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Abstract

In this paper, we develop a dynamic model of a gyro-
scopic wheel, an important component of Gyrover, a sin-
gle-wheel robot developed at Carnegie Mellon University.
The Gyrover robot consists of a single wheel, and is actu-
ated through a spinning flywheel attached through a two-
link manipulator at the wheel bearing. The flywheel can be
tilted to achieve steering, and can be driven forwards and
backwards to accelerate the robot. As a first step in model-
ing this highly coupled, dynamically stable system, this pa-
per focuses on developing a 3D model of the wheel part of
the Gyrover. In this paper, we first describe the Gyrover
robot. We then develop the dynamic model of the wheel
through the Lagrangian constrained generalized formula-
tion. Finally, we implement the resulting equations of mo-
tion and present simulation results for the unactuated
Gyrover in the different gravitational environments of
earth, the moon, and Mars.

1. Introduction

Gyrover is a novel, single wheel gyroscopically stabi-
lized robot, originally developed at Carnegie Mellon Uni-
versity [1]. Two prototypes have already been developed,
with a third currently under construction; Figures 1 and 2
show a schematic and photograph of the first prototype. Es-
sentially, Gyrover is a sharp-edged wheel, with an actua-
tion mechanism fitted inside the wheel. The actuation
mechanism consists of three separate actuators: (1) a spin
motor, which spins a suspended flywheel at a high rate, im-
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Fig. 1: A diagram of the first prototype of the Gyrover.
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Fig. 2: Photograph of the first prototype of the Gyrover.

parting dynamic stability to the robot; (2) a filt motor,

which controls the angle of the spinning flywheel, and ulti-

mately controls the steering of Gyrover; and (3) a drive mo-
tor, which causes forward and/or backward acceleration,
by shifting Gyrover’s internal pendulum mass.

The behavior of Gyrover is based on the principle of gy-
roscopic precession as exhibited in the stability of a rolling
wheel. Because of its angular momentum, a spinning wheel
tends to precess at right angles to an applied torque. There-
fore, when a rolling wheel leans to one side, rather than just
fall over, the gravitationally induced torque causes the
wheel to precess so that it turns in the direction that it is
leaning.

As a concept, Gyrover has a number of potential advan-
tages over multi-wheeled vehicles:

1. The entire system can be enclosed within the wheel to
provide mechanical and environmental protection for
the equipment and actuation mechanism.

2. Gyrover is resistant to getting stuck on obstacles
because it has no body to hang up, no exposed
appendages (in principle), and the entire exposed sur-
face is driven.

3. In manual control experiments, we have shown that
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the tiltable flywheel can be used to right the vehicle
from its statically stable rest position (on its side).

4. Gyrover can turn in place by simply leaning and pre-
cessing in the desired direction, with no special steer-
ing mechanism, thus enhancing maneuverability.

5. Single-point contact with the ground eliminates the
need to accommodate uneven surfaces and potentially
simplifies control.

6. Full drive traction is available because all the weight
is on the single drive wheel.

Potential applications for Gyrover are numerous. We have
shown that Gyrover can travel on both land and water; thus,
it may find amphibious use on beaches or swampy areas,
for general transportation, exploration, rescue or recre-
ation. Similarly, with appropriate tread, it should travel
well over soft snow with good traction and minimal rolling
resistance. As a surveillance robot, Gyrover could use its
slim profile to pass through doorways and narrow passag-
es, and also use its ability to turn in place to maneuver in
tight quarters. Another potential application is as a high-
speed lunar vehicle, where the absence of aerodynamic dis-
turbances and low gravity would permit efficient, high-
speed mobility.

Thus far, the Gyrover robots have been controlled only
manually, using two joysticks to control the drive and spin
motors through a radio link. This is the case in part because
no complete dynamic model of Gyrover has as of yet been
developed. Developing such a dynamic model, while ap-
parently tractable, involves the inherent complexities of
modeling two coupled, rotating masses whose axes of rota-
tion are misaligned in 3-dimensional space.

This paper takes the important first step in developing a
complete 3-dimensional dynamic model of Gyrover by
first deriving the equations of motion of an unactuated Gy-
rover, or in other words, a single gyroscopic wheel. A com-
panion paper [2] subsequently incorporates the actuation
mechanism with the dynamic model developed herein.

Thus, in this paper, we first provide a description of the
Gyrover robot. Next, assuming rolling without slip, and
point contact on a flat surface, we derive the nonholonomic
constraints for a single gyroscopic wheel without actuation.
We then derive the equations of motions for the wheel us-
ing the constrained generalized Lagrangian principle. Fi-
nally, we implement the dynamic equations in a real-time
graphic simulator and report results for different gravita-
tional environments, including earth, the moon and Mars.

2. Constraints of motions
2.1 Nonholonomic constraints

Rolling without slipping is a typical example of a non-
holonomic system, since in most cases, some of the con-
strained equations for the system are nonintegrable. Thus,
Gyrover is a nonholonomic system. A number of tech-

niques for analyzing nonholonomic systems have been de-
veloped [3-7]); the Lagrangian constrained generalized
principle is one of the better know of these methods, and
we use it below for deriving the dynamic model of a gyro-
scopic wheel.

Let us represent a system with m generalized coordi-
nates as,

q; = Gy 92 9, JE{L2, ....m} )]
acted on by a set of m generalized forces given by,
Q} = (Qp st--me)’je{laz"”’m} (2)

In nonholonomic systems the number of generalized coor-
dinates exceeds the number of degrees of freedom. If there
are n degrees of freedom and m generalized coordinates,
there will be (m —n) constraint conditions that must ex-
plicitly be satisfied by the system. In functional form, the
constrained equations can be written as,

fs = fs(CI) = f:(QP qys - Gy t) = 0. 3)

We can write the corresponding time derivatives as,

m
; d , 0
fo= Y aflquay - dw )i+ afla) = 0, (4)
- laqj dat

i=

or, in more general form,

m
ZAsjqj+as=0,se{l,2,...,m—n}. (5)
j=1
For a nonholonomic system, the set of Lagrangian equa-
tions are then given by,

d[{oL | oL S .
== = 2 AA G, je{L,2,..,m 6
taq.]] aq] s=1 sy / { } ()

where L = T — P is the Lagrangian function, 7 is the total
kinetic energy of the system, P is the total potential energy
of the system, and each A, is a Lagrangian multiplier
which accounts for the system constraints.

To represent the Gyrover wheel, we require six coordi-
nates, three for position (X, Y, Z) and three for orientation
(o, B,7y) - The Euler angles (, B, Y) represent the preces-
sion, lean and spin angles of the wheel, respectively, and
are illustrated in Figure 3.

2.2 Coordinate transformation

For the discussion below, let the inertial frame
{X,Y,Z} be attached to the ground x-y plane, which rep-
resents a perfectly flat surface upon which the Gyrover
wheel rolls (see Figure 4). Let the body coordinate frame
{xp, yp- 2} be attached to the mass center of the wheel,
where z, represents axis of rotation for the wheel. The
composite rotation matrix which transforms the wheel
from state | to state 2 in Figure 4 is given by R,
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Fig. 3: Definition of system variables for Gyrover.
Re = Rix,-u/RiepmR e -0Ryp mz-py D
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R. = |cacp -sa casP (8)
- 0 B
where co = cos®t, so = sind, c¢f3 = cosf and
sp = sinp.

Now, denote {i, j, k} and {I, m, n} as the unit vectors
along the x, y and z axes of the inertial and body frames,
respectively. Then, the relationship {i, j, k} between
{l,m,n} is given by,

Il = —(socP)i+ (cocB)j—spk )
m = —(co)i—(so)j 10)
n = —(sosP)i+ cosBj + cPk. 11

2.3 Velocity constraints

Below, we derive a general expression for v, the ve-
locity of the wheel’s center. First, we note that,

wg = 0l+om+on = —aspl+Pm+ (7 +acP)n (12)

y
where wp is the angular velocity of the wheel. Now, we
can express v, as,

V4 = QgXr +Vve (13)

AeC

where ve is the velocity of the contact point and
T4 . c = {-RI} represents the vector from C to A in Fig-

Fig. 4: Coordinate transformation from the inertial to the body
coordinate frames.

ure 3. If we assume perfect rolling without slip, v = 0
and (13) reduces to,

VA=merA<_C (14)

{—6usBI + B + (7 + &cP)n} x {~RI} (15)

Va4

vy = = R(Y + &cPB)m + RPn (16)

Transforming (16) to the inertial frame, we get the follow-
ing expression for v, :

vy = Xi+Yj+Zk, (17
where,

X = R(yco + eoeh — Bsousp) (18)

Y = R(ys0 + cePsa + PeosP) (19)

Z = RPep (20)

Equations (18) through (20) represent the three velocity
constraint equations. The first two equations are noninte-
grable and therefore nonholonomic constraint equations of
the type given in (5). The last equation, however, is integra-
ble and leads to the simple geometric or holonomic con-
straint,

Z = RsB, 21
assuming initial conditions Z, = 0 and B, = 0. There-
fore, we can represent Gyrover through five, rather than six
independent coordinates (e.g. {X,Y,q, B,y} or
{X’ Y! Z’ a’y})'

3. Dynamic model
3.1 Equations of motion

We now derive the equations of motion by calculating
the Lagrangian L = T — P of the system, where T is the

total kinetic energy of the system given by,
| U 1
T = §M(X2 +Y2+72% 4+ 5(1”003 +1,02+1,02) (22)

and P represents the potential energy of the system given
by,

P = MgRsinp. (23)
Assuming the Gyrover wheel to be hemispherical,
— — - 2
I, = Iyy = (5/8)1,,,1,, = (2/5)MR*, 24)

where M is the mass of the wheel and R is its radius. The
Lagrangian function in terms of the constrained general-
ized coordinates then becomes,

L= lM[xu v2+ 72+ Lraspy2 + Lrpy? +
2 4 4
i (25)
+ %Rz((xcﬁ +7)%| - MgRsB
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From equations (5) and (6), we determine the
Lagrangian equations of motion by evaluating the follow-
ing expressions:

oL , d(dL 5 OL
___:MX’———-— =MX,—'—=0 26
X dt(ax) 0X (26)
oL ., . d(oL\ _ ., . OL _
é_Y—MY’E(ﬁ)—MY’W_O 27
OL _ ool an 2.0

Eri MR [4as[3 +5(y+acB)cB}

dié)_

dioa) ~

MRzl:d@cBZ + %sBz) + %Ycﬁ - %B’YSB - %dBchB:] ’

oL
aa 0 (28)
UL tmrp AL = I,
B 4 dt op 4
oL _ 2.3 2.7
55 = MR a[20acB+5y}sB MgRep 29)
g_Yé = %MRz(c'ch+Y),
d(oLy _ 2 L y oL
) = MR - = =
- BY) MR - ofisp ), 5= 0 GO)
Mi = hAj + A4y, 31)
My = MAp,+hyAsy (32)
(22 + LsB2) 4 Z5cB - 2BysP - 2af
MR [oc(scﬂ +4s[3 )+5ycB SBysB SOLBCﬁSB} (33)
= MAp+ Ay
1 vr2p 26 2 6B + 2
4MR B+ MR oc[zooccB+jy:|sB+Mch[3 34)
= MA Ay
MR - 6Bsin + 6icosP) = A5+ Ay (35)
ApX+ARY+ALa+AB+A Y +a;, =0 (36)
Ay X+ ApY + AgyG+ AgyB+ Apst +a, = 0 (37)

Comparing the constraint equations (18) and (19) with (36)
and (37) we have that,

Ay =1,A,=0,4A,3 = -Rcach,
Ay, = RsasP, A5 = -Rea,a; =0 (38)

Ay = 0,A, =1,A); = —Rcasf,

Ayy = —RcasB, Ays = —Rsa, ay = 0 (39)
Thus from (6), the Lagrangian’s equations of motion are,

MX = A, (40)
MY = A, @1
MRZ[('SL@CL‘)Z—%SBZJ+%YcB—%BYsB—%dBCBsB}

= —A,RcacP - A, RsocP

(42)

Lyr2s 26[3 ceB + 2
4MR B+MR a[ZchcB+Sy}sB+MchB @3)

= ~A,;Rsousp + A ReasP
ZMR2(§  asin + Gcosp) = ~ A Reoi—AyRsa  (44)

The nonlinear differential equations (40) through (44),
along with the constraint equations (18) and (19) complete-
ly describe the motion for the Gyrover wheel. Below, we
analyze as well as numerically simulate these equations of
motion.

3.2 Precession rate

Here we derive the effective steady precession rate for
Gyrover as a function of the radius of curvature p, the ra-
dius of the wheel R, the lean angle §, and the gravitational
acceleration g . For different gravitational environments,
such as on earth, the moon, or Mars, this information can
be important for the automatic control of Gyrover.

To achieve steady precession (i.e. & = 0), the center of
the wheel must follow a circular path with radius of curva-
ture p and constant lean angle B, such that p = 0. As-
sume that the motion is centered about the z-axis of the
inertial frame, such that,

X = —psa, ¥ = pca. (45)

Letting & = O and B = 0, the conditions for steady pre-
cision, the constraint equations (18) and (19) reduce to,

X = R(y +6cP)ea, ¥ = R(y + &eP)sa (46)

Differentiating equations (45) with respect to time, we get,

X = —pdca, Y = —pdsa.. 47)
Setting equations (46) and (47) equal to one another,
(-B)a = ¥+ (48)
R
_(1% + cos B)a =7 (49)

Thus, equations (45) will be satisfied for the Lagrangian
equations of motion under the condition given by equation
(49). Next, differentiating equations (46) with respect to
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time and combining with equations (40) and (41), we get
that,

Ay = Mp(=tico+ ¢2so) (50)

Ly = Mp(=tiso~&2cat). 51

Finally, combining equations (42), (50) and (51) and solv-
ing for &, we derive the desired relationship to be,
62 = _ 20gcotp
SRcosfB +28p
The corresponding velocity of the wheel’s center is given
by vZ = (p&)?,

(52)

2 = 20g cotPp?
SRcosf +28p

Figures 5 and 6, plot the velocity v as a function of the
radius of curvature p and the lean angle 3, respectively,
for gravitational accelerations corresponding to those of
earth, Mars, and the moon. Note that for Mars and moon,
whose gravitational accelerations are approximately one
third and one sixth that of earth, respectively, the Gyrover
wheel can be driven at significantly higher velocities
through tighter turns. Also, the wheel will be relatively
more stable in a lunar or Martian environment, as demon-
strated by the smaller lean angles as shown in Figure 6.

(53)

4. Simulation experiments

We have solved the equations of motion numerically
and simulated them for M = 2kg and R = 17cm, and
initial  conditions Xy =0, Yo = 0, oy = 0,
Bo = 80deg, Y5 =0, % =0, y,=0, 6,5=0,
Bo = 0, Yy, = 6 rad/s. We compare the resulting motion
for gravitational accelerations g corresponding to earth,
Mars and the moon.

Figures 7, 8, and 9 plot the state trajectories for a period
of 20 seconds on earth, Mars, and the moon, respectively,
in order of decreasing gravitational acceleration g . First,

v (m/s)
w

0 0.2 04 0.6 0.8 1
p (m)
Fig. 5: Variations in the velocity as a function of the radius of
curvature and different gravitational forces.

note the trajectory of the wheel on earth (Figure 7). The
wheel wobbles significantly back and forth, as shown by
the large variations in the lean angle 8, and the irregularly
shaped x-y trajectory. Now compare the trajectory on earth
to that on Mars (Figure 8) and the moon (Figure 9). On
Mars, the wheel precesses in a nearly perfect circular path
of larger radius than on earth, and will take significantly
longer than 20 seconds to eventually fall down. The x-y tra-
jectory on the moon traces an even larger circle (twice the
diameter of Mars’ circle) and the wheel will take even
longer to fall down in that gravitational field. Thus, we ex-
pect that a single-wheel robot such as Gyrover will have
significantly greater dynarnic stability as a planetary rover
on either Mars or the moon rather than earth.

5. Conclusion

In this paper, we have developed a dynamic model of a
gyroscopic wheel, utilizing the constrained generalized
Lagrangian principle for nonholonomic systems. We have
implemented the equations of motion in a real-time graphic
simulator, and have simulated the dynamic behavior of the
wheel for different initial conditions and different gravita-
tional environments, such as those seen on the moon, and
Mars. From these simulations, we have seen that the unac-
tuated gyroscopic wheel has greater stability in lower grav-
itational fields, but ultimately needs additional actuation to
maintain indefinite stability. The work in this paper is an
important first step in the theoretical analysis and control of
the single wheel Gyrover robot, developed at Carnegie
Mellon University.
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Fig. 6: Variations in the velocity for different lean angles and
different gravitational forces (earth, Mars, and moon).
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