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Abstract

In this paper, we present algorithms for robotic (hand-eye configuration)
real-time visual tracking of arbitrary 3-D objects traveling at unknown
velocities in a 2-D space. We formulate the problem of visual tracking as
a problem of combining control with computer vision. We present a
mathematical formulation that is general enough to be extended to the
problem of tracking 3-D objects in 3-D space. We propose the use of
sum-of-squared differences (SSD) optical flow for the computation of the
vector of discrete displacements each instant of time. These displace-
ments can be fed either directly to a PI controller or to a Pole Assignment
controller or 1o a discrete steady state Kalman filter. In the latter case, the
Kalman filter calculates the estimated values of the system's states and of
the exogenous disturbances and a discrete LQG controller computes the
desired motion of the robotic system. The outputs of the controllers are
sent 1o a caresian robotic controller that drives the robot. The perfor-
mance of the proposed algorithms has been tested on a real system, the
CMUDDAm I

1. Introduction

An important component of a robotic system is the acquisition,
processing, and interpretation of the available sensory infor-
mation. At the lowest level, the sensing information is used to
derive control signals to drive the robot and at a higher level this
information is used to create models of the system and the en-
vironment. The sensory information can be obtained through a
variety of sensors such as position, velocity, force, tactile, and
vision to cite a few. In this paper, we address the use of vision for
dynamically servoing a manipulator for object tracking.

Research in computer vision has traditionally emphasized the
paradigm of image understanding. However, some work has been
reported towards the use of vision information for tracking [1, 2].
In addition, some research [3, 4] has been conducted in using
vision information in the dynamic feedback loop. While we ad-
dress the problem of using vision information in the dynamic
feedback loop, our paradigm is slightly different. Specifically, we
claim that combining vision with control can result in better
measurements. It is in this context that we view our current work
which shows that noisy measurements from a vision sensor when
combined with an appropriate control law can lead to an accept-
able performance of a visual servoing algorithm.

In this paper, we present algorithms that address the real-time
robotic visual tracking (hand-eye configuration) of 3-D objects in
2-D space. To achieve our objective, we combine computer
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Figure 1: Architecture of the Robotic Visual Tracking/Servoing
System

vision techniques, for detection of motion, with simple control
strategies. The problem has been formulated from the system'’s
theory point of view. This facilitates the extension of the algo-
rithm to 3-D space. The architecture of our framework is depicted
in Fig. 1. A cross-correlation technique (SSD optical flow) is
used for computing the vector of discrete displacements and
combined with an appropriate control scheme to calculate the
required motion of the robotic system. The control schemes that
we have used range from the simple PI controller to more com-
plex LQG and Pole Assignment controllers. We introduce al-
gorithms that incorporate sophisticated use of multiple windows
and numerically stable confidence measures. In this way, the
accuracy of the visual measurements is increased. The selection
of the controller is based on the vision technique that is used for
the computation of the displacement vector. In particular, mul-
tiple windows give accurate measurements and thus, a simple PI
controller is adequate. On the other hand, small number of win-
dows provides inaccurate measurements and stochastic con-
trollers should be used. The experimental results show that the
system performs satisfactorily even with noisy measurements and
adapts well to changes in the object’s motion. The proposed
scheme is modular and thus allows for different techniques to be
implemented for the calculation of the vector of discrete displace-
ments. In other words, we can replace the vision algorithm with a



new one without changing the basic structure of the tracking
system.

The rest of the paper is devoted to the description of our al-
gorithms and is organized as follows: In Section 2, we review the
definition of the optical flow and present methods for computa-
tion of the vector of discrete displacements. We also introduce
three types of confidence measure for each of the measurements
made. The mathematical formulation of the visual tracking
problem is described in Section 3. The control strategies, the
steady-state Kalman filter and the selection of the appropriate
control law with regards to the noise level of the measurements
are discussed in Section 4. Section 5 describes the hardware
configuration of our experimental testbed, DDArm II. Simulation
and experimental results are presented in Section 6. Finally, in
Section 7, the paper is summarized.

2. Optical Flow

The optical flow will be the basis for the computation of the
robot’s driving signals. This section will present an outline of our
vision techniques in order to illustrate their special characteristics
(noise, computational complexity, quantization errors). This out-
line is essential due to the fact that these characteristics should be
taken into consideration in the design of a visual controller. In
this way, the combination of control and vision techniques will
lead to an accurate solution of the robotic visual tracking
problem.

We assume a pinhole camera model with a frame R attached to
it. We also assume a perspective projection and the focal length
to be unity. A point® P with coordinates X, Y, Z)in R projects
onto a point p in the image plane with image coordinates (x, y).
Let us assume that the camera moves in a static environment with
translational velocity T =(Tx,Ty.Tz)T and with angular velocity
R=(R1,Ry,Rz)T with respect to the camera frame R.. The op-
tical flow equations are [1]:

TZ Tl
u=[xZ—Z]+[xny—(1+x2)Ry+yRZ] 1)

T, T,
v:[yZ—-—Z—s]+[(1+y2)Rx-—xyRy—sz] 2)

where u=xand v=y. Now, instead of assuming a static object and
a moving camera, if we were to assume a static camera and a
moving object then we would obtain the same results as in (1)
and (2) except for a sign reversal. The computation of  and v
has been the focus of much research and many algorithms have
been proposed [5, 6, 7, 8]. For accuracy reasons, we use a match-
ing based technique [9] also known as the sum-of-squared dif-
ferences (SSD) optical flow. For every point p,=(x,,¥,) in im-
age A we want to find the point pg =(x, +4,y, +v) to which the
point p, moves in image B. We assume that the intensity in the
neighborhood L of p, remains almost constant, that the point py
is within an area S of p,, and that velocities are normalized by

*Bold symbols denote vectors or matrices.
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time T to get the displacements. Thus, for the point p, the SSD
estimator selects the displacement d=(u,v) that minimizes the
SSD measure:

e(p,.d)= 2 UGy +m,y +n) -
mne N

IB(xA+m+u,yA+n+v)]2 3)
where u,v € §, and N is an area around the pixel we are inter-
ested in. This technique can be improved using sub-pixel fitting
and multi-grid techniques at the cost of increasing the computa-
tional complexity. The accuracy can also be improved by select-
ing an appropriate small area N and by having velocity fields with
few quantization levels.

The accuracy of the measurements of the displacement vector can
be improved by using multiple windows. The selection of the
best measurements is based on the confidence measure of each
window. The definition of an efficient and robust confidence
measure is not trivial. Images are a noisy source of information
and changes in illumination and surface reflectance can
deteriorate the performance of any confidence measure. An ef-
ficient confidence measure should recognize errors that are due to
homogeneous areas and occlusion boundaries. Anandan [9] tried
to develop a confidence measure that confronts the majority of
these problems. He defined as an SSD surface the surface that is
created by the different SSD values that correspond to different
possible displacements. This surface is used to provide infor-
mation about the quality of the measurements. We need a con-
fidence measure that can capture all the topological changes of
the SSD surface. It is important to mention that the shape of the
SSD surface is maintained even under significant noise corrup-
tion. The curvature of the SSD surface seems to be proportional
to the quality of the best match. Anandan proposed an algorithm
for computing the confidence measures based on the principal
curvatures and the directions of the principal axes at the SSD
surface minimum. The problem with the confidence measure
proposed in [9] is that the computation of the discrete second
derivatives is ill-conditioned. Thus, this confidence measure is
not robust in the presence of noise. Another problem appears
when this confidence measure is applied to a window that is
centered around a point which belongs to an edge. In the direc-
tion of the edge, the normalized directional second derivative is
close to 1, and thus, the algorithm fails.

Matthies et al. [10] have computed the variance in the estimate of
one-dimensional displacement. The computation is based on a
parabolic fit to the SSD curve. We propose an extension of this
technique to two dimensions by fitting parabolas to the directions
of the principal axes in the area of the SSD surface minimum
[11]. Thus, we compute the confidence measure for the i-th
window as:

conf;=min (dy,ay5, agy» dy35) 4
where @, a,s, dgq, and a, 55 are the second order coefficients of
the parabolas that are fit to the directions of the four principal
axes. They are computed by using the least squares method.
Their computation increases the computational load but it im-
proves the accuracy of the measurements. In addition to the
previously proposed confidence measure, we introduce two new



confidence measures which have been used in the experiments
(11]. Their advantage is that they capture the sharpness and the
local properties of the minimum instead of fitting mathematical
models of surfaces to the SSD surface. The reasoning behind this
is that a second order approximation of the SSD surface is not
always the best representation. The first confidence measure
describes statistically the sharp minimum. Thus, for the i-th win-
dow the confidence measure is:

conf‘. =min (5, 545+ 599 » s135) 5)
where the 5,'s are the sample standard deviations in the directions
of the four principal axes. Each one of these standard deviations
is computed as:

2 1 izM 2 2
Sk=ﬁ_—1[z‘l (e;)-Mz '] ©)
where the minimum éf the SSD surface is the median of the
samples of size M, and e denotes the value of the SSD surface.
Each sample consists of the values of the SSD surface adjacent to
the minimum in each of the four principal axes. The symbol &
denotes the mean value of each of the samples. Due to the local
character of the minimum, the number M should be small. In
addition, large M increases the computational load. The second
confidence measure tries, in a heuristic manner, to capture the
characteristics of the minimum. In this case, the confidence
measure for the i-th window is:

conf;=min (Sg, 5451559 5135) Q)
where the s, s are given by the equation:
2 1 i
Sk =A_4——1- ~ (ej_e,,u‘n)z 6]
J =

The symbol e, represents the minimum value of the SSD sur-
face and the s,s are computed along the four principal axes.

The selection of the best measurements is based on the values of
their confidence measures. If the object moves with two trans-
lation degrees of freedom in 2-D space, we need only one feature
point. Thus, we have to select the point that has the highest
confidence measure. A more complex scheme would involve
averaging the measurements that correspond to feature points that
have the same depth Z. This can create large errors due to the
fact that we give equal weight to both good and bad measure-
ments. This difficulty can be overcome by assigning different
weights to the measurements and computing the arithmetic means
for the u and v. The techniques discussed above can be extended
from black/white images to color images. In [11], a new SSD
measure that is efficient for use with color images is proposed.
The next step in our algorithm is the use of these measurements
in the visual tracking process. Our algorithm transforms these
measurements into control commands to the camera system.
Thus, a mathematical model for this transformation must be
developed. In the next Section, we develop the mathematical
model for the visual tracking problem. This model combines both
control and vision algorithms in order to achieve accurate robotic
visual tracking.
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3. Mathematical Formulation of the Visual
Tracking problem

Consider a target that moves in a plane with a feature, located at a
point P, that we want to track. The projection of this point on the
image plane is the point p. Consider also a neighborhood S, of p
in the image plane. The problem of 2-D visual tracking of a
single feature point can be defined as: "find the camera trans-
lation (T’ x,Ty) with respect to the camera frame that keeps S
stationary in an area S, around the origin of the image frame". It
is assumed that at initialization of the tracking process, the area
S, is brought to the origin of the image frame, and that the plane
of motion is perpendicular to the optical axis of the camera. The
problem of visual tracking of a single feature point can also be
defined as "find the camera rotation (Rx,Ry) with respect to the
camera frame that keeps S,, stationary in an area S, around the
origin of the image frame". The second definition of the visual
tracking problem does not require the computation of the depth Z,
of the point P. Both definitions are used in our experiments.

Assume that the optical flow of the point p at the instant of time
kT is (u(kT),v(kT)) where T is the time between two consecu-
tive frames. Tt can be shown that at time (k+ 1) 7, the optical flow
is:

w((k+ DD =ukD) +u (k-d)T) )

v{((k+ 1) =v (kD) +v (k—-d)T) 10y
where uc((k—d)T),vc ((k—d)T) are the components of the op-
tical flow induced by the tracking motion of the camera, and d is
the delay factor. For the time being, the delay factor is assumed
to be zero. Equations (9) and (10) are based on the assumption
that the optical flow induced by motion of the feature does not
change in the time interval T. Therefore, T should be as small as
possible. To keep the notation simple and without any loss of
generality, equations (9) and (10) will be used with k and (k+1)
instead of kT and (k-+1) T respectively.

If the camera tracks the feature point with translation T, (k) and
Ty (k) with respect to the camera frame, then the optical flow that
is generated by the motion of the camera with T, (k) and Ty (k) is:

T, (k) Ty(k)
uc(k)=— = s vck=—- A (1)

We assume that for 2-D visual tracking the depth Z; remains
constant. When the tracking motion of the camera is rotation
with R, (k) and R, (k), the optical flow induced by the moving
camera is:

u, () =R, (k) x(k)y (k)= R (k) ® (k) 1] (12)

v, (=R (O[> () +11-R (k) x (k)y () (13)
Equations (9) and (10) can be transformed after some simple
calculations to state-space form as (the inaccuracies of the model
are modeled as white noise):

x(k+1)=Ax(k)+Bu, (k) +Ed () +Hv (k) (14)
where** A=H=I, B=E=TL, x(®eR% u ek

**The symbol I, denotes the identity matrix of order .



d (k) € R? and v(k) € R2. The vector X (k)= (x (k),y (k))T is the
state vector, u_(k)=(u, (k),v, (k)T is the control input vector,
d(k)=(u (k),v(k))T is the exogenous disturbances vector, and
vk =, (), vy (k)T is the white noise vector. The measure-
ment vector z (k)=(z, (k) ,z, (k))7 is given by:

z(k)=Cx (k) +w (k) 15)
where w (k) is a white noise vector, and C=1,. The measure-
ment vector is computed using the SSD algorithm described in
Section 2.

The same model can be used for keeping the feature point station-
ary in an area S, different from the origin. Assume (rx,ry) is the
center of this area S,. A model similar to the one previously
mentioned can be derived by transforming the state variables x (k)
and y (k) to a new pair of state variables, x, (k) and yy (k). The
new state variables are x,; (k) =x (k) - r, and v (k)y=y(k)—r,. The
matrices A,B,C,E,H remain unchanged under the transfor-
mation. The SSD algorithm continuously computes the displace-
ment vector of the feature point from its desired position. Thus,
we have the ability to compensate for previous measurement
errors that tend to accumulate.

Consider a target that moves in a plane which is perpendicular to
the optical axis of the camera. The projection of the target on the
image plane is the area S, in the image plane. The problem of
2-D visual tracking of a single object can be defined as: "find the
camera translation (Tx,Ty) and rotation (R,) with respect to the
camera frame that keeps S, stationary”. It is assumed that the
target rotates around an axis Z which at k=0 coincides with the
optical axis of the camera. The mathematical model of this
problem in state-space form is (a formal derivation is given in
[11]):

x(k+1)=Ax(k)+Bu (k) +Ed(k)+Hv (k) (16)
where A=H=I, B=E=TIL,, x()eR wu/ (ke R’
d(k) € R% and v(k) € R3. The vector x (k)= (x(k),y (k),8 (k))T
is the state vector, u_(k)=(u, (k),v (k),R, (k)T is the control
input vector, d (k)= (u (k),v (k), (o(k))T is the exogenous distur-
bances vector, and v (k) =(v, k), vy k), vy (k))T is the white noise
vector. x(k), y (k), 0 (k) are now the X, Y and roll component of
the tracking error, respectively. The measurement vector
z(k)=(z, (b, zy k), 2, k)T is given by:

z(k)=Cx (k) +w (k) an
where w (k) is a white noise vector and C =1;. The measurement
vector is obtained in a slightly different way than in the case of
the visual tracking of a single feature point. First, the tracking
error of the projections of the two different feature points on the
image plane is computed by using the SSD algorithm. Then, an
algebraic system of four equations (two tracking error equations
per point) is formulated. The solution of the system is the X, Y
and roll component of the tracking error. If the projections of the
two feature points on the image plane are not the same, it is
guaranteed that the system of equations has a solution. It is
assumed that each one of these features at time ¢=0 is located at
its desired position. The control strategies that keep the target
stationary in both cases are discussed in detail in the next Section.
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4. Control Issues in the Visual Tracking problem

The control techniques that will be presented for the 2-D visual
tracking of a moving object can be used easily for the visual
tracking of a single moving feature point. The mathematical
models for the two cases (feature, object) that were developed in
the previous Section have the same structure. The only dif-
ferences are in the order of the systems and in the way that the
measurement vector is obtained. The following discussion of
various control schemes tries to indicate the conditions under
which these schemes should be used in the visual tracking
problem. Some of these controllers (PI) are attractive due to their
simplicity and others (LQG, Pole Assignment) are more general.
Appropriate selection can maximize the improvements that are
derived by the combined use of control and vision techniques in
the visual tracking problem.

A simple technique for the elimination of the disturbances and of
the noise of the system described previously, is the proportional-
integral control technique (PI regulator). An obvious effect of the
integral control is that it increases the type of the system by one.
Thus the steady-state error is reduced and the disturbances are
suppressed. On the other hand, the new system is less stable than
the original or can even become unstable if the gain matrices are
not properly selected.

A more general technique for the design of the controller of the
visual tracking system is the closed-loop pole assignment tech-
nique. Let the discrete-time description of the system be:

Ap@Hzm=BpgHu (k) +

ColghHwk k20 (18)
where w (k) is the white noise vector that corrupts the measure-
ment vector Z(k), and q_1 is the backward shift operator. The
above model is called the autoregressive moving-average model
with auxiliary input (ARMAX). The mathematical model of
equations (14) and (15) can be transformed to an ARMAX
model. We want to design a control law that places the closed-
loop poles of the system at some desired positions. If we choose
to locate all the poles at the origin, the controller becomes a
one-step ahead controller. In the presence of noisy measurements,
a controller of this type presents large oscillations. Thus, we
prefer to put the poles at locations that guarantee stability and a
good transient response. Hersh [12] has described a robust con-
trol law that is based on the principles of the pole assignment
method. If we neglect the stochastic term of the ARMAX model,
then we have a deterministic autoregressive moving average
(DARMA) model. Under certain assumptions, we can work with
a simple DARMA model. These assumptions are: a) the distur-
bances are deterministic and constant, and b) the noise terms are
neglected. Even though these assumptions are based on over-
simplification of the problem, proper selection of the closed-loop
poles can lead to a robust and efficient controller.

A more complex method for the control of the visual tracking
system is a modified version of the LQG (Linear Quadratic Gaus-
sian) control technique. The control law is given by



u, ()=-GX(B)-d (k) (19)

where d (k) is the estimated value of the disturbance vector d (k)
and X (k) is the estimated value of the state vector X (k). G is the
unique symmetric positive definite solution of a matrix algebraic
Ricatti equation. The vectors % (k) and d (k) can be computed by a
steady-state or time-varying Kalman filter [13]. In particular, we
design an observer of the disturbances and of the states. The
time-invariant steady state Kalman filter can be implemented
easily and does not require a large number of calculations. In-
stead of the steady state Kalman filter, one can use the time-
varying discrete Kalman filter which constantly updates the Kal-
man gain matrix [14). This improves the performance of our
observer but it is computationally more expensive than the time-
invariant Kalman filter. The next step of our algorithm is the
calculation of the pair (T, (k), Ty (k)) or of the pair (R (k) ,Ry (k)
or of the triple (T, (k),Ty (k) R, (k)). As was mentioned above,
the first two cases correspond to the visual tracking of a point
while the last case represents the visual tracking of an object. In
the first case, T, (k) and Ty (k) are computed by the equations
(11). In the second case, we have to solve the system of equa-
tions (12) and (13) and calculate R, (k) and Ry (k). In the third
case, the calculation of the T, (k) and Ty (k) is done in the same
way as in the first case. R, (k) is given directly as the computed
control signal. The knowledge of the depth Z can be acquired in
two ways. The first way is direct computation by a range sensor
or by sterco techniques [10]. The use of stereo for the recovery
of the depth is a difficult procedure because it requires the solu-
tion of the correspondence problem. A more effective strategy
that requires the use of only one visual sensor is to use adaptive
control techniques. The control law is based on the estimated
on-line values of the model’s parameters that depend on the
depth. More details about our adaptive control schemes can be
found in [15].

After the computation of u; (k) signals with respect to the camera
frame R, we transform them to the end-effector frame R, with

the use of the transformation °T,. The transformed signals are fed
to the robot controller. We experimented with two cartesian robot
control schemes: a cartesian computed torque scheme, and a
cartesian PD scheme with gravity compensation. The selection of
the appropriate robot control method is essential to the success of
our algorithms because small oscillations can create blurring in
the acquired images. Blurring reduces the accuracy of the visual
measurements, and as a result the system cannot accurately track
the moving object. The next Section describes the hardware
configuration of our experimental testbed (CMU DDAm II
robotic system).

5. Hardware Configuration

The vision module of the CMU DDArm II system is a part of a
bigger hardware environment. This hardware environment runs
under the CHIMERA II[16] real-time programming environ-
ment. The IDAS/150 image processing system carries out all the
computational load of the image processing calculations while
the Mercury Floating Point Unit does all the control calculations.
The IDAS/150 contains a Heurikon 68030 board as the controller
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of the vision module and two floating point boards, each one with
computational power of 20 Mflops. The system can be expanded
to contain as many as eight of these boards. The software is
organized around 3 processes: a) Vision process which does all
the image processing calculations and has a period of 150 ms, b)
Interpolation process which reads the data from the vision sys-
tem, interpolates the data and sends the reference signals to the
robot cartesian controller, and c) Robot controller process
which drives the robot and has a period of 3.33 ms. In the next
Section, we describe the simulation and experimental results.

6. Simulation and Experimental Results

6.1. Simulation

A number of examples, simulated on a Silicon Graphics Inc. IRIS
graphics workstation, have been used for determining the ef-
ficiency of the developed algorithms. The objects used in the
tracking examples are geometrical 3-D solid objects such as
cubes, cylinders and prisms. These objects have different colors
and move in front of a highly textured background. The synthetic
images are 767x767 and are quantized to 256 gray levels. Each
pixel’s intensity is corrupted with white noise. This means that at
each intensity value, we add a random number which is within a
certain range. This range is determined by the percentage of the
white noise. Our algorithms perform satisfactorily with white
noise in the range between 10% and 30%. With higher noise, the
results degenerate. The examples shown in Fig. 2-4 are im-
plemented with 10% white noise. The object’s centroid trajec-
tories are shown by the solid lines. The focal length of the
camera is unity. Distortion and effects of camera sampling are
neglected. The depth when needed, is assumed to be known.
Without loss of generality, we assume T=1.

We placed the closed-loop poles of the Pole Assignment con-
troller (PA) not only inside the unit circle but also within a small
distance from the origin of the z plane. The reason is that a
one-step ahead controller performs very well without the
presence of noise but in noisy conditions large oscillations appear
around the desired trajectory. We avoid placing the closed-loop
poles very close to the unit circle because the rise time increases
drastically. As a result, the controler fails to track fast changes of
the trajectory. Finally, we placed all the closed-loop poles at
2;=0.2. The performance of the Pole Assignment controller is
shown by the dotdashed trajectories in Fig. 2-4. We im-
plemented a time-varying discrete Kalman filter with reinitializa-
tion each time the error is greater than a constant €. The improve-
ment is not significant and the time-varying Kalman filter in-
creases the computational load. As an alternative solution, an
adaptive Kalman filter is used [13] but the results are similar to
the results of the time-varying Kalman filter. Thus, all the ex-
amples shown in Fig. 2-4 are done by using a steady-state
discrete Kalman filter. In Fig. 2-4, the LQG controlled camera’s
trajectories correspond to the dashed trajectories.

As mentioned earlier, the SSD optical flow technique is used for
the computation of the measurement vector. The simulations are
done as follows: In Fig. 2, one big window is used and the
object’s speed has no roll component. In Fig. 3-4, multiple small



windows are used. In the first case, the size of the window N is
70. The speed of the algorithm is improved by employing the
undersampling technique that reduces the computations without
significant loss of information. In the examples, we use 14x14
pixels and the largest displacement that can be detected is 18
pixels. The largest detected displacement can be increased by
quantization of the space of possible displacements. Because of
this, a larger tracking error occurs, which can be compensated by
proper tuning of the Kalman filter. The larger the accelerations,
the larger the deviation from the desired position would be. As
depicted in the figures of the examples, the system compensates
for these changes successfully. Each trajectory consists of 30
points. The objects move at different speeds and abrupt changes
happen to their trajectories. Fig. 2 shows that when abrupt
changes happen, there is an increase in the error. The largest error
is around 10 pixels. In Fig. 2, the PI controller seems to have a
better performance than the LQG regulator and the Pole Assign-
ment controller in the abrupt changes of the trajectories. This is
due to the fact that at these instants of time, the estimated values
of the disturbances present a large error. LQG regulator outper-
forms PI at the beginning of each trajectory. PI regulators per-
form a large number of fluctuations around the desired trajectory
because the measurements are not very precise. The Pole Assign-
ment controller has the worst performance. The reason is that we
try to compensate fast for changes that are not measured with
accuracy. We also tried a one-step ahead controller and the
results present errors with double the magnitude of the errors of
other controllers.

These measurements can be improved by using a larger number
of windows. Each one of these windows is now 10x10 and are
spread out in the image plane. For each window, we compute a
confidence measure that reflects the accuracy of the measure-
ments that the window provides. We tried three different con-
fidence measures that were proposed in Section 2. The results of
our implementation can be seen in Fig. 3-4. We observe some
interesting points from these results. The Pole Assignment con-
troller has the best performance and the LQG has the worst due to
the fact that the measurements are quite accurate. The LQG
controllers have a large error in the abrupt changes of the trajec-
tory because they need a finite amount of time to adapt to the new
values of the disturbances. In conclusion, the selection of the
control scheme is dependent on the vision algorithms that we use.
Vision algorithms that produce extremely noisy measurements
need controllers that can deal satisfactorily with noise. On the
other hand, more accurate vision algorithms are computationally
expensive. Large computational delays can make a tracking
system to fail. The next step of our work involved testing the
algorithms on the CMU DDAm II system.

6.2. Experiments

A number of experiments were performed on the CMU DDArm
I robotic system. During the experiments, the camera is
mounted on the end-effector and has a focal length of 7.5mm
while the objects are moving on a plane (average depth
Z =680mm). The center of mass of each one of these objects
moves across the line Y=0.74 X +0.77 (Y and X in meters). The
camera’s pixel dimensions are: 5,=0.01278mm and
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5.=0.00986mm. The real images are 510x492 and are quantized
10 256 gray levels. The objects used in the tracking examples are
books, pencils, and generally, items with distinct features. The
user, by moving the mouse around, proposes to the system some
of the object’s features that he is interested in. Then, the system
evaluates on-line the quality of the measurements, based on the
confidence measures described in a previous Section. Currently,
four features are used and the size of the attached windows is
10x10.

The gains for the controllers are the same as the ones used in the
simulation. The experimental results are plotted in Fig. 5-10
where the dotdashed trajectories correspond to the trajectories of
the center of mass of the moving objects. The vector Mez_P
represents the position of the end-effector in the world frame. The
experimental results lead to some interesting observations. The
computed torque cartesian scheme provides better performance
than the simple PD with gravity compensation scheme. This is
apparent from Fig. 5 and 6. Both schemes require high values for
the gain matrices. The simple PD produces oscillations around
the desired trajectory. The computed torque scheme is more ac-
curate because it takes into consideration the full dynamics of the
robot. The problem with the computed torque scheme is that it
requires the inversion of the Jacobian. Thus, the DDArm II can
easily become unstable (whenever two of the joints are aligned).
Due to this fact, in all other examples the cartesian PD with
gravity compensation robotic controller is used. Another inter-
esting observation is that the selection of the controller depends
on the relation of the quantization error to the displacements.
When the displacement is comparable with the quantization error
of the vision algorithm, controllers with the poles near to zero fail
as in Fig. 8. On the other hand, when the displacement is larger
than the quantization error, a controller with the poles near to
zero has a better performance (Fig. 7). These experiments are
done with the same object (book) and the same features. In the
simulation results, the previous observation is not apparent. The
reason is that the simulation results are produced in an artificial
environment where it is difficult to reproduce the noise that is
present in actual images. The LQG (Fig. 9) and the time-varying
LQG (Fig. 10) have similar performances. The experimental
results show that the use of the more complex time-varying LQG
is not justified. The same conclusion is derived by the simulation
results. The observed oscillations are due to the fact that the
robotic controller (PD with gravity compensation) does not take
into consideration the robot dynamics. Due to the noisy measure-
ments, the LQG seems to have the best performance. This be-
comes more obvious, when one reduces the number of the win-
dows which are used. PI is simple but does not compensate for
the noise that is apparent in the actual measurements. The Pole
Assignment has comparable performance with the LQG, but the
selection of the closed-loop poles should be done carefully.
Selecting the closed-loop poles without taking into consideration
the special characteristics (noise, camera model) of the vision
technique can lead to inaccurate tracking. In conclusion, accurate
vision algorithms require simple controllers (PI) for successful
visual tracking. However, accurate vision algorithms are com-
putationally expensive and computational delays are introduced.
As an alternative, stochastic controllers (LQG) can be used to



compensate for inaccurate measurements Wwithout significantly
increasing the complexity of the whole system.

7. Conclusions

In this paper, we considered the robotic visual tracking problem.
Specifically, we addressed the robotic visual tracking of arbitrary
3-D objects traveling at unknown velocities in a 2-D space. We
first presented a mathematical model of the problem. This model
is a major contribution of our work and is based on measurements
of the vector of discrete displacements which are obtained by the
sum-of-squared differences (SSD) optical flow. This technique
seems to be accurate enough even though it is time-consuming.
Other contributions of this work are a sophisticated multiple
windows measurement scheme and new efficient confidence
measures that improve the accuracy of the visual measurements.
The next step was to show the effectiveness of the introduced
idea of the combination of control with vision for an efficient
solution to the tracking problem. The selection of the most
efficient controller is based on the vision technique that is used
for the calculation of the displacement vector. Stochastic control
techniques are effective in the case of noisy visual measurements
while one step-ahead controllers are appropriate for quite ac-
curate visual observations. Experimental results show that the
methods are quite accurate, robust and promising.

The extension of the method to the problem of 3-D visual track-
ing, the use of more elaborate adaptive control schemes, the
investigation for more efficient motion detection algorithms and
the interaction of the control schemes with the noisy vision al-
gorithms are currently being addressed.
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Figure 2: Example with measurements from one big window
(Simulation).
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Figure 5: PI controller in conjunction with a cartesian PD
robotic controller with gravity compensation (Ex-

X

“ETEE LB YRR s

verimental).

ETR TR T T W R R T Ge e G iE e

I S Mt M R R A

Figure 6: PI controller in conjunction with a cartesian computed
torque robotic controller (Experimental).

864

D R BT

Figure 7: Pole Assignment (poles at 0.2) controller in conjunc-

tion

with a cartesian PD robotic controller with

gravity compensation (Experimental).
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Figure 8: Pole Assignment (poles at 0.2) controller in conjunc-

tion with

a cartesian PD  robotic controller with

gravity compensation (Experimental).
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Figure 9: LQG controller in conjunction with a cartesian PD

robotic
compensation(Experimental).
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Figure 10: Time varying LQG controller in conjunction with a
cartesian PD robotic controller with gravity compen-

sation (Experimental).




