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Abstract

Decision-theoretic reasoning and planning al-
gorithms are increasingly being used for mo-
bile robot navigation, due to the signi�cant
uncertainty accompanying the robots' per-
ception and action. Such algorithms require
detailed probabilistic models of the environ-
ment of the robot and it is very desirable to
automate the process of compiling such mod-
els by means of autonomous learning algo-
rithms. This paper compares experimentally
four learning methods in combination with
four heuristic decision-theoretic planning al-
gorithms for the purpose of learning a proba-
bilistic model of the environment of a mobile
robot and using this model for navigation.
One of the learning methods is novel and
presents an approach to probabilistic model
learning based on merging states by cluster-
ing trajectories of observation/action pairs.
The strengths and weaknesses of each com-
bination of learning and planning method is
explored in a sample environment for mobile
robot navigation.

1. Introduction

Mobile robots operating in o�ce environments have to
make decisions under signi�cant uncertainty in their
observations and the e�ect of their actions. Fur-
thermore, sometimes a set of locations in these en-
vironments are indistinguishable from one another,
which introduces perceptual aliasing and hidden state.
Decision-theoretic planning (Boutilier et al., 1999) has
become the preferred approach to robot control in
such situations and has been implemented on several
research prototypes of mobile robots (Nourbakhsh,
1998; Koenig & Simmons, 1998). A decision-theoretic
planner is usually provided with a stochastic model
of the environment, which re
ects the uncertainty in
the robot's sensing and actions. Hand-crafting such

a model is typically time-consuming and error-prone
and might require blueprints and/or CAD models of
the buildings the robot must operate in, as well as
considerable human e�ort. Hence, it is very desirable
to develop methods for learning such stochastic mod-
els from observation/action traces obtained from au-
tonomous exploration of the environment on the part
of the robot.

This paper reports experimental results from simu-
lated exploration and control of an o�ce mobile robot,
which uses four learning methods to acquire stochas-
tic models of the environment it operates in and ap-
plies four planners to the learned models in order to
navigate the robot to its home position. One of these
learning methods is novel and explores a state-merging
approach to model learning based on clustering per-
cept/action trajectories, in contrast with the tradi-
tional methods based on nonlinear maximization of
observation likelihood. The principal goal of the re-
ported experiments was to determine experimentally
which combination of learning and planning methods
works best for mobile robot navigation in o�ce spaces
and explore the limitations of these approaches. Sec-
tion 2 provides an overview of decision-theoretic meth-
ods for representing domains, reasoning, and planning
by means of partially-observable Markov decision pro-
cesses (POMDPs). Section 3 presents four algorithms
for learning POMDPs from data. Section 4 describes
the experimental environment, and experimental re-
sults are reported in section 5. Section 6 discusses the
results and some directions for future work.

2. Decision-theoretic planning

Decision-theoretic planning is an extension of the clas-
sical AI planning paradigm and can handle problems
in which the e�ect of actions is uncertain and obser-
vations are noisy and incomplete. It is based on the
frameworks of Markov decision processes (MDPs) and
partially-observable MDPs (POMDPs).



2.1 Representation and reasoning in POMDPs

A POMDP is described by the tuple
(S; �;A; T;O;E;R), where S is a set of states, �

is an initial probability distribution over these states,
A is a set of actions, and T is a transition function
that maps S�A into discrete probability distributions
over S. The states in S are not observable { instead,
observations from the set O can be perceived only.
The function E maps S � A into discrete probability
distributions over O (in some POMDPs the observa-
tions depend on state only). The function R describes
the immediate reward received when the POMDP is
in each of the states in S.

The structure, transition, emission, and reward func-
tions are based on the control objectives of the agent
that is controlling the POMDP. The scenario we are
interested in is mobile robot navigation, where each
state is a location in a world and each observation is a
discrete percept that can be produced by the percep-
tual apparatus of a mobile robot. If the objective of
the robot is to reach a particular goal state and stay
there, the reward for that state can be, for example,
one, while the reward for being in all other states can
be zero. Then, if the agent maximizes the reward it
receives, it will e�ectively be achieving its goal.

A POMDP can be controlled by executing one of the
available actions at each time step. As a result, the
POMDP transfers to a new unobservable state and
emits a new observation which can be perceived by
the agent that is controlling the POMDP. The agent
has to infer the state of the POMDP on the basis of
the sequence of observations and the knowledge it has
about the transition and emission probabilities of the
POMDP. Since the agent has to reason under uncer-
tainty, it cannot be completely sure about the exact
state the POMDP is in; instead, it has to maintain
a belief state Bel(S) represented as a probability dis-
tribution over all states in S (Cassandra et al., 1996;
Boutilier et al., 1999).

2.2 Planning with POMDPs

Controlling a POMDP amounts to choosing the cor-
rect actions that will maximize the expected cumula-
tive reward received by the agent over the course of
its operation. When this course is in�nite in duration,
the sum itself will be in�nite { one way to avoid this
is to apply an exponential discounting factor 
 < 1
to each reward. Thus, the goal of the controller is to
maximize the quantity <

P
1

t=0 

tRt >, where Rt is

the reward received at the t-th step of operation, and
< � > denotes expectation.

Several algorithms exist for �nding the optimal control
policy in POMDPs (Kaelbling et al., 1996). However,
since this problem has been proven to be PSPACE
hard, we are considering approximate solutions such
as assumptive planning and MDP-based approaches
(Cassandra et al., 1996; Nourbakhsh, 1998; Koenig &
Simmons, 1998).

Assumptive planning is a heuristic strategy proposed
by Nourbakhsh (1998), which performs full belief up-
dating of its belief state based on the transition and
emission probabilities, but makes several simplifying
assumptions when choosing an action. First, it as-
sumes that it is in the most likely state with complete
certainty, thus ignoring the possibility of being in other
states. Next, it constructs a deterministic FSA from
the transition and emission probabilities of the origi-
nal POMDP and uses a general search algorithm such
as iterative deepening to �nd a path in the FSA. Fur-
thermore, the planner produces a list of percepts that
ought to be seen if the plan is executed and the FSA is
a true representation of the world. However, in most
cases the percepts seen by the agent will di�er from the
expected ones, which is an indication that the plan is
no longer valid and the agent is lost. If this is the case,
the planner is called again to �nd a new plan based on
the latest estimate of the most likely state.

Another set of heuristic strategies solves �rst the un-
derlying MDP and then makes use of that solution in
conjunction with the estimated belief state (Cassan-
dra et al., 1996; Koenig & Simmons, 1998). The solu-
tion of the underlying MDP is an optimal policy that
maps each state into the action that maximizes the
expected future cumulative reward. In order to �nd
that action, an auxiliary function Q(s; a) is computed,
whose meaning is the expected cumulative reward if
action a is performed in state s and an optimal policy
is followed thereafter. If the Q-function is known for
a state, the optimal action a� for that state is the one
with highest Q-value: a�(s) = argmaxaQ(s; a). The
Q-function can be found by means of Q-learning, an
iterative Monte-Carlo reinforcement learning method
(Sutton & Barto, 1998):

Q̂t+1(s; a) := (1��)Q̂t(s; a)+�[R(s)+
 max
b

Q̂t(s0; b)];

where Q̂t(s; a) is an estimate of the Q-function at it-
eration t, � is a learning rate coe�cient, which should
decrease gradually with time, and the state s0 is sam-
pled according to the transition probabilities for state
s and action a. Once the MDP is solved, the Q-values
can be used in several ways to approximate the op-
timal policy for the POMDP case (Cassandra et al.,



1996; Koenig & Simmons, 1998). The most-likely-

state method (MLS) chooses the optimal action for
the most likely state, ignoring the possibility that the
robot might be in other states. The voting method

chooses the action with highest probability mass in
the belief vector. The QMDP method is similar to the
voting method, but instead of adding up state beliefs
only to the sum of the winning action, they are added
to the sums of all actions, weighted proportionally to
the actual Q-values.

3. Learning POMDPs

Learning a POMDP from observations instead of hav-
ing one available in advance furthermore complicates
the problem of determining optimal policies. Several
fundamental questions arise, among which the corre-
spondence between world and model states, and the
related problem of goal determination. In general, the
agent does not know how many states existed in the
original process that generated the data and has to
make a decision about the �nal number of states in the
model. Another di�culty is that of determining the
goal criteria for planning with the learned POMDP.
Both assumptive planning and the MDP-based strate-
gies need a goal state { either to terminate the iterative
deepening search for assumptive planning, or to con-
struct a proper reward function for the MDP-based
algorithms. However, when a POMDP is learned, it is
not clear which of its states correspond to the true goal
states in the real world; in general, there won't be one-
to-one correspondence between learned and true states
at all. This circumstance changes signi�cantly the goal
criterion used for planning.

One possibility is to transfer the goal from the state
domain to the perceptual domain, that is, instead of
trying to reach a goal location, the agent tries to ob-
serve the percept that corresponded to that location
in the training sensory-motor trace. For assumptive
planning, the states of the FSA that is an idealized
representation of the learned POMDP can be labeled
with the most likely percept to be observed in that
state. A solution exists for the MDP-based planners
as well. Instead of assigning reward one to the goal
state and zero to all other states, the reward for each
state can be equal to the probability that the goal per-
cept will be observed in this state. Thus, a policy that
maximizes reward will in e�ect maximize the probabil-
ity that the goal percept is seen; if the system is at the
goal location each time the goal percept is seen, this
policy will also maximize the probability of reaching
the goal state.

Learning in POMDPs can be performed by means

of general algorithms for learning probabilistic net-
works from data, such as those proposed in (Rus-
sell et al., 1994). A POMDP can be represented as
a chain of time slices, each of which has one state
node and one observation node; all time slices use
the same transition and emission matrices. The ob-
jective of learning is to �nd values for the entries in
the transition and emission conditional probability ta-
bles (CPT) of the POMDP, which maximize the log-
likelihood lnP (Djw) that the training data set D was
generated by the POMDP with parameters w. Each
case Dl from the data set D consists of assignments
for the observable nodes in O.

3.1 Learning POMDPs by iterative

adjustments of probabilities

The traditional approach to learning POMDPs has
been to �x the structure of the POMDP, initialize the
probability matrices of that structure, and iteratively
adjust them so as to maximize the likelihood that the
training data was generated by the model. Two such
algorithms have been considered in our experiments:
the �rst one is the Steepest Gradient Ascent algorithm
due to Russell et al. (1994), and the other one is the
Baum-Welch learning rule, based on the expectation-
maximization (EM) algorithm.

3.1.1 Gradient ascent in likelihood

Russell et al. (1994) proposed a particularly simple
learning rule which performs gradient ascent in the
space of CPT entries:

�wijk = �
X

l

@P (Dljw)=@wijk

P (Dljw)
=
X

l

P (Sij;UikjDl;w)

wijk

;

where wijk is the entry of the CPT of state node Si
that designates the probability that this node Si will
be in its j-th state sij given that its parents Ui are in
their k-th con�guration uk (Russell et al., 1994). The
summations index l runs over all data cases Dl in D.

3.1.2 Baum-Welch

Chrisman (1992) and Koenig and Simmons (1998)
adapted the Baum-Welch algorithm for learning hid-
den Markov models (HMMs) to the problem of improv-
ing the entries of the CPTs of POMDPs from data.
The learning rule is

ŵT+1
ijk =

P
l �

T
i;l(j; k)P

l 

T
i;l(j)

;

where ŵT+1
ijk is the estimate of the transition probabil-

ity P [Si(t + 1) = sikjUi(t) = uij] that node Si will



be in its j-th state sij given that its parents Ui are in
their k-th con�guration uk, after iteration T + 1, and

�Ti;l(j; k) = P [Si(t+ 1) = sik;Ui(t) = uijjDl; ŵ
k]


Ti;l(j) = P [Ui(t) = uijjDl; ŵ
k]:

3.2 Learning POMDPs by state merging

Baum-Welch and Steepest Gradient Ascent can be
used to learn HMMs and POMDPs, but in general
do not converge to the true models that generated
the training data (Nikovski, 1998). Both algorithms
are iterative { they start with a random assignment
of parameters and iteratively update them in order to
maximize the likelihood of the data. Very often they
fail to converge to transition matrices that are close to
deterministic. One possible reason is that the proba-
bilities in these transition matrices have random ini-
tial values and it is highly unlikely that the learning
algorithms will overcome local maxima in likelihood
to drive the parameters to the boundaries of parame-
ter space, which correspond to close to deterministic
transition functions. Furthermore, failing to converge
to such functions can have negative impact on heuris-
tic methods such as assumptive planning, which sim-
plify the POMDP into an FSA and can be exptected
to perform best in comparison with optimal POMDP
planning algorithms if the loss of precision due to the
simpli�cation is minimal.

In an attempt to overcome these shortcomings of
Baum-Welch and Steepest Gradient Ascent, two novel
algorithms for learning POMDPs were explored, both
of which based on state merging.

3.2.1 Best-first model merging

A completely di�erent method for learning HMMs has
been suggested by Stolcke and Omohundro, originally
for the purposes of speech recognition (Stolcke & Omo-
hundro, 1993). The algorithm builds an initial model,
which has a state for each observation/action pair. We
will call the states in this initial model time-states to
distinguish them from the true states of the POMDP,
which generated the observation data. This model �ts
the training data perfectly and has the highest pos-
sible log-likelihood, but cannot generalize over novel
cases, because in practice it over�ts the data.

The objective of the algorithm is to �nd which time-
states came from the same true POMDP state and
reduce the initial over�t model to the correct one.
This is done by consecutive merging of pairs of time-
states that are likely to correspond to the same hid-
den state in the underlying POMDP that generated

the data. The criterion for merging is the resulting
decrease in data likelihood. At each step of the al-
gorithm, several candidate mergers are computed, the
one that decreases the likelihood the least is accepted,
and the search continues in a greedy fashion until the
likelihood of the model with respect to the data be-
comes unacceptably low, or a predetermined number
of states is reached. This algorithm was adapted by us
for the purpose of learning POMDPs, much like Chris-
man (1992) adapted Baum-Welch for the same pur-
pose. Experimental comparisons with Baum-Welch on
14 synthetic worlds, reported in (Nikovski & Nour-
bakhsh, 1999), demonstrate that there are many cases
when the best-�rst model merging (BFMM) algorithm
outperforms Baum-Welch signi�cantly. However, the
computational complexity of BFMM is O(N3), where
N is the number of observations, and is by far the slow-
est of all algorithms considered in our experiments.

3.2.2 State merging by trajectory clustering

Another major shortcoming of the BFMM algorithm
is that state merging proceeds greedily and never re-
considers suboptimal mergers of pairs of time-states.
A better approach would be to rank somehow all pos-
sible mergers, and actually carry out only the most
promising ones.

The ultimate objective of state merging is to group
the time-states for all data points into several groups
such that the time-states in a single group are likely to
correspond to the same state of the true POMDP that
generated the data. This observation suggests the idea
to do clustering of the time-states based on some form
of similarity between them. The simplest approach is
to merge the time-states, which have emitted the same
symbol, but it is bound to fail when perceptual alias-
ing is present. A much better measure of similarity is
the length of matching action/observation sequences
prior to the two time-states. This is exactly the sim-
ilarity measure that McCallum used in his instance-
based Q-learning algorithm (McCallum, 1995). The
intuition behind this measure is that the trajectories
leading to a time-state represent an embedding space
of the true hidden state space, and close points in the
embedding space (matching trajectories) correspond
to close hidden states. This is a common approach
used in system identi�cation, which exploits the fact
that while the immediate observation is not a reliable
indication of the true state of the system, a whole se-
quence (trajectory) of such observations usually dis-
ambiguates the state. Furthermore, McCallum's al-
gorithm was constrained by design only to matching
trajectories leading into the current time-state, while
our novel algorithm has available data after the cur-



rent moment and can also match sequences leading
out of the current time-state. So, an analogous mea-
sure is the length of matching sequence after the two
time-states. The lengths of both sequences (leading
into and out of the current time-state) can be added
up as well. We will denote henceforth the length of
the matching trajectories prior to the two states with
b, and the length of those after the two states with f .
We will also introduce the variable c, which has a value
of 1 if the two directly emitted symbols from the two
states match, and 0 if they don't. In our experiments
we used the sums of all possible combinations of the
three measures b, f , and c.

The algorithm executes in the following four steps:

1. Compute similarities between all possible pairs of
time-states and place them in a similarity matrix.

2. Perform clustering of the time-states based on this
similarity matrix. The time-states in the same
cluster are assumed to correspond to the same
true state of the POMDP.

3. Label the time-states with the number of their re-
spective cluster from the previous step. At this
point, the POMDP becomes a fully-observable
MDP (FOMDP). (However, some of the states
might possibly be mislabeled).

4. Compute the transition and emission matrices of
the FOMDP { this is now straightforward.

It should be noted that some of the more popular clus-
tering algorithms such as k-means cannot be applied to
the second step of the algorithm, because they require
averaging of data points, while in this case there is no
underlying metric space in which addition and multi-
plication are de�ned. Nevertheless, there are cluster-
ing algorithms that can work with a similarity matrix
alone. One such algorithm, widely used in pattern
recognition, is based on �nding minimum spanning
trees (MST) in the graph whose adjacency structure is
de�ned by the similarity matrix (Duda & Hart, 1973).
Once the MST is found, the edges corresponding to the
least similar pairings are severed. This results in sev-
eral cliques, which de�ne clusters of time-states that
are likely to correspond to the same state in the true
POMDP that generated the observations. The last
step of this algorithm for state merging by trajectory
clustering (SMTC) is to assign consecutive numbers
to the remaining cliques, label the hidden states in the
observation sequence with their respective clique num-
bers, and estimate the transition and emission proba-
bilities of the POMDP as if it was fully observable.

This approach is likely to give better results than
BFMM, because it considers all possible mergers be-
fore actually carrying out any of them. Furthermore,
this method is guaranteed to recover completely a
fully observable POMDP, while this is not necessarily
true for SGA, EM, and BFMM. (SGA and EM might
get stuck in a local maximum of log-likelihood, while
BFMM might choose a very bad merger due to the
limited number of mergers it considers at each step.)
Thus, it can be expected that SMTC will outperform
EM and BFMM in worlds, which are mildly unobserv-
able, such as environments with moderate perceptual
aliasing.

Just like with BFMM, this algorithm is quite expen-
sive computationally, if implemented directly. Find-
ing the similarity matrix in a sequence of N ac-
tions/observations has a worst-case running time of
O(N3), because N2 matches are considered, and the
length of the matching subsequences backwards and
forwards can be as long as N elements. In prac-
tice, though, most matches will terminate after few
time steps. Still, the complexity of �nding the
MST given the similarity matrix of N2 elements is
O(N3), if Prim's algorithm is used, and O(N2 logN ),
if Kruskal's algorithm is employed in combination with
a fast sorting routine. Finally, the clique-labeling stage
takes computations in the order of N3, if matrix mul-
tiplications are used to determine adjacency between
members within a clique.

4. Experimental environment

The experiments reported below used a commercial
simulator of Nomad 150 robots, available from No-
madic Technologies, Mountain View, California. The
Nomad 150 robot is equipped with 16 infrared sensors,
which give proximity readings in the range of 0 � 36
inches. The readings have relatively low noise and high
repeatability, but because of their limited range, the
robot often experiences signi�cant perceptual aliasing.

The experimental world shown in Fig.1 illustrates this
problem. The size of the open space (white) sur-
rounded by the obstacles (black) is 100 by 50 inches,
and the robot starts exploration at coordinates (25; 25)
inches, with the origin of the coordinate system at the
lower left corner of the open space. Three actions are
allowed: move forward 25 inches, turn left 90 degrees,
and turn right 90 degrees. If the robot cannot com-
plete a whole move of 25 inches because of a collision
with a wall, it backs up to its original position.

Thus, the robot can be at one of three locations, and
can have one of four orientations (plus some small ran-



dom drift supplied by the simulator, which does not
result in more than 0:5 inches di�erence from these lo-
cations over a course of 200 steps). Thus, the robot
can be in one of 12 di�erent states at any time, and
perceive a 16-dimensional vector of infrared readings.
The fact that this world has only 12 discrete states
makes it similar to the maze worlds commonly used
in reinforcement learning research, with the di�erence
that the observations here are continuous, and not dis-
crete. The size of the state space is comparable to
that used in previous work on recovering worlds with
hidden state { Chrisman (1992) experimented with a
space-station docking problem with 6 states, and Mc-
Callum (1995) used synthetic worlds with 8, 11, 14,
and 15 states. All of these previous experiments used
discrete observations.

Some of the states in this world are indistinguishable
from each other { the following two pairs of states gen-
erate the same readings: (50; 25; 0) and (50; 25; 180);
(50; 25; 90) and (50; 25; 270). This is due to the limited
range of the infrared sensors (36 inches at most), which
does not allow the robot to perceive the distinguishing
feature in the upper right corner of the area when it is
at the central location with coordinates (50; 25). How-
ever, the leftmost and rightmost locations are identi-
�able from each other because of this feature. This is
one type of aliasing typically arising in o�ce spaces
when the robot is in a long corridors.

A total of 200 observation/action pairs were acquired
during the exploration stage in one sequence, with
the robot starting at the leftmost location facing east
(25; 25; 0). The 16-dimensional vectors of continuous
observations were quantized into 12 symbols by k-
means clustering { between 5 and 20 iterations were
typically necessary for convergence. After the obser-
vation vectors were quantized, each of the observa-
tion/action pairs were labeled with one of these 12
symbols, which were used in the emission tables of
the learned POMDP models. Note that at least some
of the symbols labeled no states at all, because the
number of discernible states is less than their total
number, due to perceptual aliasing. The correct num-
ber of states is given to the learning algorithms and
they have to learn the transition and emission proba-
bilities of the POMDP. Even though each action will
be tried on average 6 times in each state, it is often
the case that some state/action pairs are never expe-
rienced. As a result, some of the learning algorithms
sometimes produce transition matrices, which are not
strictly stochastic, i.e. the sum of all probabilities out
of a certain state for a particular action might be 0 in-
stead of the required value of 1 for stochastic matrices.
However, the planning algorithms deal with such cases

in a straightforward manner { assumptive planning
never considers such actions in the planning process, as
if this action was not available in this state, and the it-
eration of the Q-learning algorithm of the MDP-based
planners assigns zero Q-value to this state/action pair.
This is a reasonable and practical approach and it can
be expected that no other learning and planning algo-
rithms can do better in cases when certain transitions
are simply not present in the training data.

The goal of the robot was to reach the home location
(25; 25), facing east (steering angle 0). After a robot
acquired a model by means of one of the four learning
methods described above, it was placed at one of the
12 available starting locations and controlled by one
of the four planning methods. If it reached the goal
within 10 action steps, it was given a discounted re-
ward equal to 0:9 raised to the number of steps it took
to reach the goal, following the methodology of (Cas-
sandra et al., 1996). Conversely, if it failed to reach
the goal, it was given a reward of zero. For a particular
planner and learning method, the rewards were aver-
aged over the twelve starting states, and since one of
the states was a goal state and no actions were neces-
sary, any combination of learning method and planner
is guaranteed a reward of at least 1=12. The average
cumulative discounted award for random action selec-
tion was computed as well, to be used as a comparison
baseline { any combination of learner/planner can be
claimed to have built a useful POMDP model only if
it achieves signi�cantly better cumulative discounted
reward than that corresponding to random choice of
actions.

The MDP-based planners solved the underlying MDP
of the learned POMDP by Q-learning, sweeping each
state in turn and sampling successive states according
to the transition probabilities of the MDP. Learning
rate � = 0:1 and discounting factor 
 = 0:9 were used,
for a total of 1000 sweeps.

5. Experimental results

The experimental results are shown in Table 1 for four
learning algorithms, the last of which, SMTC, had
seven modi�cations based on the similarity measure
used in clustering trajectories. The similarity measure
was a sum of one or more of three components: c,
which was 1 or 0 depending on whether the states be-
ing matched emitted exactly the same symbol; b, the
maximum length of matching action/observation pairs
prior to the two states; and f , the maximum length
of matching action/observation pairs after to the two
states. It should be noted that if b > 0 then necessar-
ily c = 1. The components present in the similarity



measure for a particular modi�cation of the SMTC al-
gorithm are shown in the name of that modi�cation
in Table 1; for example, SMTCbf means that the sim-
ilarity measure used was b+ f .

Each entry in Table 1 corresponds to one combination
of learning and planning method and is of the form
�� s=z, where � is the average cumulative discounted
reward achieved over 5 runs, s is the sample standard
deviation of that reward, and z is the z statistic mea-
suring the number of standard deviations between �

and the average award �r achieved by random num-
ber selection over 55 runs (5 for each of the 11 learning
methods listed in the table).

The z tests, computed in Table 1, make the assump-
tion of Gaussian distributions of the respective sam-
ples. Hence, the computed z values have to be re-
garded with some caution, because while the distribu-
tion of rewards for random choice of actions is indeed
roughly Gaussian, the distribution of rewards for a pair
of a learner and a planner is most typically not. The
usual behavior of the robot during a series of test runs
is either to go to the goal directly and achieve maxi-
mum reward, if a good model has been acquired, or to
bang obstinately into a wall and get no reward at all.
This is due to the fact that the MDP-based policies
and assumptive plans are �xed, and since the belief
distribution converges to a �xed value when the robot
is held at the same location, the POMDP policies are
in practice �xed as well and if they are wrong, the
robot cannot escape that location. Consequently, the
rewards are distributed towards the extremes, which
violates the Gaussian requirement for z-tests.

With this cautionary note in mind, the results from
Table 1 can be interpreted to indicate that the fol-
lowing combinations of learning and planning meth-
ods achieve performance signi�cantly better than ran-
dom action selection: SGA/AP, BW/AP, SMTCc with
all MDP-based planners, and SMTCcbf with all plan-
ners. The version of SMTC, which employs the sum
of all matching components (SMTCcbf) performs best,
which con�rms expectations. However, those versions
of SMTC, which use the backward matching distance
b, but not the direct match c, perform very badly, even
though if b > 0, c = 1, as mentioned above.

For the sake of comparison, the last line of Table 1 lists
the performance of the four planners when they have a
fully observable model of the world (still represented as
a POMDP, but each of whose states always emits the
same unique observation). It is evident that all plan-
ners always �nd the optimal plan in this world, which
suggests that whenever a combination of a learning
and a planning method achieves suboptimal results,

this is most likely due to acquiring a wrong model on
the part of the learner rather than on failure to use the
model correctly. It can be seen that while at least some
of the learning methods achieve performance statisti-
cally signi�cantly better than random action selection,
they are still far from recovering reliably a POMDP
model of even such a simple test environment.

6. Conclusions and future work

Several algorithms for autonomous learning of
POMDP models from data were tested in conjunction
with four approximate decision-theoretic planners on
a simpli�ed robot navigation task. One of these meth-
ods, SMTC, is novel and is based on a radically di�er-
ent approach than existing methods, which typically
employ nonlinear optimization of log-likelihood. The
SMTC algorithm clusters states based on the similari-
ties between trajectories that lead into and out of the
states and subsequently compiles POMDPs based on
the formed clusters.

Several similarity measures for state clustering were
explored and the sum of matching sequences into
and out of the matched states proved to be best not
only among the other similarity measures, but also
achieved the best performance among all tested algo-
rithms. Still, the algorithm fails to recover the correct
POMDP quite often and new improved similaritymea-
sures should be explored.

Another major challenge is to scale the algorithm to
truly continuous state spaces, since the current simpli-
�ed world is in practice discrete, as most experimental
worlds in reinforcement learning research. This leads
to the associated problem of �nding a small number
of actions, sequences of which are guaranteed to reach
any goal state. It is essential to keep the number of
actions small, because their number a�ects adversely
the computational complexity of the algorithms.

The current algorithmic implementations of the algo-
rithms should be improved as well, because the number
of observations used in the experiments, N = 200, is
a practical limit for the time being { SMTC takes 63
seconds implemented in Matlab and C++ (MEX �les)
on a Pentium II computer running at 350MHz. Both
BFMM and SMTC have computational complexity
O(N3) and do not allow experiments with much longer
observation sequences, which would be absolutely nec-
essary for larger worlds. However, we are currently
working on a new version of SMTC, which employs a
fast matching algorithm from the �eld of DNA analysis
and expect to achieve complexity ofO(N logN ), which
would allow experiments with much larger worlds.



Table 1. Results for four learning methods and �ve planners. Shown are the average reward over �ve trials, the associated

standard deviation, and the statistical z test for di�erence between the achieved reward and that of random action

selection. Abbreviations: AP { assumptive planning; MLS { most-likely state MDP-based; Voting { voting MDP-based;

QMDP { MDP-based proportional to Q-values. See the text for the de�nitions of the variables c, b, and f .

Method AP MLS Voting QMDP Random

SGA 0:32� 0:06=+ 4:13 0:25� 0:11=� 1:65 0:26� 0:11=� 0:63 0:26� 0:11=� 0:63 0:269� 0:056
BW 0:32� 0:06=+ 4:13 0:25� 0:11=� 1:65 0:26� 0:11=� 0:63 0:26� 0:11=� 0:63 0:269� 0:056
BFMM 0:26� 0:16=� 0:40 0:23� 0:14=� 2:52 0:23� 0:14=� 2:52 0:26� 0:16=� 0:40 0:269� 0:056

SMTCc 0:27� 0:14=+ 0:32 0:33� 0:11=+ 4:23 0:33� 0:11=+ 4:23 0:33� 0:11=+ 4:23 0:269� 0:056
SMTCb 0:22� 0:08=� 4:07 0:17� 0:12=� 7:31 0:17� 0:12=� 7:31 0:17� 0:12=� 7:31 0:269� 0:056
SMTCf 0:27� 0:08=+ 0:28 0:23� 0:18=� 2:29 0:25� 0:17=� 1:46 0:23� 0:18=� 2:37 0:269� 0:056
SMTCcb 0:28� 0:00=+ 0:85 0:28� 0:00=+ 0:85 0:28� 0:00=+ 0:85 0:28� 0:00=+ 0:85 0:269� 0:056
SMTCcf 0:28� 0:01=+ 0:63 0:26� 0:06=� 0:61 0:26� 0:06=� 0:61 0:26� 0:06=� 0:61 0:269� 0:056
SMTCbf 0:20� 0:11=� 5:17 0:21� 0:09=� 4:27 0:21� 0:09=� 4:27 0:21� 0:09=� 4:27 0:269� 0:056

SMTCcbf 0:33� 0:07=+ 4:94 0:33� 0:07=+ 4:94 0:33� 0:07=+ 4:94 0:33� 0:07=+ 4:94 0:269� 0:056
True 0:65� 0:00=+ 32:88 0:65� 0:00=+ 32:88 0:65� 0:00=+ 32:88 0:65� 0:00=+ 32:88 0:269� 0:056

Figure 1. Experimental world for learning and planning.

The open space has a size of 100 by 50 inches, which results

in a total of 12 possible location/orientation pairs.
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