e0 = ks0k � s0lk, with the greatest accuracy, and
that we can set the scale factor by measuring another length,d0. What qualities should
d0 have to minimize the variance ofe0?

Let d = (e d)> andd0 = ad, and so we can write:

Vd = rsd
>Vsrsd (30)

�

�
�2e �ed
�de �2d

�
: (31)

If we measured0 with variance�2m, we obtain from equation (28):

Vd0 = a2QVdQ
> + �2m

dd>

d2
(32)

where@d0=@a = d, v = (0 1)>, and so

Q =

�
1 �e=d

0 0

�
: (33)

We want to minimize the variance ofe0, which can be obtained from equation (32)
as:

�2e
0

= a2(�2e � 2
e

d
�ed +

�e
d

�2
�2d) +

� e
d

�2
�2m : (34)

This is a quadratic in the ratioe=d, and its minimum has two cases. The first is when
the noise is uncorrelated or anti-correlated, (�ed � 0). The variance,�2e

0

, is reduced
when the ratio,e=d, is reduced. Thus given constant variances, the longer the length
we measure,d0, the more accurate our estimate fore0 is. The second case is when the
noise is positively correlated,�ed > 0. The ratio that minimizes�2e

0 is then:

e

d
=

a2�ed

a2�2d + �2m
: (35)

If the noise is perfectly correlated, namely�ed = �e�d, and�2m = 0, and the ratio,
e=d, is given by equation (35), then the lengthe0 will be perfectly estimated with zero
covariance.
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Figure 6: From five images, an object shape and camera motion are estimated, along with a
covariance matrix. The “?” symbol shows the camera positions and orientations. The ellipses
illustrate the covariance ofeach point. The correlation between features is not shown here, but it
is significant.

4 Results

First we illustrate with a synthetic example the significance of gauge fixing on shape
covariances. Figure 6 illustrates the shape and motion estimated using a Structure from
Motion algorithm [3, 4, 10, 11], along with the covariance of all the features and camera
positions. This shape is known up to a scale factor,3 and so to obtain an exact model
estimate we must rescale it. If we are given a length on the object we can rescale it,
and also transform the covariance accordingly. Figure 7 shows the effect on the shape
covariance when different lengths are used to rescale the shape.

We now illustrate on a real 3D object how modelaccuracy changes when different
object measurements are used to fix the scale. We start with a set of hand registered
features in an image sequence as shown in Figure 8. A Structure from Motion algorithm
was used to obtain the 3D shape,s, and its covariance,Vs, up to an unknown scale
factor as shown in Figure 9.

We want to know what the diagonal length of the television screen is and how
accurately can we know it. Since we can recover 3D shape only up to a scale factor,
the shape alone will not determine this length. We first have to find the overall scale
of the recovered shape. Now it may be that we know the length of another object in
the scene, in which case this could be used to obtain the scale. For the purpose of this
experiment, we will look at a number of different objects in the scene whose lengths
we know, and find out which gives us the best estimate of the TV diagonal length.

3Here we assume overall translation and rotation are known.
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(a) (b) (c)

Figure 7: In (a) and (b) the object is rescaled by measuring the distance between the points
joined by the dashed line. In (c) the scale is determined using the average distance of all the
features to the bottom–left feature. In each case the covariance is appropriately transformed as
in equation (26). These plots illustrate the effects of gauge fixing on covariances.

Figure 8:Three images from a seven-image sequence with hand-registered features.

Consider, then, the 13 lines, measured in 3D, and shown in Figure 10. We made 13
separate estimates of the TV diagonal length, ineach case using one of these lengths
to fix our gauge,C0, and obtain the scale. Figure 11 shows these estimates, along with
their predicted standard deviations,�0e, obtained using equation (28). We assumed no
error in the measurement of the 3D line lengths,�m = 0. We note that the actual error
corresponds well with the uncertainty given by the predicted error.

We notice, from Figure 11, that there is a large variation in uncertainty of the TV
diagonal, depending on which line is used to fix the scale. In general, using the longer
lines lead to better estimates, and the shortest lines, 5 and 11, gave the greatest uncer-
tainty. The puzzle is line 8, which gives a more accurate estimate than line 3, which is
longer. This is explained by Figures 12 and 13 which show that line 8 is more strongly
correlated with the TV diagonal length, and that the ratio with the TV diagonal length,
given by equation (35), is closer to its optimal value for line 8 than for line 3.
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Figure 9:(a) The 3D reconstruction of point features,s, from the image sequence in Figure 8
using a Structure from Motion algorithm. Lines are drawn for clarity only. (b) The covariance,
V s, of this shape calculated in an arbitrary gauge. Image features were assumed to have uniform,
identical noise, and whose magnitude we solved for. The plot shows strong correlation between
features.

Figure 10:We want to estimate the diagonal length of the TV shown by the black line. To do
this we need to know the length of one of the white lines.
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Figure 11:The true length of the TV diagonal is 20 inches. This plot shows the estimate we
obtained of this length using each of the different lines to fix the scale. The number on the
abscissa corresponds to the line in Figure 10. The uncertainty,�0

e
, given by the error bars, varies

greatly depending on which line was used; the largest uncertainty with standard deviation of
1.3 inches is obtained using line 5, and the smallest with standard deviation of 0.05 inches is
obtained using line 8. Line 8 provides a better constraint than line 3, despite line 3 being longer,
for two reasons: it is more strongly correlated with the TV diagonal as shown in Figure 12, and
the ratio of its length with the TV diagonal length is closer to the optimal value in equation (35),
as shown by Figure 13.

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Figure 12:The black bars show the standard deviation,�i, for each line length in Figure 10,
calculated from the unscaled shape covariance,V s. Bar 0 corresponds to the TV diagonal.
The scale is arbitrary and so left unmarked. The white bars indicate the proportion of cross-
correlation, and are calculated as:r0i�i, wherer0i = �0i=�0�i is the correlation coefficient
(�1 � r0i � 1). When perfectly correlated with the TV diagonal, the white bar will equal the
black bar. Hence we see that lines 8 and 9 are most strongly correlated with the TV diagonal.
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Figure 13:Given the corresponding variance and cross-correlation plotted in Figure 12, we can
use equation (35) to calculate what the optimal length would be for each line. By “optimal” we
mean it would minimize the variance of the TV diagonal estimate. Here we plot the ratio of the
actual line length to the optimal line length for each line. Line 8 is closest to its optimal length.
This is a better measure to use than length in selecting a line to fix the scale. While all of these
lines are shorter than their optimal lengths, we found in other experiments that lines can also be
longer than their optimal lengths.

5 Conclusion

We have derived and demonstrated an unexpected consequence of fixing the scale of an
object known only up to a scale factor. The covariance of the resulting shape is dramat-
ically affected by how the scale is determined. We assume the scale is determined by
the distance between two points on the object. Simply rescaling the covariance matrix
with the square of the scale factor leaves the indeterminacy in the matrix and does not
account for the measurement. Instead, the covariance must be transformed so that the
model uncertainty between the measured points is correctly distributed over the rest of
the points. We used gauge theory to derive the covariance transformation, when the
scale is fixed by making a measurement, and showed how choosing different gauges
will affect the final accuracy.

A qualitative analysis of our results leads to three conclusions: (a) When there
is little or no correlation between feature points and lengths,accuracy is best when
the gauge is fixed by measuring the largest distance on the object. (b) The effect of
measurement error on the 3D lengths is reduced for longer lengths. (c) When there is
significant positive correlation between lengths in the model, then measuring a longer
line is no longer better. Instead, the stronger the correlation, and the closer the ratio,
of measured to estimated length, is to the ratio in equation (35), the better the final
accuracy.

In some cases, our shape covariance may have further gauge freedoms such as
an over-all translation and rotation. The same gauge principles still apply and our
work can be easily extended. But if we consider only lengths, rather than absolute 3D
positions, we can use the fact that lengths are invariant to translation and rotation, and
so we can directly apply the theory developed here.
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