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Abstract

We propose PALM - a Portable sensor-Augmented vi-
sion system for Large-scene Modeling. The system solves
the problem of recovering large structures in arbitrary
scenes from video streams taken by a sensor-augmented
camera. Central to the solutton method is the use of mul-
tiple constraints derived from GPS measurements, camera
orientation sensor readings, and image features. The knowl-
edge of camera orientation enhances computational effi-
ciency by making a linear formulation of perspective ray
constraints possible. The overall shape is constructed by
merging smaller shape segments. Shape merging errors are
minimized using the concept of shape hierarchy, which is
realized through a “landmarking” technique. The features
of the system include its use of a small number of images
and feature points, its portability, and its low cost inter-
face for synchronizing sensor measurements with the video
stream. Example reconstructions of a football stadium and
two large buildings are presented and these results are com-
pared with the ground truth.

1. Background

The recovery of large scenes from video has an impact on
applications such as architectural modeling and large scale
virtual reality systems. :

A large scene is by definition one that cannot be com-
pletely seen by a single camera view. Recovery of the com-
plete scene requires the merging of smaller shape segments.
The propagation and accumulation of merging errors is one

" of the most difficult problems of large scene reconstruction. -

1.1. Structured Large Scenes

Merging errors can be reduced by using geometrical
primitives if the scene is relatively structured. For ex-
ample, very often the overall shape of the building can
be constrained to be a rectangular block. This enforces
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a global shape constraint, which reduces the merging er-
rors. Facade[2] is a successful system that adopts this ap-
proach. Geometrical primitives, such as rectangular blocks
and prisms, are assigned manually to represent different
parts of the structure.

Another way to reduce merging errors is to use a
panorama created by image mosaicing. Shape merging er-
rors are implicitly reduced when creating the mosaic in
which a certain scene feature like a plane can be used to
constrain the shape solution. This approach was adopted by
Shum et al.[5]. They demonstrated accurate reconstruction
of the interior structure of buildings.

1.2. Unstructured Large Scenes

Above mentioned systems, however, are not very effec-
tive in reconstructing large unstructured scenes, such as nat-
ural terrains. These scenes cannot be represented using sim-
ple geometrical primitives. The shape recovery needs to be
done using structure-from-motion techniques.

Structure-from-motion for a large environment has two
conflicting considerations. On one hand, it is desirable to
make sure that each camera view sees a large portion of
the structure so that the requirement for shape merging is
minimal. On the other hand, keeping the large portion of
the structure in view limits the amount of camera transla-
tions. Small camera translations, in turn, cause inaccuracies
in structure-from-motion. It is also likely that the ratio of
object depth to viewing distance will be large, making linear
projection models invalid. Popular structure-from-motion
methods like Factorization [6] and Extended Kalman Filter-
ing [4, 1] will give inaccuracies in these cases.

In order to do structure-from-motion precisely, one is
frequently forced to do a small portion of the structure at
a time. The small shape segments need to be merged to
form the complete big structure, and merging errors have to
be dealt with.
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Figure 1. The PALM System
2. The PALM System

To solve the large scene reconstruction problem, we pro-
pose PALM - Portable sensor Augmented vision system for
Large-scene Modeling (Fig. 1). PALM does this by using
multiple constraints derived from the use of auxiliary sen-
sors (such as GPS and heading/tilt sensors) and image fea-
tures. The use of auxiliary sensors helps to constrain the
overall shape recovery process.

2.1. Portable Data Acquisition System

PALM has a portable data acquisition system (Fig. 2).
The camcorder is mounted on top of a box that contains a
low-cost camera orientation sensor and a hardware interface
that we built to synchronize the sensor readings with the
video stream. The internal parameters of the camcorder are
calibrated using LaRose’s method [3].

2.2. Feature Selection and Correspondence

In PALM, the user is required to specify planes, points
and point correspondences using a graphical user-interface.
However, in contrast to Facade [2] and Shum’s system {5],
which require interactive input from the user throughout
the shape reconstruction process, PALM requires user in-
put only at the beginning of the process.
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Figure 2. Data acquisition system of PALM

2.3. Linear solution of shape vector for complete
structure

The use of the heading/tilt sensor achieves computational
efficiency for the solution of the 3D shape. In particular, it
allows the linear formulation of perspective ray constraints.

Ray constraints for all points in images are written using
the familiar perspective projection equations (1) and (2):
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where
I} is the camera focal length,
pp isthe p'* shape point,
t; is the camera translation for the f”‘ frame,
iy is the camera horizontal axis direction for the f** frame,
Js is the camera vertical axis direction for the Fth frame,
k; is the camera optical axis direction for the fth frame,
ugp is the horizontal image coord of p'" pointin the ft* frame,
vgp is the vertical image coord of p*” pointin the f** frame.

Equations (1) and (2) can be re-written respectively as:

(lif —uppky) - pp iy —ugppky) -ty (3)
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Assume that frame f sees a total of ¢ (> 2) shape points.
These ¢ points can be concatenated into a 3¢ X 1 shape vec-

torx; = (p] p3 p3 P} ... p0)T.

(s —vepks) - pp = (U~ vspky) -ty



Collecting all points in frame f, one can use (3) and (4)
to construct the linear equation

By x; Af ty (&)
where By is a 2c by 3¢ matrix and Ay is a 2c by 3 matrix.
The camera translation vector t; can be written as
t; = (ATA;) 'A] Brx;. ©6)
Vector t; is therefore a linear combination of the elements
of the shape vector x;. (5) is now written as
(Br — 47(ATA;)" AT B)x; = 0 (D)
Since PALM is equipped with a camera orientation sen-
sor, iy, jy and ky can be derived from sensor readings. If
point correspondences and camera focal length are known,
the matrices Ay and By are completely specified. There-
fore, by collecting all frames, all points and point corre-
spondences, (7) forms a large linear system for the solution
of the complete shape vector x, where x is the column vec-
tor comprising all 3D shape points (i.e., formed by concate-
nating the non-repeating points of x;, for all f).

2.4. Planar scenes of known orientation

In some cases, additional constraints are available to be
added to the linear system for the solution of the complete
shape vector x. - For example, if a scene contains special
features like planar configurations, planar constraints can
be written.

Man-made objects like buildings usually have planar fa-
cades. In most cases, these surfaces are perpendicular to
each other. For such scenes, it is easy for a user to specify
the plane directions based on the building coordinate frame.

For example, for planes in one orientation, the plane nor-
mal can be assigned n; = [1 0 0]7. For other planes per-
pendicular to [1 0 0]7, their normals canben, = [00 1]
or [0 1 0]7. If, in addition, the camera orientation with
respect to building frame is known, the 3D coordinates of
these planar points can be recovered up to a scale ambigu-
ity.

However, a scene may consist of different buildings. It
is therefore necessary to use a common reference frame in
order to refer to all planar directions. In PALM, the earth
frame is chosen as the common reference frame (the head-
ing/tilt sensor readings are measured with respect to this
earth frame). The plane normal vectors n can be trans-
formed to refer to this earth frame using

nf = (ofRE)7, 1<i<?2 (8

where RE is the building orientation w.r.t. earth.

475

Rg can be obtained from the following equation:

E _ pEpS pB)-1
Rg = RGRZ(RE) ®)
where RE : sensor orientation w.r.t. earth,
RZ. : camera orientation W.L.t. sensor,
REZ : camera orientation w.r.t. building.

RE is the output of the orientation sensor, and R, is ob-
tained by calibrating the image-plane to the sensor.

Rg can be calculated if the building contains at least a
pair of horizontal lines and a pair of vertical lines [5]. Note
that Rg needs to be established this way for only one frame.
This is because once R is determined, RZ for the rest of
the frames for this building can be estimated using

R¢ (RE)™ RERC (10)

A planar constraint on a set of points p;, pa, . . ., Pm,and
with normal vector n, is written as a set of m — 1 constraint
equations, each having the form:

n"RE(p; — pj41) = 0, 1<j<m (1)

2.5. GPS as Positional Constraints

PALM exploits the linear formulation in using the GPS
constraints. From (1) and (2), it is clear that camera trans-
lation is coupled with shape. If knowledge of the cam-
era translations is available through GPS measurements, the
overall shape can be constrained accordingly, using (6). The
advantage of using GPS is that the errors do not propagate
from point to point.

2.6. Avoiding trivial solutions

In solving for the complete shape vector x, two trivial
solutions exist. The first solution is to set x to be the zero
vector, which obviously satisfies (7) and (11). The second
is to set all points p, and camera translations t; to be iden-
tical and equal to an arbitrary 3-vector. In this case, (11) is
clearly satisfied. Since (7) is derived from (3) and (4), it is
satisfied as well.

To prevent these trivial solutions, one of two approaches
can be used. If GPS readings are available, (6) can be used
to constrain the camera locations. If GPS readings are not
available, two points from the complete large structure are
picked and their distance set to a non-zero value.

2.7. The Constraint-based Solver

The PALM solution method consists of two solvers: lin-
ear and non-linear. The linear solver provides initial solu-
tion estimates which serve as input to the non-linear solver.



2.7.1 The Linear Solver

The linear system of equations is formed by combining (7)
for all frames f, (11) for all planes, and (6) if GPS readings
are available. This linear system is used to solve for the
complete shape vector x.

Two solution methods were tried: hard/soft constraints
model [5]; and LU decomposition. It was found that both
gave good estimates as initial solutions to the non-linear op-
timizer.

2.7.2 The Non-Linear Solver

The non-linear solver is implemented using the Levenberg
Marquardt technique. This optimization refines all the esti-
mates, including all the shape points p;, all camera transla-
tions t, all camera orientation matrices [i; j; k|7, and
all building orientations with respect to earth frame RE.
Quaternions are used to represent all rotations.

The energy function to be minimized is

E = (12)

Epoint + CYEplanar + ﬁEgps

In our experiments, we set « to be 1 and 3 to be a low value
(0.0001). The GPS energy term is not emphasized in this
non-linear refinement stage because the main use of camera
positional constraints is to-ensure a good overall shape in
the linear solver stage. GPS measurements contain errors
that may distort the non-linear refinement process.

Epoint is the total projection error for all feature points
in all frames and it is given by,

Z Z _ l(Pp t)-ifyo
pmnr (ufp p) —tf) kf
. l(pp _tf) JJ'

Epianar is the sum of errors caused by deviation of points
from their assigned planes. For each constraint plane,

m~1
[ TRE
Jj=1

(14)

Eone_plane & pj+1)]

where n is the plane normal and m is the number of points
on the plane.

Note that n is defined local to the object frame. For
scenes with multiple objects, n for each object need to be
transformed to the global frame through the matrix RE. RE
can be estimated using a view of the building that contains
pairs of horizontal and vertical lines.

If GPS readings are available, they can be used to con-
strain the camera translations using

Ege = 3.(t —g1)7 (tf — &)

feq

(15)

476

For Global Coherence

adeys poyeiagg sof AGueiaty omoy

Higher Hicrarchy

Large Structure

Figure 3. Shape Hierarchy: dotted boxes rep-
resent independent views in each of the hier-
archies

Q is the set of all frames where GPS readings are available,
and g is the GPS reading at frame f.

2.8. Reduction of Merging Errors

PALM uses a technique named Landmarking to alleviate
the merging error problem in the reconstruction of a large
scene.

The idea of landmarking is to seek out a few camera
views, each of which sees more than one of the smaller
shape segments. In each of these landmark views, several
points are selected. These landmark points are matched
with the corresponding points in the relevant shape seg-
ments. Conceptually, landmark points project to rays in the
3D space to constrain the relative positioning of the shape
segments. These ray constraints are written using (7).

Landmarking for arbitrary scenes (i.e., structured, un-
structured, or a combination of both) is feasible i PALM
because of the use of the heading/tilt sensor. The key
idea here is that the camera orientation readings make it
possible to enforce the landmark constraints from as lit-
tle as one landmark image. While structure-from-motion
requires multiple images taken with large camera transla- -
tions, this requirement is not necessary for landmarking.
This is an important property because landmarked areas are
typically bigger and possibly have a depth larger than the
object-to-camera distance, and so conventional structure-
from-motion techniques will likely give poor accuracies.

Landmarking has two other properties that are also of
practical importance. As little as one landmark point on
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Figure 4. Observation map of feature points
for the stadium model. Gray pixels represent
observed points belonging to planes. Dark
pixels represent observed points that do not
belong to planes or any other geometrical ob-
jects. Empty spaces represent occlusion.

each shape segment is useful and not all shape segments
need to contain landmark-points. These properties help
in the overall shape reconstruction because large structures
usually consist of parts that occlude each other, so views
that contain big portions of the structure are likely to see
only partial views of the shape segments. Fig. 3 shows the
decomposition of a large structure into shape hierarchies.
Each dotted box represents an independent view. At low
levels in the hierarchy, local but detailed views are captured;
at high levels, information on the overall shape is available
from the views. It should be noted that landmarking deals
with images at high levels in the shape hierarchy.

2.9. Small Number of Images and Features

Structure-from-motion techniques require point corre-
spondences across image frames. Most structure-from-
motion methods require the feature points to be observed
in many frames. This requirement is not true in PALM.
PALM requires only a small number of images and feature
points. Because of the use of the camera heading/tilt sensor,
the complete scene reconstruction can be solved as a single
linear system even if the observation map is sparse. Fig. 4
is an example of the sparse observation map for the stadium
model (Section 3.3). Each pointin the map is observed in a
relatively small number of frames. . ‘

If a scene contains special features like points on known
planar orientation, the number of images required can be
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further reduced because the 3D coordinates of these planar
points can be recovered from just one image.

3. Experiments

We used PALM to.reconstruct two large buildings and
a football stadium in a campus environment. The plan
view dimensions of these large structures are 425x164 ft,
434x351 ft, and 716x486 ft, respectively.

The effectiveness of landmarking is illustrated in all
three examples. The third example ~ the football stadium,
illustrates the flexibility of PALM in dealing with scenes
that comprise both structured and unstructured shapes.

The images used are partial views of the scene and were
taken at ground level; no area views are used.

The plan views of these stadium/buildings are digi-
tized from the architectural blueprints for comparison (Fig.
5,11,14). Circular marks in these figures indicate the ground
truth points that are used to evaluate our results.

3.1. Building 1: 425x164 ft

Fig. 5 shows the ground truth plan view of Building 1.
The dotted lines correspond to a portion of the structure that
is not modeled in our experiments. Therefore, no ground
truth points are chosen in that region.

Images of the building were captured and the entire
building was broken up into 14 shape segments.

Without the use of landmark and GPS constraints, the
complete shape reconstructed is as shown in Fig. 6(a). The
shape segments are totally out of scale for the left (enclosed
by a circle) and the right sections of the building. The huge
scaling error is due to the fact that the merging was forced
to take place at a narrow region because of occlusion by
the part of the structure that was not being modeled (Figs.
6(b),6(c)). The shape segments were forced to be merged
by points at close distance. As a result, the relative scaling
calculation became unstable. Shape reconstruction errors
within a shape segment were multiplied with-the feature lo-
cation errors at the merging. This explains the large scaling
error as shown in Fig. 6(a).

Our landmarking technique resolves this problem. Three
landmark images were taken for this building. One of the
landmark images is as shown in Fig. 7, with twelve land-
mark points.

The solution using landmark constraints (without GPS)
is shown in Fig. 8(a). The peak error in this case is 15 ft
(the dotted curve in Fig. 10).

Next, we experimented with the GPS constraints. GPS
readings were taken at eleven of the fourteen camera loca-
tions. When these GPS constraints were incorporated, the
scaling problem shown in Fig. 6 was resolved, even though
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no landmark constraints were used. The shape reconstruc-
tion results using GPS and without landmark constraints is
shown in Fig. 8(b). Notice that the large scaling error has
disappeared. This is not surprising because, as explained
in Section 2.5, camera translations are sources of shape in-
formation in the perspective projection model, and so by
enforcing the correct values for camera translations, the re-
constructed shape will be close to the correct shape. The
peak error in this case was 23 ft (Fig. 10).

Fig. 8(c) shows the solution using both landmark and
GPS constraints, and Fig. 9 shows the recovered camera
locations. The peak error in this case was 7 ft (Fig. 10).
The GPS readings effectively reduced the peak error from
15 ft (when only landmark constraints were used) to 7 ft
(when both landmark and GPS constraints were used).

3.2 Building 2: 434x351 ft

The ground truth points for Building 2 are shown in Fig.
11. The building is broken up into 16 shape segments.
Landmark constraints were used, but GPS readings were
not used for this experiment.

The complete shape reconstructed without using land-
mark constraints is shown in Fig. 12(a). One can notice
that the reconstructed building has its two protruding por-
tions misaligned, as indicated by the arrows.

This misalignment error was due to the fact that the plane
(indicated by the arrow in Fig. 12(b)) was viewed from a di-
rection such that its normal vector was almost perpendicular
to the camera optical axis. A small error in feature location

. induced huge errors in the reconstruction.

Again, the landmark technique effectively fixed this
problem. The landmark points are as shown in Fig. 12(c).
Fig. 13(a) shows the solution after the non-linear optimiza-
tion stage , and Fig. 13(b) shows the recovered camera lo-
cations. The peak error was 17 ft (Fig. 13(c)).
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(b)

(c)

Figure 6. Large scaling error that occurs when
merging takes place at a narrow region (ar-
rows point to location of merge). Top: Re-
constructed model, left and right portion out
of scale; Middle and bottom: Images used for
merging.



Figure 7. Landmark points (Building 1)

3.3. Stadium: 716x486 ft

This example is difficult compared with the previous two
because:

1. The scene consists of 3 unrelated and disjointed build-
ings. These buildings do not share any features or ob-
jects that constrain relative locations and orientation.

2. The images were taken from the stadium field, thus
they are “looking out” at the scene being reconstructed.
This means relatively shorter baselines compared with
those of the first two experiments in which the paths
traced by the camera were longer than the perimenter
of the buildings.

To relate each of the building orientations with respect to the
earth frame, one view from each building that contains pairs
of horizontal and vertical lines is selected. These horizontal
and vertical lines are used to estimate the camera orientation
(RE) with respect to each of the building frames. Since
camera orientation (RE = REZRZ) with respect to earth
is given by the orientation sensor, the building orientation
(Rg) with respect to earth frame can be estimated using
).

For the "unstructured space in between buildings, end
points on the lamp posts are chosen to be recovered.

Without landmarking and GPS constraints, the recon-
structed shape would have been as shown in Fig. 15. Notice
that the reconstructed shape as well as the recovered camera
positions have a huge error. When landmarking and GPS
were used, the reconstructed shape and camera pose were
much better as shown in Fig. 17(a). Figs. 17(b),17(c) show
two views of the reconstructed model.

4. Conclusions

We proposed PALM that addresses the merging er-
ror problem in large scene reconstruction. PALM is
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(a)

(©)

Figure 8. (a) Recovered shape using land-
mark constraints (without GPS). (b) Recov-
ered shape using GPS constraints (without
landmarking). (c) Final recovered shape us-
ing landmark and GPS constraints



Figure 9. Recovered Build. 1 and camera loc.
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(a)

- (b)
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Figure 12. (a) Two portions misaligned in the
reconstructed shape. (b) Cause of the mis-
alignment: plane normal almost perp. to op-
tical axis. (¢) Landmark points used to fix the
misalignment problem
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Figure 15. Huge errors occur in the recovered
shape and camera positions if landmarking
and GPS are not used.
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Figure 13. (a) Final reconstructed shape using

landmark constraints: misalignment reduced " " GroundTrith PointNo.
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(b)
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Figure 17. Reconstructed stadium using land-
mark and GPS constraints. (a) Reconstructed
stadium and camera pose (b) A view of the re-
constructed stadium (c) Another view of the
reconstructed stadium
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equipped with a camera heading/tilt sensor that helps to
constrain the overall shape, regardless of whether the
scene is structured or unstructured. The merging er-
ror problem was solved by the landmarking technique.
Comparing the results with the ground truth, we con-
clude that landmarking and GPS improve the accuracy.
The results for each of the reconstructions of the sta-
dium/buildings are summarized in the following table:

length | width | max error (ft)
Build1 425 164 15
Buildi(gps) | 425 164 7
Build2 434 351 17
Stadium 716 486 27

Table 1: Maximum Absolute Shape Error
Acknowledgements

We thank Toshihiko Suzuki for contributing the circuit
design of the hardware encoder; David LaRose for calibrat-
ing our camera using his very efficient camera calibration
method; Mei Han for bringing to our attention the concept
of hard and soft constraints, and the tremendous help all
three have rendered. We also thank Dave Duggins and Bob
Collins for helping out with the GPS measurements, and
Marie Elm for her editorial help. The support of DTG, Sin-
gapore, is also greatly appreciated. '

References

[1] A. Azarbayejani and A. Pentland. Recursive estimation of
motion, structure and focal length. IEEE Transaction on Pat-
tern Analysis and Machine Intelligence, 17(6):562-575, June
1995.

P. E. Debevec, C. J. Taylor, and J. Malik. Modeling and ren-
dering architecture from photographs: A hybrid geometry-
and image-based approach. Technical Report UCB//CSD-96-
893, University of California at Berkeley, January 1996.

D. LaRose. A fast, affordable system for augmented reality.
Technical Report, Carnegie Mellon University, CMU-RI-TR-
98-21, April 1998.

L. Matthies, T. Kanade, and R. Szeliski. Kalman filter-based
algorithms for estimating depth from image sequences. Inter-
national Journal of Computer Vision, 3:209-236, 1989.

H. Shum, M. Han, and R. Szeliski. Interactive construction
of 3d models from panoramic mosaics. In Proceedings of
the Conference on Computer Vision and Pattern Recognition,
Santa Barbara, CA, USA., pages 427-433, 1998.

C. Tomasi and T. Kanade. Shape and motion from image
streams under orthography: A factorization method. Interna-
tional Journal of Computer Vision, 9(2):137-154, November
1992.

[2]

3]

{4]

{51

(6]



