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ABSTRACT

We introduce a novel formulation for the dynamic
modeling of multibody robotic mechanisms to incorporate
closed-chains, higher-pair joints, friction, (including
stiction, Coulomb, rolling and viscous friction) and unactuated
and unsensed joints. Although we have developed this
formulation for the dynamic modeling of Uranus, an
omnidirectional wheeled mobile robot (WMR) designed and
constructed in the Robotics Institute of Carnegie Mellon
University, our methodology is directly applicable to a
spectrum of multibody robotic mechanisms. Our methodology
is based upon Newtonian dynamics, our kinematic methodology
[10], and the concepts of force/torque propagation and
frictional coupling at a joint which we introduce in this paper.
Our extensible matrix-vector dynamics formulation allows
the application of classical methodologies for the solution of
systems of linear algebraic equations (e.g., inverse and
forward dynamic solutions [13]). To illustrate the procedure,
we apply our dynamics formulation to a planar double
pendulum and a biped in the frontal plane.

1. Introduction

The Mobile Robot Laboratory of the Robotics Institute
of Carnegie Mellon University has designed and built Uranus,
an omnidirectional wheeled mobile robot, as a testbed to study
servo-control, vision, navigation and sensing [9]. A goal of
our servo-control research is to determine whether existing
manipulator servo-controller designs (e.g., resolved motion
rate control [22], computed torque control [7], and robust
computed torque control [21]) are applicable to wheeled
vehicles. We thus require a dynamic model of Uranus for the
design of dynamics-based servo-controllers. We have
identified the following five salient characteristics of WMRs
which require special consideration in the dynamic modelina
process: (1) Closed-chains; (2) Friction; (3) Higher-pair
joints; (4) Unactuated joints; and (5) Unsensed joints.

Conventional stationary manipulators are open-chain
mechanisms; whereas the wheels of a WMR form a closed-
chain when in contact with the surface-of-travel. WMR
mobility stems from the translational friction between the
wheels and the surface-of-travel; whereas friction is
oftentimes neglected in comparison with the inertial and
gravitational forces/torques of stationary manipulators. Lack
of sufficient friction at the wheel point-of-contact leads to
wheel slippage, a problem not encountered in stationary
manipulator operation. Friction at the wheel bearings also has
a significant effect. For a WMR with the kinematic structure of
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Uranus, the roller bearing frictions in the omnidirectional
wheels can dissipate as much as 80% of the total available
energy [1], in direct contrast to manipulator bearing friction
which is typically small in comparison with the inertial and
gravitational forces/torques [18].

All stationary manipulator joints, prismatic and
revolute, are lower-pairs. The WMR joint between each wheel
and the surface-of-travel is a higher-pair. A lower-pair
allows a common surface contact between adjacent links
providing holonomic (positional) constraints; whereas a
higher-pair allows point or line contact providing
nonholonomic (velocity) constraints. To control the motion of
an open-chain, all of the joints must be actuated and sensed. In
contrast, a closed-chain mechanism may be adequately
controlled with some joints unactuated, and its motions may be
adequately discerned with some joints unsensed [10].
Moreover, the WMR higher-pair wheel joints do not allow the
actuation and sensing of the rotational 8 degree-of-freedom of
each wheel about the point-of-contact with the surface-of-
travel.

Our dynamics methodology, unlike existing dynamics
methodologies, is applicable to the modeling of multibody
robotic mechanisms exhibiting these five characteristics. We
highlight in Section 2 existing dynamics formulations and
subsequently introduce in Section 3 our dynamic modeling
procedure. To illustrate our dynamic modeling procedure, we
apply our dynamics formulation to a planar double pendulum
(in Section 4.1) and a biped in the frontal plane (in Section
4.2). The complete development of our dynamics formulation
(discussed in Section 3) and the dynamic model of Uranus,
including solutions of the dynamic equations-of-motion and
extensions of our dynamics methodology, are documented in
our companion technical report [11].

2, Existing Dynamics Formulations

The Lagrange [18] and Newton-Euler [6] formulations

are the two dynamics methodologies most widely applied to

stationary manipulator modeling [14]. Neither the Lagrange
nor the Newton-Euler formulations are adequate for WMR
modeling. Both model open-chains containing lower-pair
joints. Because WMRs are closed-chains the kinematic and
dynamic equations-of-motion must be computed in parallel,
thus disabling the direct application of the recursive Newton-
Euler dynamics algorithm. When dry friction is incorporated
[18], the frictional force/torque is added to the actuator
force/torque for each joint. This dry friction modeling
procedure does not generalize to chains containing unactuatec'
joints since dry friction at the unactuated joints does not affect
the computed actuator forces/torques. The dependence of the
dry frictional forces/torques on the normal force is also
neglected in such a model. Viscous friction has been



incorporated for the actuators, but not for the robot links
[19]. Finally, application of these dynamics formulations to
robot servo-control requires that al// of the joint positions
(angles) and velocities be sensed.

The Lagrange and Newton-Euler formulations and their
extensions to closed-chains and nonholonomic systems (e.g.,
Draganoiu [2], Kane [4], Luh and Zheng [8], Orin and Oh [17]
and Wittenburg [23]) are inadequate to achieve our WMR
dynamic modeling goals. Although existing formulations model
nonholonomic contraints and closed-chains, none address
unactuated and unsensed joints, and none are amenable for
incorporating dry friction (i.e., stiction, and Coulomb and
rolling friction at the wheel point-of-contact and at the
bearings) and viscous friction [11].

3. Our Dynamics Formulation

In our companion technical report [11], we develop a
dynamics methodology which satisfies the WMR dynamic
modeling requirements outlined in Section 1. Our approach is
to construct the conceptually complex dynamic robot model
from conceptually simple force/torque models by a
conceptually simple force/torque manipulation method.
Newtonian dynamics form the basis for modeling inertial and
gravitational force/torques, and computing the dynamic
equations-of-motion. We introduce the method of force/torque
propagation to compute the effect at coordinate system B
(within the robot mechanism) of forces/torques which
originate at coordinate system A. We introduce the viewpoint
that dry friction (i.e., stiction, Coulomb friction and rolling
friction) is a force/torque coupling phenomenon in contrast
with the conventional view of dry friction as a force/torque
source originating at a joint. Newtonian dynamics,
force/torque propagation, frictional couplings and our
kinematic modeling methodology [10] thus provide the
foundation for our dynamic modeling methodology. We
formulate the kinematic and dynamic models independently. In
this section we expound upon the concepts of force/torque
propagation and frictional coupling at a joint and their roles in
our dynamic modeling formulation.

Our dynamics formulation is designed for the simple
closed-chain mechanical system of rigid bodies depicted in
Figure 1. Orin and Oh [17] describe a simple closed-chain
mechanism as "one in which the removal of a particular
member of the system breaks all closed-chains”.

Main Body

Environment

Open Chains

Figure 1: A Simple Closed-Chain Mechanical System

of Rigid Bodies

The mechanical system in Figure 1 consists of a main
body in contact with N open-chains of rigid bodies. Each pair of
adjoining bodies contact at a joint, and the distal rigid body of
each open-chain contacts the environment (i.e., a body
external to the system). The mechanical configuration in
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Figure 1 applies to a spectrum of conventional robotic
mechanisms [11], including m-DOF robotic manipulators,
multi-manipulator systems, WMRs, legged robots, and robotic
hands. For each of these robotic mechanisms, our goal is to
formulate the dynamic equations-of-motion of the main body
as a function of the motion (i.e., the positions, velocities and
accelerations) of all of the bodies in the system and the
actuator and environmental forces/torques.

We utilize the following notation throughout our
development: lower case letters denote scalars (e.g., m), lower
case bold letters denote vectors (e.g., f), upper case letters
denote coordinate systems (e.g., A), upper case italics letters
denote bodies (e.g., A), and upper case bold letters denote
matrices (e.g., M). Pre-superscripts denote reference
coordinate systems. For example, Af is the vector f in the A
coordinate system. The pre-superscript may be omitted if the
coordinte system is transparent from the context. Post-
subscripts denote coordinate systems, bodies, or components of
a vector or matrix, as indicated in each application. We place
the three force components fy, fy, and f; and the three torque

components Ty, Ty, and Tz in the force/torque six-vector

T
f=( fx fy 2 = 1y tz) . Linear and angular positions,
velocities and accelerations are similarly placed in six-

vectors with the x, y, and z rotations according to the the roll-
pitch-yaw convention [18].

Coordinate systems play a key role in dynamic
modeling. We fix each coordinate system with a body within the
system so that the motion of the coordinate system is exactly

that of the body with which it is fixed. Positions ApB,

velocities AVB, and accelerations AaB always denote the

motion of the coordinate system B relative to the coordinate
system A. To specify the position, velocity or acceleration of

body C, we thus specify the position A‘pC , velocity A‘vC , or
1 1

acceleration A‘ac of coordinate system G, which is fixed with
1

body C relative to coordinate system A4 which is fixed with
body A. An instantaneously coincident coordinate system X
coincides with the coordinate system X but is fixed with the
absolute (i.e., stationary) coordinate system at the instant of
interest [10]. We assign coordinate systems to joints
according to the Sheth-Uicker convention [20] which is
applicable to both lower and higher-pairs.

The forces/torques acting on each rigid body within the
system originate from inertial, gravitational, actuation,
viscous friction, and environmental contact. These
forces/torques may be applied at a point (as with actuation and
environmental forces/torques) or may be distributed over the
mass (as with inertial and gravitational forces/torques) or
surface (as with viscous friction forces/torques) of the body;
however, these forces/torques are all conventionally modeled
as originating at a point. We assign a coordinate system which
is fixed with the body and located at that point-of-application
as a reference for labeling the forces/torques. The dynamic
model of each of these forces/torques is simplified
conceptually in this particular natural coordinate system. For
example, the inertial forces acting on a rigid body are
conceptually simple to model in a natural coordinate system
located at the center-of-mass of the body and aligned with the
principal axes [5]. We utilize the conceptually simple
dynamic models of all forces/torques as the modular building
blocks for the systematic formulation of the dynamic model of
the complex mechanical system in Figure 1.



The dynamic model of the system is then formulated by
propagating all forces/torques acting on all of the bodies
within the system to a common coordinate system. Even though
we may model each force/torque at any coordinate system fixed
with the body on which the force/torque is acting, the
components of the force/torque vector depend upon the location
of the coordinate system. We may therefore model a
force/torque acting on body A at two distinct coordinate
systems A, and A, both fixed with body A. The force/torque

vector at coordinate systems A, and A, are then A'IA and AZfA,

respectively. The two force/torque vectors describe the same
force/torque at different coordinate systems. The force/torque

A‘fA applied at coordinate system A, thus has the identical
effect on body A as the force/torque At 4 applied at coordinate
system A2. The force/torque A2IA, which is a linear function

of the force/torque A‘fA, is computed according to A21‘A =

T
A, A , where the Jink Jacobian matrix A1L is
A, A A,

computed directly from the position six-vector Asz
1
[11,18]. We refer to computing the force/torque AZfA at

coordinate system A, from the force/torque A‘fA at coordinate
system Aq as force/torque propagation.

Forces/torques propagate through joints according to
the coupling characteristics of the joint. Forces/torques in
directions which do not correspond to joint degrees-of-
freedom propagate across the joint as if the joint were a rigid
link because no relative motion is possible. Forces/torques
aligned with the degrees-of-freedom of the joint propagate
across the joint according to the frictional characteristics. For
example, Coulomb friction couples a normal force exerted by
one body to a force opposing the motion of the contacting body.
Since the force/torque due to Coulomb friction would not exist
without the normal force, we consider Coulomb friction a
coupling phenomenon rather than a force/torque source.

Forces/torques A2fA on body A at joint coordinate system Ap
are coupled through the joint to adjoining body B according to
Asg = Aeg _ Aog , where the coupling matrix Azg is
B BA A BA

formulated according to the degrees-of-freedom and the
frictional characteristics of the joint [11]. We incorporate
friction as an integral component of our dynamics formulation
to unify the static and dynamic modeling of forces/torques.

We cascade transposed link Jacobian and coupling
matrices to propagate force/torques from their natural
coordinate system A4 fixed to body A to coordinate system Z,
fixed to body Z separated from body A by intermediate links

and joints. For example, Z2fz=Z?PA1A‘fA where the

T T T
propagation matrix Zzp A, = Zy zzyzc ZYY'LYZ)‘chX R A

In analogy with the propagation of light and sound waves
through a medium, forces/torques originating at a point within
a mechanical system propagate their effects throughout the
system.

We have implemented the aforementioned force/torque
propagation and frictional coupling concepts to formulate a
step-by-step dynamic modeling procedure for the simple
closed-chain multibody mechanical system in Figure 1 [11].
The forces/torques acting on the system are the inertial (i),
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gravitational (g), actuation (a), viscous friction (v) and
environmental (e) forces/torques originating from all of the
bodies within the system. We propagate all of these
forces/torques to the center-of-mass coordinate system M(M)
of the main body M. We then equate the sum of these propagated
forces/torques to zero (according to Newton's equilibrium
law) to formulate the six primary dynamic equations-of-
motion:

z Z (M(M)P N(s, X)y )
5% s N(s, X) sX

0. (1)

In (1), the inner summation is over all force/torque
sources (i.e., s =1, g, a, v, and e) and the outer summation is
over all bodies X within the system, and N(s,X) is the natural
coordinate system for source s acting on body X. The

force/torque acting on body X from source s is N(S'X)fsx and

the corresponding propagation matrix is ""("”’PN(s X

The constraints between forces/torques along the*
degrees-of-freedom of the joint axes are not included in the
formulation of the six primary dynamic equations-of-motion
in (1). We must, therefore, include these force/torque
constraints to complete our dynamic model of the system. We
thus formulate Ng secondary dynamic equations-of-motion
where Ng is the number of joint degrees-of-freedom in the
system. The secondary dynamic equations-of-motion for the
joint between bodies A and B at joint coordinate system By are
formulated according to:

(r-Bic,, B‘CAB]ZY ; (BP e, N1, ) =0,

(2)

In (2}, the outer summation is over all bodies Y within the
system between the joint and the environment, and the

coupling matrix B‘CAB is computed by negating the nondiagonal

elements of the coupling matrix B’CBA. From the six equations
in (2), we obtain (6-d4g) null equations and dagg secondary
force/torque equations-of-motion where d4g is the number of

DOFs of the joint between bodies A and B. We formulate (2) for
all of the joints in the system.

The complete dynamic model consisting of the six
primary and the Ng secondary dynamic equations-of-motion in
(1) and (2) are linear in the actuator and environmental
forces/torques and the accelerations of the center-of-mass of
all of the system bodies. The velocities and accelerations in the
model are referenced to natural instantaneously coincident
coordinate systems. We thus apply our kinematic methodology
[10] to compute these instantaneously coincident velocities
and accelerations from the velocities and accelerations of the
joints and the main body. We then substitute componentwise
these separate kinematic computations into the dynamic
equations-of-motion to formulate the closed-form dynamic
model [11].

4. Examples

4.1  Planar Double Pendulum

We apply our dynamics formulation to the planar
double pendulum (an open-chain mechanism) sketched in
Figure 2.



(i g st

Figure 2: A Planar Double Pendulum

The four position six vectors of the planar double
pendulum are:

ApL”=(O 0000(6;-90°) )T
Liep,=(00000867)7

L"p,_‘2=(a1 00000 )T
and L2p ~(a200000)T;

the coupling matrices are

100000
010000
A _L _j{oot1000 |
Cer,=CL,=looo0100 |
000010
000000
and the nine force/torque vectors are
L‘Zf\L, ( -m1L‘2aL‘2X -m1L‘ZaL12y 0000 )T
Leaog, =( -m1L22aL22x -m1l'22a|_22y 0000 )T

L T
‘2fg,_1=(0 -m1g 0 0 0 o)
Mar,=(fxfy 0007)T

L
21faL2=

L. T
22f9L2=(0 -m2g 000 o)
bifa = Aar=(0 00001 )T

and Loty =(000002)T
The constants my and m, are the masses at the ends of
links Ly and Lp, respectively, g is the gravitational constant, and

14 and 1, are the actuator torques applied at the bases of links
Ly and Lp, respectively. Each actuator produces a torque on the
link it is driving and an equal and opposite reactional torque on
the link to which it is mounted. We obtain the six primary
dynamic equations-of-motion by propagating all of the
forces/torques to the end of the pendulum (coordinate system
Lpo), and one secondary equation-of-motion at each joint; i.e.,
the coordinate systems L1 and A. The six primary dynamic
equations-of-motion lead to the three non-trivial scalar
dynamic equations-of-motion:
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[P

T L,
-spmq 12 mg®

“cami aL12X aL|2V al—zzx
+Ciamyg+ciamag+siofx-ciafy =0 (3)
]:12 E12 EZE
-Com -
s2mi aL|2X c2m1 aL12Y m2 aLzzY
-S12m1g-syamag+ciafx+siafy =0 (4)
-agsom E‘za +a2Com t‘za
2samy a +ascomy ey .
+aps12m1g+T2-a2c12fx-agsi2fy = 0 (5)

where s; = sin(8;), ¢; = cos(8;), sjj = sin(6;+8), and ¢;; =
cos(6;+ej). The two secondary dynamic equations are:
0

Ty-T2-a1C1fx-a1s1fy = (6)

T1+Tz=0 . (7)
The four acceleration equations required to complete (3)-(7)
are:

Ly 2
aL‘zx =-a10, (8)
-[12
= 9
a Ly = a1 (9)
2
1:ezatL L = “a1C2007 + 2152011 - a2(01 + 02)2  (10)
22
T—ZZ B 2
a, = aiSaw; + ajcaay + ag{ag + o) . (11)
Laoy 1

In (8)-(11), w1 and wy are the angular velocities and a1 and
oo are the angular accelerations of the joints. We solve (3)-

(11) for the two joint torques T¢ and T2 and obtain the

classical inverse dynamic model of the planar double pendulum
[12].

4.2 Biped in the Frontal Plane
We next apply our dynamics formulation to the biped in

the frontal plane (a closed-chain mechanism) deplcted in
Figure 3 [3]. The tweive position six-vectors of the biped are:

ApA‘=('d1/2 00000 )T A1p,_ﬂ=(o 0000 -0, )T
L"pC1=(0 k1 0000 )T C1pL’2=(o (l1-k{) 0000
Lip, =(00000 (01-62))T Lipg,= =(d2k20000
Apa,= (d1/200000)T Aapy, ~=(00000(180°-03)
L32pca=(0 k3000 o)T Copy, (0 Us-kz) 0000
L1pL,=(0 0 00 0 (83-02-180°) )7
L22p02=(-d2 k20000 )T.

T
T
T

)’
)
)
)

The coupling mattices are:

A‘CEL,= L'ZCL,LZ'-‘ L:"CLZL,= A’CEL3=

[oReReoNeoNa
[N RoRo oo
[ReReR e No]
CO—=-00O0
O=- 0000
[=NeNoRaNeNa)



Figure 3: Biped in the Frontal Plane

And the sixteen force/torque vectors are:

- 1 c.
mi aC‘x -m2 aCx
-m _‘a c.

T fcy ‘M2 g,y
Cc N 1 C c,
fig, =] "™ A, Mg, =| -M2 ‘A,

0 0

0 0

c c

- 1u(:‘z 12 zaczz
3
M3 ag
3,
-m
3 aCJV
c Cs
Mfir,=| M3 8,
0
0
Cs
-I13 aC;z

G(Lz)fgL2=Eo ‘m2g 0 0 0 0)T
Gy, = (0 -mag 0 0 0 0 )T
A!feL1=(F1 Gy 00 0 Hy )T
AefeL3=(-F4 -G4 0 0 0 Hg )T
A‘faE=~L“faL,=(0 0000 u)l
L‘zfaL1=-L21faL2=(O 000 0 u)T
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LzzfaL2=-L3'faL3=(0 000 0 ug )T
L92faLa=-A3faE=(O 000 0 ug )T_

The principal moment of inertia of body i about the z-axis is
1;, the joint actuator torques are uj, the environmental forces

in the x and y directions are F; and G;, respectively, and the
environmental torque about the z-axis is H;. The coordinate
systems G(L) for i=1,2,3 which are not explicitly drawn in
Figure 3 are gravitational coordinate systems located at the
center-of-mass of body L; and aligned with the gravitational
field.

We obtain the six primary dynamic equations-of-
motion by propagating the sixteen forces/torques to the
center-of-mass of the biped body (coordinate system C,), and
one secondary equation-of-motion at each of the four
joints;i.e., at the four coordinate systems X = Ay, Li2, L31,
and A3. We then substitute the velocities and accelerations
relative to the instantaneously coincident coordinate systems
(computed from the joint velocities and accelerations) into the
dynamic equations-of-motion. Finally, we apply the two
positional geometries

lysy+2daco+lzss = dy and lycy-2doSo+i3c3 = 0

and their derivatives to obtain the Hemami and Wyman
dynamic equations-of-motion for the biped in the frontal plane
[3].

5. Concluding Remarks and Further Research

We have designed a dynamics formulation to
incorporate the special characteristics of WMRs [11]. We
model the dynamics of simple closed chains by propagating all
forces/torques within the system to a common coordinate
system. We incorporate dry frictional coupling at a joint by
introducing coupling matrices. The coupling matrix for a joint
contains ones along the diagonal corresponding to joint
degrees-of-freedom, and frictional coefficients off-of-the
diagonal corresponding to dry friction couplings. Higher pair
joints are modeled by applying the Sheth-Uicker convention
[20] and instantaneously coincident coordinate systems [10].
Actuator forces/torques are incorporated in the dynamic model
along with the inertial, gravitational, viscous frictional and
environmental contact forces/torques. We thereby model an
unactuated joint by the absence of an actuator force/torque. We
apply our kinematic modeling methodology [10] to compute the
unsensed joint velocities and accelerations from the sensed
joint velocities and accelerations, and therby formulate the
dynamic model from sensed joint velocities and accelerations.

We have introduced a dynamics formulation which is
conceptually simple to apply. Our matrix-vector dynamics
formulation permeated by sparce matrices provides a
conceptual framework for the design of computationally
efficient algorithms. For example, servo-control algorithms
emanating from our dynamics formulation may be designed for
efficient computation by eliminating all scalar additions and
multiplications by zero and multiplications by plus and minus
one [15-16]. Because the dynamic equations are based upon
matrix-vector products, the servo-control algorithms may be
most amenable to direct implementation on parallel and vector
(array) processors. ’



We are continuing our study of WMR modeling and
servo-control. We are applying our kinematic [10] and
dynamic WMR models to evaluate servo-control algorithms for
real-time WMR trajectory tracking. We are applying the
forward dynamic solution to simulate the WMR motion and
control the simulation by implementing the inverse kinematic
and dynamic solutions with resolved motion rate [22],
computed torque [7], and robust computed torque [21] servo-
control algorithms. Extensions to our dynamics formulation
include: the modeling of flexible links; the modeling of such
material effects as stress, strain, fracture, and wear; and the
modeling of complex closed-chains.
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