
Learning State Grounding for Optimal Visual Servo Control of Dynamic
Manipulation

Daniel Nikovski and Illah Nourbakhsh
The Robotics Institute, Carnegie Mellon University

5000 Forbes Ave., Pittsburgh, PA 15213 USA

Abstract

We present an experiment in sequential visual servo control
of a dynamic manipulation task with unknown equations of
motion and feedback from an uncalibrated camera. Our al-
gorithm constructs a model of a Markov decision process
(MDP) by means of grounding states in observed trajectories,
and uses the model to find a control policy based on visual in-
put, which maximizes a prespecified optimal control criterion
balancing performance and control effort.

Introduction
Most robots currently in use have limited sensing capa-
bilities and achieve their objectives by following prepro-
grammed routines or by employing immediate feedback
controllers. Building such controllers usually requires a de-
tailed kinematic and dynamic model of the robot and the task
it is performing, as well as significant design effort. In com-
parison, humans have remarkable natural abilities to acquire
skills in highly complex dynamic tasks involving multi-stage
decision making guided by visual input, and perform them
with minimal energy expense. Much of robotic research has
sought to emulate these abilities and endow robots with vi-
sual perception, optimal planning over long horizons, and
adaptive acquisition of control policies.

Incorporating richer sensing, such as vision, into tradi-
tional feedback control schemes, further complicates the de-
sign effort, because camera models and state observers have
to be built as well. The field of visual servo control has
emerged as an alternative, aiming to control the system on
the basis of features directly computed from images without
state estimation (Hutchinson, Hager, & Corke 1996). Learn-
ing visual servo control has been explored too, primarily for
the case of immediate feedback (fixed set-point controllers).

Optimizing a criterion involving a balance between per-
formance and control cost over an infinite horizon has been
studied in the field of optimal control (Bertsekas 1995).
When the equations of motion of the system are linear and
the control criterion is quadratic in both the distance to a
goal point and the control cost, linear quadratic regulators
have been used with much success. However, nonlinear dy-
namics and more complicated control criteria usually result

Copyright c
 2001, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

in intractable systems of differential equations. Learning the
equations of motion further complicates the solution. The
field of reinforcement learning is specifically concerned with
optimal sequential decision making when the dynamics of
the controlled system is unknown (Sutton & Barto 1998).
Hard control problems such as balancing an inverted pendu-
lum and the Acrobot task have been studied extensively and
also implemented on real setups (Jervis & Fallside 1992;
Spong 1995). The state of these systems, however, is as-
sumed to be completely known, or (in the case of real robots)
precisely measurable from joint encoders.

In the experiment reported in this paper, we have at-
tempted to learn a visual servo controller for a dynamical
system with rich dynamics, without prior knowledge of ei-
ther its kinematics and dynamics, or precise camera calibra-
tion and lighting models. The algorithm we present accu-
mulates training data in the form of features extracted from
images of sampled trajectories of the system’s behavior. Ag-
gregated discrete states of a Markov decision process are
grounded in these features, and the transition and cost struc-
ture of the MDP is computed based on the state aggregation.
The optimal policy for the resulting MDP is found by means
of policy iteration and subsequently used for controlling the
system. Results for various relative costs of control are re-
ported and the found optimal policies foreach relative cost
are compared.

Control problem
The task we are considering is related to the Acrobot and in-
verted pendulum tasks, as well as to the original centrifugal
governor problem of James Watt, which started the theoreti-
cal analysis of control systems in the18th century. A hollow
ball of radius75mm is attached to the second link of a sim-
ple 2-degrees-of-freedom (DOF) planar robot manipulator
with links of lengthl1 = 265mm and l2 = 115mm, re-
spectively (Fig. 1). The two joints move in approximately
parallel planes with link offset of25mm and are actuated
by two direct-drive servo motors (attached directly to the
links without additional gear boxes other than the ones al-
ready embedded within the servos) with torques44:4oz=in
and 19oz=in, and speeds230ms=60o and 90ms=60o, re-
spectively. The cord connecting the attachment point on the
second link and the ball is215mm long and has a rigid hol-
low tube around it, which essentially turns it into a third link

attached to the ball and the second link via universal unactu-
ated joints. Taking into account the rotational symmetry of
the ball, the system has 6 DOF, only two of which are actu-
ated. The quiescent state of the ball at settings of zero for
both joint angles is shown in Fig. 1.

Figure 1: Experimental setup in resting state.

The objective of the controller is to move the manipulator
so as to keep the ball as high as possible with minimal con-
trol effort. The effort is measured by the amount of move-
ment of the joints in servo-motor notches per control step,
which in its turn is proportional to the current and power
consumed by the motors.

The performance of the controller is inferred from visual
input. The manipulator and the ball are observed from a
QuickCam Pro camera placed1380mm above the plane of
the motion of the attachment point of the cord to the second
link, and pointed approximately perpendicular to that plane.
The camera and the servo control board are connected to a
computer with a Pentium Pro processor running at 200MHz.
An image is acquired, processed, and a new control position
for the servos is determined every90� 1:45ms – the reason
for the1:45ms average deviation is that the operating sys-
tem we are using can only meet soft real-time constraints.
The ball is painted in bright yellow color, and a patch of
bright pink color is placed at the second link, centered at
the attachment point of the ball cord. By tuning the color
gains, exposure time, light sensitivity, brightness, and con-
trast of the camera, it is possible to separate the ball and
the patch from the background by thresholding the resulting
pixel intensities without any modifications to the regular of-
fice lighting conditions. Separating the ball pixels from the
patch pixels is based on color information – the red compo-
nent is larger than the green component for the patch pixels,

and vice versa for the ball pixels. Classification, though,
is not perfect: a certain number of ball pixels (usually less
than10%) are always classified as patch pixels, apparently
due to the ball’s specular reflection, which looks red after
filtering by the camera electronics. Nevertheless, the cen-
troids of the detected ball and patch pixels, even when com-
puted with these false-positive patch pixels, coincide fairly
precisely with the attachment points of the cord to the ball
and second link, respectively, and can identify reliably the
position of these points on the image plane.

It is the Euclidean distance between these two centroids
in a particular image frame that we take as a measure of
how high the ball is with respect to its resting state. The
exact height is not measurable directly, but is proportional
(non-linearly) to the projection of the third link on the image
plane, so the latter is a reasonable substitute measure.

If the measured height in an image framet isHt, and the
sum of the displacement of the servo motors isCt, the total
performance for that frame isRt = Ht��Ct, where� � 0

is a user-specified multiplier expressing the relative cost of
control. The control objective then is to find a control policy
�� that maximizes the average performance of the system
over an infinite number of control points:

�� = argmax� lim
T!1

1

T

TX

t=1

Ht � �Ct

Controller design
Designing a general-purpose controller for this system,
which can bring the ball to any state in its state space is
an extremely complicated problem: too few of the joints are
actuated, the links are not completely rigid, and the signif-
icant mass of the ball in comparison with the servo torques
interacts with the links in ways, which are hard to capture in
a dynamical model. In addition, even though the kinematics
of the arm are known, the camera is not calibrated and the
actual state of the system cannot be inferred; such a model is
not even possible, because estimating the state of a ball fly-
ing in three-dimensional space from a single camera image
is an ill-posed problem. Even if estimating the position was
possible, the frame rate (11Hz) is too low to estimate the
translational and rotational velocities of the ball by frame
differencing. Finally, there are occasional delays in control
periods, which, although small and infrequent, can have sig-
nificant impact on the flight of the ball.

Instead of building a general-purpose controller, our strat-
egy is to force the ball into self-stabilizing trajectories and
choose the one, which is optimal with respect to both height
and control effort. Forcing the ball to circle steadily is a
suitable choice of a set of trajectories: we found that for a
certain class of open-loop control schedules, the movement
of the ball is self-stabilizing around a central orbit and not
too sensitive to small control delays. Such trajectories also
keep the projection of the ball quite far from the attachment
point on the second link, which results in good performance.

One open-loop control, which always brings up the ball
and holds it in a steady circle is an ellipsoidal motion in joint
space with amplitude of the first joint at least20 notches

(14o) and amplitude of the second joint at least30 notches
(21o) and period less than800ms. The resulting shape of
motion of the attachment point on the second link in Carte-
sian space is quite far from circular and is even further dis-
torted by the significant centrifugal forces exerted on the ball
and transferred to the link via the connecting cord; neverthe-
less, the resulting motion of the ball is roughly circular. The
problem with this control is that it is expensive in terms of
control effort and a lot of energy is expended even when the
ball is in high orbit and has enough momentum to go on cir-
cling with little or no effort. However, starting with controls
with lower amplitude never succeeds in bringing the ball into
a steady orbit and instead results in chaotic jerky movements
close to the starting state. The problem then becomes how to
switch efficiently between a powerful, but expensive control,
which almost always succeeds in bringing the ball to a high
orbit, and a weak control, which is inexpensive, but affects
the height of the ball very differently in different situations.

The two controls we considered werea1, the ellipsoidal
motion with amplitudes20 and30 notches for the two joints,
which completes a revolution on the ellipse in720ms (8
control frames), anda0, the motion with zero amplitude,
when the joints of the arm remain at their previous positions.
Switching between controls is done only after completion of
a full revolution, i.e., after8 control points with the same
amplitude. When the ball is in a stable orbit, this switch
occurs at approximately the same phase of the orbit.

This is a sequential decision problem, because several ac-
tions are required to move the system between different or-
bits: even when applyinga1 only, it takes at least4 revolu-
tions (32 control points, or2:88 seconds) to enter a stable
high orbit from the quiescent state of the ball. Conversely, if
the ball is in a stable orbit, it takes at least8 revolutions of
no action (a0) for it to drop down close to its resting state.
Furthermore, when the ball has moved down past a certain
height of the orbit, subsequent applications ofa1 appear to
produce initially only erratic movements, and it takes rela-
tively longer time to bring it back up, in comparison to the
case when the ball is starting from the quiescent state. Con-
sequently, the task of the controller is to bring the ball up
initially by applying a1 several times, and once it is high
enough, use the momentum of the ball to conserve energy
by applying actiona0. However, as soon as the ball drops
down to a level, which is likely to result in chaotic behavior,
the controller should bring it back up by applying actiona1.

The decision of when to switch the actions could poten-
tially be based on many characteristics of the ball’s trajec-
tory, measured from the8 images taken during one revolu-
tion. One possibility is to use the8 ball locations directly;
another one is to use derived statistics such as the average ra-
dius of the trajectory, or some estimate of its phase. Clearly,
the ball’s trajectory during the next revolution depends on
all of these variables, but if a compact decision rule is to be
found, it is essential to find one or more features to base the
decision upon.

Since the performance criterion to be optimized includes
the estimated distanceH between the center of the ball and
the attachment point on the manipulator, we chose to use the
average value�H of H over the last8 frames as a description

of the state of the ball. Clearly, this introduces some per-
ceptual aliasing, because important parameters of the ball’s
flight are ignored, such as the phase of the trajectory, as well
as the location of the individual points along it.

Failure to consider informative aspects of the true state
results in decreased determinism of the observed evolution
of the state, and higher uncertainty about the effect of ac-
tions. In order to deal with this problem, we rely on an al-
gorithm for stochastic optimal control, which samples the
system by a consistent exploration policy, builds a stochas-
tic MDP model of the state evolution and state rewards, and
then uses policy iteration to find the policy that maximizes
the average expected reward.

During exploration, the system attempts to cover the
whole state space of the problem (in this case, all possible
heights of orbit), and try all actions everywhere. The re-
sult of exploration is a database of transitions of the form
(�Hi; ai), i = 1; No, which are assumed to be representative
of the dependency of�Hi on �Hi�1 andai. The performance
Ri at timei does not have to be stored explicitly, because it
can always be computed asRi = �Hi � �C(ai).

In order to find an optimal policy, we construct an MDP
from the database of transitions. An MDP is described by
the tuple(S;D;A; P;R), whereS is a set of states of size
Ns, D is an initial probability distribution over these states,
A is a set of actions of sizeNa, P is a transition function that
mapsS �A into probability distributions overS, andR is a
reward function that mapsS�A into a scalar. The expected
average performance of following a particular policy�(s),
when starting in states 2 S can be computed by solving the
linear system of equations for all states

V (s) = R[s; �(s)]� R̂+
X

s02S

Pr[s0js; �(s)]V (s0);

wheres0 ranges over the whole state space, and the scalar
R̂ is the expected average reward of the policy� (Puterman
1994). If the number of states inS is finite, the value func-
tion for each state can be uniquely determined – even though
there is an extra variablêR to be found, the value function
of the states inS is unique up to an additive constant, so by
settingV (s0) to 0 for some arbitrary states0, we can obtain
a completely determined linear system of equations (Puter-
man 1994).

The policy iteration algorithm proceeds by choosing ran-
domly an initial policy�, estimating its value function as
described above, and then improving the policy by choosing
for each states the action, which maximizes its expected
performance if started at this state:

�0(s) = argmaxa[R(s; a) +
X

s02S

Pr(s0js; a)V (s0)]:

If �0(s) = �(s), the algorithm terminates, and the optimal
policy ��(s) = �(s); otherwise�(s) is set to�0(s), and the
algorithm proceeds with another sequence of policy estima-
tion and improvement steps, until termination. The policy
estimation step has relatively high complexity(O(N3

s)) if

implemented directly, but for state spaces with less than a
couple of thousand states, this is not a problem.

In order to apply this algorithm to the current control
problem, however, we need a discrete state space with rela-
tively few states, and good estimates of the transition func-
tion of the MDP under all actions. All we have so far is a
database of transitions in continuous feature space, as repre-
sented by the feature�Hi, which are hopefully representative
of the behavior of the system in different modes under dif-
ferent actions.

Our general approach is to ground a small set of discrete
states into feature space by means of clustering the starting
states in the transition database, and subsequently estimat-
ing the transition probabilities between clusters under all ac-
tions. We have pursued this approach also for the problem of
navigation of mobile robots (Nikovski & Nourbakhsh 2000).
The rationale behind this approach is that a clustering algo-
rithm naturally produces clusters of states aggregated in re-
gions with high occupancy, which results in approximately
even distribution among clusters of the samples, from which
transition matrices are estimated, and thus in higher preci-
sion of the estimates. On the contrary, a uniform discretiza-
tion of feature space, which is not driven by the actual expe-
rienced trajectories, is likely to result in imprecise frequency
counts and thus in high variance of the estimates.

Currently, the algorithm uses a fixed predetermined num-
ber Ns of clusters. This number depends on the number
No of sampled transitions in the database – if we assume
a relatively even distribution of starting states among clus-
ters, then an average ofNo=Ns states are likely to appear to
start from each cluster. Since there are a total ofNs clusters,
where these transitions can lead to, andNa actions to try,
we can expect that each entry in the transition probability
tables would be estimated from an average ofNo=(NaN

2

s)

samples. The larger this number, the less variance will exist
in these estimates.

The aggregated performance for each aggregated state
(cluster) is taken to be the average of the performance for
those transitions in the database, whose starting states be-
long to this cluster. The initial distribution in this case is de-
terministic – the system always starts in the cluster, to which
the quiescent state of the ball is assigned.

Experimental results
We experimented with different exploration policies, trying
to find one, which can sample fairly evenly all modes of the
system. Randomly choosing actionsa0 anda1 with equal
probabilities isnot such a policy – under it, the ball stays
mostly in two states: either in high steady orbit, or near
the resting state, moving chaotically. The system spends
the least time in the most interesting part of state space –
the boundary between steady high and steady medium-high
orbits, where it is very likely to dwell under optimal energy-
conserving policies.

To alleviate this bias of completely random exploration
towards unimportant parts of state space, we devised an
exploration policy, which persistently probed the interest-
ing regions of state space. The policy was of the form

a4
1
ak
0
ak
1
a10
0

, k = 1; 10, run over six runs to produce a to-
tal of 504 state transitions. Its purpose was to bring the ball
up to a steady orbit, and then test for how many revolutions it
was safe to let the ball move on momentum only, so that the
same number of revolutions witha1 could bring it back up,
instead of entering a chaotic low orbit, from which it could
not recover without expending too much effort. The last10

revolutions ofa0 ensured that the ball came to a rest before
trying the next deeper probing sequence. The resulting tran-
sitions are shown in Fig. 2. It can be seen that while action
a0 fairly consistently reduces the orbit, the consequences of
actiona1 have much more uncertainty, although in general
it increases the height of the orbit until that height reaches a
limit.

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

35

H
i

H
i+

1

Figure 2: Observed transitions for the exploration policy.
Action a0 is denoted by ’o’, and actiona1 is denoted by
’+’. Transitions below the solid line reduce the height, while
those above the line increase it.

We used the transitions experienced during exploration to
cluster the starting heights intoNs different discrete states
by means of k-means clustering, also known as learning
vector quantization (LVQ) (Kohonen 1995). The resulting
cluster centers (LVQ codebook) were used to label both the
starting and successor states of each transition (each suc-
cessor state is the starting state of the next transition in the
database). The transition matrices of the MDP were com-
puted by frequency counting: the probability of moving
from statesi to statesj under actiona was computed as
the number of transitions starting insi and ending insj un-
der actiona, divided by the total number of transitions out
of si undera. The aggregated performance for states under
actiona was the average height during all transitions start-
ing in s under actiona, less the cost of actiona multiplied
by the factor�, with C(a0) = 0 andC(a1) = 5.

The MDP was used to compute the optimal action for
each of the10 states by means of policy iteration. Not sur-
prisingly, the optimal policy was threshold-based: for all

orbits lower than a threshold�, the optimal action wasa1,
while for orbits higher than the threshold, the optimal action
wasa0. The threshold� lies halfway between the centers of
the two clusters, where the optimal action changes, and in
order to minimize the effect of the random cluster initializa-
tion of the LVQ algorithm, five runs were performed and the
resulting thresholds averaged. (Note that the number of clus-
ters on the two sides of the threshold is in general different
between runs.) The computed optimal policies for various
values of� were used to control the arm . The results are
shown in Table 1.

Table 1: Results for three values of the cost multiplier�.
For each value, the average height�H and cost�C measured
over 1000 revolutions are shown, as well as the predicted
total performancêR as estimated by the policy iteration al-
gorithm, and the actual total performance�R = �H � � �C.

� � �H �C �R R̂

0 1 28:36 5:00 28:36 28:43

1 27:86 26:54 3:05 23:49 24:77

2 27:18 25:13 2:28 20:09 21:44

The policy iteration correctly discovers that when there is
no cost of control (� = 0), the optimal policy is to apply al-
ways actiona2. When� > 0, the optimal policy maintains
a lower orbit, trying to economize effortaccording to its
relative cost. Also, there is fairly good agreement between
the predicted performance by the policy iteration algorithm
(R̂) and the actual performance measured from the test run
(�R), which indicates that the stochastic model obtained by
grounding discrete states into features is reasonably good.
Another look at these data is shown in Fig. 3, where the to-
tal performance for all policies is plotted against the relative
cost of control. It can be seen that each policy is optimal
only around the value of� that it was computed for, and the
learning algorithm takes into consideration that cost when
computing a control policy. This, of course, does not nec-
essarily mean that these are the exactly optimal policies and
better ones cannot be found by some other algorithm.

Fig. 4 shows a sample path of the height of the controlled
system under the computed optimal policy for� = 1, along
with the control signal. It can be seen that the controller
does not follow an open loop policy, but performs feedback
control based on the measured height of the ball from visual
input.

Conclusion and future work
The proposed algorithm for state grounding in image fea-
tures is able to find a suitable real-time control policy based
on visual input for a dynamic manipulation task performed
by an underactuated manipulator. The algorithm takes into
consideration the relative cost of control to adjust the con-
trol policy by varying the threshold� of its control rule. The
adaptive nature of the state grounding process is essential for
the exact determination of this threshold, which varies very
little between different cost multipliers and a fixedapriori

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
18

20

22

24

26

28

30

α

R

π
E

π*
0

π*
1

π*
2

Figure 3: Performance under varying cost multipliers for the
exploration policy (�E) and the computed optimal policies
��
0
, ��

1
, ��

2
, for � = f0; 1; 2g, respectively.

0 10 20 30 40 50 60 70
−1

−0.5

0

0.5

1

1.5

2

t

a

0 10 20 30 40 50 60 70
5

10

15

20

25

30

35

t

H

Figure 4: Control signal and measured height of the ball
under the computed optimal policy for� = 1.

discretization of the state variable cannot capture these fine
differences.

It is likely, however, that including more features repre-
sentative of the state of the system might produce even bet-
ter policies. Currently, the controller does not take into con-
sideration the phase of the ball along its orbit – this phase
visibly varies due to random fluctuations and the interac-
tion of the movement of the manipulator with the natural
period of the pendulum the ball is attached to. Furthermore,
the controller currently fails to recognize whether the ball is
still moving in a steady orbit or has entered chaotic move-
ment, and it can be expected that the optimal actions in each
of these cases would be different. Supplying the standard
deviation of the radius of the trajectoryH to the learning al-
gorithm might result in better state grounding and hence in
better policies.

The clustering of trajectories can be done with other, more
advanced approaches as well. These approaches include
clustering trajectories (orbits) by comparing them by means
of Dynamic Time Warping and using inter-trajectory dis-
tances to build clusters (Oates, Schmill, & Cohen 1999), or
building Markov chain models of trajectories and then clus-
tering those models by means of the BCD (Bayesian Cluster-
ing by Dynamics) algorithm (Ramoni, Sebastiani, & Cohen
2000).

An orthogonal direction of improving the controller is to
consider not only grounding of aggregated states into fea-
tures, but also finding similar aggregations in action space.
In the current experiment, the choice of the controller is lim-
ited to only two predetermined actions and it has to main-
tain an appropriate height of revolution by alternating them
in the right proportion. It can be expected that by searching
the space of all possible actions (including those that do not
correspond to a circular motion of the attachment point of
the ball) would result in more efficient and smooth control.

References
Bertsekas, D. P. 1995.Dynamic Programming and Optimal
Control. Belmont, Massachusetts: Athena Scientific.
Hutchinson, S.; Hager, G.; and Corke, P. 1996. A tuto-
rial on visual servo control.IEEE Trans. Robot. Automat.
12(5):651–670.
Jervis, T. T., and Fallside, F. 1992. Pole balancing on a
real rig using a reinforcement learning controller. Technical
Report CUED/F-INFENG/TR. 115, Cambridge University,
UK.
Kohonen, T. 1995. Learning vector quantization. InThe
Handbook of Brain Theory and Neural Networks. Cam-
bridge, Massachusetts: The MIT Press. 537–540.
Nikovski, D., and Nourbakhsh, I. 2000. Learning prob-
abilistic models for decision-theoretic navigation of mo-
bile robots. InProc. 17th International Conf. on Machine
Learning, 671–678. Stanford: Morgan Kaufmann, San
Francisco, CA.
Oates, T.; Schmill, M.; and Cohen, P. R. 1999. Idintify-
ing qualitatively different esxperiences: Experiments with
a monile robot. InProc. 16th International Joint Confer-
ence on Artificial Intelligence, 346–354. San Mateo, Cali-
fornia: Morgan Kaufmann.
Puterman, M. L. 1994. Markov Decision Processes—
Discrete Stochastic Dynamic Programming. New York,
NY: John Wiley & Sons, Inc.
Ramoni, M.; Sebastiani, P.; and Cohen, P. 2000. Unsuper-
vised clustering of robot activities: a Bayesian approach. In
Sierra, C.; Maria, G.; and Rosenschein, J. S., eds.,Proceed-
ings of the 4th International Conference on Autonomous
Agents (AGENTS-00), 134–135. NY: ACM Press.
Spong, M. 1995. The swingup control problem for the
acrobot.IEEE Control Systems Magazine, Feb.
Sutton, R. S., and Barto, A. G. 1998.Reinforcement learn-
ing. Cambridge, Massachusetts: The MIT Press.

