Visual Memory-Based Learning

for Mobile Robot Navigation
Daniel Nikovski

Robotics Institute
Carnegie Mellon University
5000 Forbes Ave.
Pittsburgh, PA 15213

daniel.nikovski@cs.cmu.edu

Abstract

The paper describes an efficient memory-based learning
scheme for the localization of a door in a visual scene,
estimation of the distance to it from a mobile robot, and
steering the robot through the door. Digital signal pro-
cessing techniques are used to speed up the run-time pro-
cessing and achieve performance much faster than other
learning techniques would permit. Reported are results
from experiments with several varieties of memory-based
learning on two mobile robots.

1 Introduction

Navigating from point to point in a working environment
is the main task of a mobile robot. A number of tech-
niques are used for practical applications:
topological maps, sonar-derived evidence grids, sensor-
based planning, etc. These techniques solve the prob-
lem of high-level navigation and usually rely on low-level
primitives for navigating between close points. In a typi-
cal environment such as an office building, low-level nav-
igation in the hallways can be done reliably by means
of sonar-based maps and local obstacle avoidance rou-
tines. FEntering and exiting rooms, however, presents a
more challenging task. lLocal obstacle avoidance can be
used for navigating through any narrow passage in a local
occupance grid, but the robot cannot be sure that it has
successfully exited the room, because any gap between
two pieces of furniture in the room can be mistaken for
the door. For successful exiting and entering rooms, it is
necessary to first recognize where the door is.

Recognizing doors in visual scenes is not dif-
ferent from recognizing any other objects. A significant
amount of work has been done on finding faces [5, 6] and
cars [2] in images. Recent systems rely almost exclusively
on learning techniques instead of on model based ones,
because it is very difficult to create a model (either an-
alytical ot other) of faces, cars, doors, and other non-
elementary objects. Using learning techniques results in
a more autonomous operation and is much preferable for
mobile robots.

Most of the existing learning systems for im-
age recognition use some type of neural network (NN).

metric and

The approach reported in this paper uses a different
scheme — memory-based learning (MBL) [3]. While hav-
ing similar learning power to that of NN, MBL has an
important advantage over NN — it does not require any
training, as opposed to the sometimes prohibitively long
training time of NN systems. Instead, the computational
load is shifted to run-time. This, however, is not neces-
sarily a problem — digital signal processing techniques
(DSP) can be used for speeding up the computation, and
as a result, faster execution than that of NN is possible
even at run-time.

Section 2 describes the task of finding a door
in a visual scene and estimating the distance to it, as well
as how the task would be solved by an NN-based system.
Section 3 presents our approach to the problem with an
MBL system and the DSP techniques that can be used
for speeding it up. In section 4, experimental results of
the precision of the schemes on real robots are reported.
Section 5 describes how the estimate of the position of a
door, found by MBL is used to steer a robot through the
door. Section 6 lists several directions for future work,
and section 7 concludes.

2 Using Vision for Estimation
of Direction and Distance

The specific task at hand is to steer the robots Xavier and
Amelia [7] through a typical office door. These robots
have a round mobile base of diameter 60cm and 50cm,
respectively. Since a typical door is about 80cm wide, the
tolerances are quite small and navigation has to be very
careful, especially for Xavier. The precise estimation of
the position of the door is thus essential for successful
navigation.

A convenient representation of the position of
the door are the polar coordinates of the midpoint of the
line that connects the two door posts. The robot needs
to find the direction to the door (the angle between the
current direction of the robot and the line that connects
its center with the midpoint of the door), as well as the
distance from the center of the robot to that midpoint.

These two coordinates can be found indepen-
dently by means of MBL. The first step i1s to acquire a

wide panoramic image of the surrounding scene. Since
the cameras of the experimental robots have a 55° field of
view, we chose to take an image every 20°. For a whole
panorama of 360°, 18 images are acquired, with about 7°
overlap between images. The second step is to find the
door in the panorama, and the third is to estimate the
distance to the door.

Before presenting our approach, let’s first
consider how a typical NN-based system would solve the
second step, listed above — for example, a face-detection
system. Such a system learns to match an image win-
dow to the probability that this window contains a face.
At run-time, a window is slid over the acquired unknown
image, and the NN recognizer is run for each such win-
dow. If the output of the NN is above certain threshold,
a face is detected at that position of the window. The
complexity of the whole operation is O(KhM Nd?) for a
panoramic image of height N and width M, M > N and
a square window of size d, d < N; K is the number of
different scales, for which testing is done. Note that d
varies for different scales and can go up to N. Finally, h
is the number of units in the hidden layer of the neural
net.

The complexity of this method for the prob-
lem of door detection would indeed be O(KhMN?), be-
cause doors are large objects and d is close to N. This
complexity is considerable. It would be desirable to have
faster computation at run-time. This can be achieved by
the MBL scheme described in the next section. Further-
more, as is typical of all MBL systems, it has zero training
time.

3 Fast Visual MBL

MBL, also known as lazy or delayed learning, is a gen-
eral function approximation method that matches input
vectors X to output vectors y [3]. It differs from NN in
the way it treats the training examples.
ing them in order to adjust a set of parameters (weights
and biases), the example pairs (x,y) are simply stored in
memory until run-time. When a query Xpew is made, the
learning algorithm computes the distances from Xnew to
the x vectors of each of the training examples, and uses
these distances to build a model for the computation of
the required value of yyew. After the query is answered,
the model is discarded, and a new one is built when an-

Instead of us-

other query arrives.

We adopted the MBL approach for our prob-
lem as follows. Images of doors are stored in memory,
all with the same size — N by N pixels. They show the
doors at varying scales and from varying directions, but
in all of them the door is centered. In the order of 2K to
4K instances seems to be enough for successful recogni-
tion (X is the number of scale steps for a corresponding
NN system). Let the number of such instances be P.

As described in section 2, the wide image of
the environment is taken as a panorama of 18 images.
The width M of the whole panorama is then 18 N. Ac-

cordingly, there are M N candidate points for the position
of the door within the panoramic image. If we are inter-
ested only in the direction to the door on the horizontal
axis, the number of candidate directions is M.

These images constitute the input vectors, x,
of the training pairs. The output vectors, y, are different
for the two subtasks, as described below. After the train-
ing examples are obtained, four additional elements have
to be determined in order to do MBL ([3]):
metric, the number of neighbors to look at, a weighting
function, and a way to fit with the local points. These
elements also differ for the two subtasks of direction and
distance estimation.

a distance

3.1 Direction Estimation

The output vectors y for the problem of door detection
are the probabilities that an image x contains a door in its
center. For images of the door (positive examples), this
probability is y = 1. For images that do not contain the
door (negative examples), the probability is y = 0. Ob-
taining positive images does not present any difficulties;
however, obtaining negative ones is a hard problem, per-
vasive to all object recognition systems [5, 6]. This is so
because the space of negative instances (all images that
do not contain doors, in our case) is much bigger than
the space of positive instances (images that do contain
a door). Since representative sampling of the negative
space is not easy, we have adopted an approach that does
not need negative instances under certain assumptions.

The distance measure used is based on the
correlation function @Qxu between the template x and the
unknown image u:

Qxulp,q) = > > x[m,nlul(m —p)%N, (n — q)%N]

m=1n=1

(1)
Here x and u are both square N by N images,
and p, q, m, and n range from 1 to N. The modulo
operators % serve to keep the differences (m—p) and (n—
q) within this range too. When the images x and u are
normalized to unit length, the two images are vectors on
the unit hypersphere in N?-dimensional Euclidean space,
and the values of the correlation function Qxulp,q] are
equal to the cosine p of the angle between the two vectors.
The value p is thus a valid similarity measure between the
two vectors, although not a proper distance measure. To
turn it into one, several different expressions can be used,

such as:

dy(x,y) = | arccos p|

d2(x,y) = (p— 1),

where r is an even number. Computation-
ally, we can obtain the cross-correlation function between
two images very efficiently by means of the Fast Fourier

Transform (FFT)[1]. For two images x and u, the cross-
correlation function (xu is given by

Qxu = F[F(x)F(u)*],

where F denotes Fourier transform, F~! in-
verse Fourier transform, and * denotes complex conju-
gate. That is, we multiply the 2D spectrum of x by the
complex conjugate of the 2D spectrum of u, and take
the inverse Fourier transform of the product to obtain
the cross-correlation function of the two images in an N
by N array. If FFTs are used, this would produce N?
correlation coefficients with O(N2 log N) computations,
instead of the O(N*) for the straightforward application
of formula (1).

Using this efficient technique, we can com-
pute the distance between all memory instances and all
18 images of the panoramic scene. The complexity of
the whole computation is O(PM N log N), compared to
O(KhMN?) for an NN. But P is O(Kh) — the number
of memory instances P is comparable to the product of
the number of tested scales K and the number of hid-
den units h. This means that the proposed MBL method
achieves a speedup in the order of N?/log N with respect
to a NN-based system. For a typical value such as N = 64,
the speedup is more than 500 times.

Once the distances are known, several op-
tions are possible for producing an estimate of the po-
sition of the door in the scene. The simplest one is to find
the maximal p across all correlation arrays, and assume
that the door is at the corresponding location (p’,¢') in
the image. Since the pan angle at which the image was
taken and the angle covered by a single pixel are known,
it is easy to compute from (p', ¢') the angle « to the mid-
point of the detected door in the local coordinate system
of the robot.

This method would work unless there exist
objects that look very much like doors, but are not doors.
In such case, it would be necessary to store memory in-
stances of images of these objects, assigning to them out-
put values y = 0 and perform either nearest neighbor, ker-
nel regression, or locally weighted regression (as described
in the following subsection for distance estimation). We
found that the simple method of finding the maximum
correlation coefficient worked reliably for our purposes,
and used the more advanced MBL methods for distance
estimation only. This solution eliminates the need for
negative examples under the discussed assumption.

3.2 MBL for distance estimation

Once the position of the door in the panoramic view is
found, the distance to it can be estimated with the help
of the already computed distance measures. At this step,
only the images from the panorama that correspond to the
detected direction are considered. Because of the overlap
of 7°, two such images might exist — that is, pixels (p’, ¢')
of the best matching image u’ might correspond to the
same physical direction as pixels (p”, ¢") in a neighboring

image u”. The correlation coefficients for the positions
(p',q") and (p",q") are extracted from the correlation ar-
rays for all memory instances. There are either P or 2P
such correlation coefficients p;.

The output values y of the training examples
for this task are the distances from the door to the robot.
While the direction estimation task uses MBL for classifi-
cation, the distance estimation one uses it for approxima-
tion of a real-valued function. Three kinds of MBI were
tested on the task: k-nearest neighbor (kNN), kernel re-
gression (KR), and locally weighted regression (LWR). In
kNN, the predicted output for a new image Xpnew is the
average of the y-values of the k& best matching memory
instances. In kernel regression, a weighting coefficient is
first computed for each of the coeflicietns p; [3]:

wi = (14 pi)", (2)
where latge k indicates a preference to large

values of p;. The predicted output value is the weighted
average of all output values of the training examples:

> wiys
Ynew = .
2w
LWR is a combination of kNN and KR: the
weighting function is w; = 1 + p;, and the regression is
done only on the k& best matching examples.

4 Experimental Results

4.1 Direction estimation

We used a set of P = 30 memory instances, obtained in
the following manner. The robot was positioned at the
midpoint of the door and backed up on a straight line at
30cm steps so that the camera was kept foveated at the
midline of the door all the time. This was repeated for
two such straight lines whose orientation differs by about
20 degrees. The purpose of this procedure was to sample
the door at different scales and from different directions.
Note that the image is much more sensitive to changes in
scale than to changes in the direction of observation —
we sampled the scale at 15 values, while the observation
direction at only 2.

A total of 15 queries were performed by posi-
tioning the robot at a random place in the room and giv-
ing it random orientation, which was recorded for use in
the subsequent estimation of the precision of the method.
For each of these 15 positions, a panoramic set of 15 im-
ages was taken by rotating the camera at 20° degree incre-
ments, spanning the surrounding panorama from —140°
to 140° (the pan-tilt unit of the robot cannot do a full
360° degree span.)

For each of the 15 queries, we computed the
predicted direction of the door and the error with respect
to the true direction, which we had recorded at the time
of taking the testing sequences. The measured root mean
squared errors (RMSE) are shown in Table 1 together
with the average correlation for the best matching image,

for several resolutions of the images. Computation times
are shown in seconds for Sun Sparc 4.

Table 1. Direction estimation.

Image | Comp. | Nearest Neighbor
size time

XxY [sec] RMSE® I

64 x 64 25 3.8439 0.7515

32 x 32 5 3.6314 0.7879

32 x 16 3.6314 0.8091

16 x 16 1 3.0603 0.8080

The results show that even for a 16 x 16 im-
age, the average error in direction is only 3°.

4.2 Distance estimation

In another experiment, distance estimation was tested.
Thirty memory instances x;, ¢+ = 1,30 were acquired and
the corresponding distances y; to the door were recorded.
The distances varied in the range from Ocm to 420cm,
in 30cm increments along two lines from the door. Four
test cases (not on the two lines) were recorded as well.
Table 2 shows the RMSE from applying three types of
MBL, with varying parameters. In this table, k denotes
the number of neighbors for local regression and nearest
neighbor, while for kernel regression it denotes the power
in equation (2).

Table 2. Distance estimation RMSE cm.

type 1 2 3 4

KR 49.54 | 37.03 | 32.15 | 27.26
kNN | 22.38 | 17.92 | 27.31 | 25.44
LWR | 22.38 | 17.86 | 24.61 | 23.89

The best results were obtained with local re-
gression between the two closest points. This result is
consistent with the model of [4] for visual pose estima-
tion. Furthermore, the obtained accuracy is very close to
the one obtained by 2NN, which suggests that the cor-
relations with the two best matching memory instances
have very similar values and local regression practically
averages the distances of the two closest examples.

5 Robot Steering

Based on the experimental results described above, we
concluded that local regression between two neighbors on
16 x 16 images would give enough precision to steer the
robots through doors. It was found experimentally that
this can indeed be done repeatedly and reliably. MBL
was used to estimate the position of the midpoint of the
door, and the robot was rotated to head in this direc-
tion. Along this line, a goal was determined 150cm be-
yond the midpoint, and the goal was given to the local

obstacle avoidance of the robot. The robot was able to
successfully reach the goal within a prespecified tolerance,
usually correcting only slightly its course from the chosen
straight line. Since the tolerances on the larger robot,
Xavier, are very tight, a speed as low as 3cm/s is nec-
essary for successful navigation. On the smaller robot,
Amelia, a speed of 10cm/s is possible.

6 Future Directions

The current implementation of the system is in an open-
loop mode — the robot first determines the goal point
and then uses obstacle avoidance routines to reach it. A
closed-loop control system can be created to reestimate
the goal position and continuously correct the navigation
routine. Other possible extensions of the system include
the ability to select autonomously the memory instances,
as well as to recognize objects other than doors.

7 Conclusion

The paper presented a method for the visual estimation of
the location of a door in the local frame of a mobile robot.
Memory-based learning techniques were used, which elim-
inated the need for training. Of these, locally weighted
regression on two nearest examples provided best results.
The similarity measures necessary for MBL were obtained
very efficiently by means of DSP techniques, which re-
sulted in a fast, robust, and practical system for naviga-
tion through office doors.

References

[1] Jain, A. (1989). Fundamentals of Digital Image Pro-
cessing. Englewood Cliffs: Prentice Hall.

[2] Koller, D., Weber, J., and Malik, J. (1993). Robust
multiple car tracking with occlusion reasoning. CSD-
93-780. University of California, Berkeley, 1993.

[3] Moore, A.W., Atkeson, C.G., and Schaal, S. (1995).
Memory-based Learning for Control, CMU Robotics
Institute Technical Report CMU-RI-TR-95-18, April
1995.

[4] Murase, H. and Nayar, S.K. (1995). Visual learning
and recognition of 3-D objects from appearance. Intl.
Journal of Computer Vision, vol. 14, pp. 5-24.

[5] Rowley, H.A., Baluja, S., and Kanade, T. (1996). Hu-
man face detection in visual scenes. In D.S. Touret-
zky, M.C. Mozer, and M.E. Hasselmo (Eds.), Neu-
ral Information Processing Systems 8, pp. 875-881,
Cambridge, MA: MIT Press.

[6] Sung, K.-K. and Poggio, T. (1994) Example-based
learning for view-based human face detection. A.l.
Memo 1521. CBCL Paper 112, MIT, 1994.

[7] Xavier Project, Learning Robots Lab, CMU,

http://www.cs.cmu.edu/Groups/xavier/www /.

