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Abstract

This paper is a survey of current research in applying artificial
neural networks to the domain of intelligent vehicles. Itdescribes
work in three areas: video-based traffic monitoring, monitoring
and control of onboard systems, and vision-based lateral con-
trol. In each of these domains, successful preliminary systems
demonstrate that artificial neural networks have the potential to
make significant improvements in the state-of-the-art. Because
of the simplicity and uniformity of the neural network architec-
tures and algorithms employed in these systems, they each have
the potential to be implemented efficiently in hardware, which
could eventually make them commercially viable.

1. Introduction

Artificial neural networks are a powerful technique for solving
non-linear mapping and classification tasks. They have proven
capable of solving problems ranging from speech and handwrit-
ten character recognition [29] [26] to medical diagnosis [2]. Re-
cently neural networks have even begun to appear in consumer
products such as washing machines and vacuum cleaners [17].

Two attributes of artificial neural networks make them useful
for a wide variety of problems, including intelligent vehicles.
The first beneficial attribute is their ability to adapt to new tasks
and circumstances with relatively little effort on the part of the
user or developer. In their most common form, namely multi-
layer perceptrons, neural networks learn to map input patterns to
particular output patterns or classes based on many examples of
the desired mapping. For instance, the input pattern in character
recognition is typically a bitmap image of a character, and the
output is the identity of the character. The system developer
need not entirely specify the relevant features or processing re-
quired for the task, but instead needs only provide the network
with numerous examples of the mapping to be performed (e.g.
bitmaps paired with their identities). Neural network training al-
gorithms, such as back-propagation [25] or radial basis function
learning [19] can automatically determines from these exam-
ples the relevant input attributes and how to process them to
perform the task. This ability to learn complex tasks through
observation makes neural networks well suited to domains like
intelligent vehicles, where the problems are often ill understood
and constantly changing.

The second important attributed of artificial neural networks
is their computational simplicity. In general, artificial neural net-
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works are composed of many very simple computing elements,
called units, which interact with each other through weighted
connections. The simplicity and uniformity of this computing
paradigm makes efficient implementations possible on both se-
rial and parallel computers [13][33] [31]. In addition, theregular
nature of the neural network processing makes hardware imple-
mentations particularly attractive. The ability to implement a
trained neural network on a single chip both reduces cost and in-
creases reliability, twocrucial factors in determining commercial
viability. Nowhere is the need for inexpensive, reliable systems
more acute than in the domain of intelligent vehicles, where the
potential market includes the millions of cars sold each year, and
where the cost of failure can be catastrophic.

This paper discusses three applications of artificial neural net-
works to the domain of intelligent vehicles: video-based traffic
monitoring, monitoring and control of onboard systems, and
vision-based lateral control. None of these systems is yet com-
mercially available, but each has the potential to greatly improve
the safety and efficiency of road travel.

2. Traffic Monitoring

The task in traffic monitoring is to detect traffic level and flow
rates at key points, such as traffic lights and tunnels. The most
common approach to traffic monitoring is install mechanical or
electrical devices placed on top or embedded in the roadway.
There are three disadvantages to such systems. First, they are
expensive to install, particularly if they must be embedded in the
pavement like the electrical inductance “loop” detectors typically
used at traffic lights. Second, they are prone to mechanical failure
due to pavement cracking. Third, they often can only “see” a
single lane of traffic, or if they can detect traffic in multiple lanes,
can not discriminate traffic on one lane versus another.

More recently, people have begun to investigate the use of ma-
chine vision techniques for traffic monitoring [5] [28]. These
systems have the advantages of being easy to install, and be-
ing able to provide much more specific information about traffic
conditions, including queue length and lane distribution. These
systems generally employ simple image processing like image
thresholding, image differencing, and template matching. As a
result, they suffer from several problems, including sensitivity
to lighting conditions and camera perspective. While more so-
phisticated image processing system which use optical flow and
appearance models for different vehicle types are under devel-
opment, they generally suffer from brittleness under changing
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Figure 1: Network for Vehicle Detection.

conditions.

An alternative which may prove more robust is to use neural
network-based image processing. Just such a system is being
developed by Bullock, Garrett and Hendrickson [6]. The idea is
to train a network to monitor a scene and indicate when the image
contains a vehicle and where the vehicle is located. The network
receives a reduced resolution video image of the scene as input,
and has a number of output units each trained to respond to the
presence of a vehicle in a particular region of the image (See
Figure 1). The particular architecture used in this experiment
had a 7x20 pixel input retina, 10 hidden units, and 3 output units
corresponding to three “detection zones”.

The network was trained on 233 images digitized from a
two hour videotape of a public street. The images contained
large amounts of visual noise including heavy shadows, bicycles,
pedestrians and joggers, as well as many types of vehicles includ-
ing cars and trucks of different makes, models and colors. The
network was trained using a variation of the back-propagation
learning algorithm called quickprop [10].

The trained network was tested on a disjoint test set of 83 im-
ages digitized from the same videotape. The network’s perfor-
mance was measured using the following criteria. The network
was considered to have made a mistake if:

o a vehicle is present in a zone, but the corresponding output
unit has an activation less than 0.6

e a vehicle is not present in a zone, but the corresponding
output is greater than 0.4

e oneofthe outputsis between 0.4 and 0.6, a range considered
indeterminant.
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Using this criterion, the network had an error rate of 12How-
ever all 9 of the mistakes occurred when a vehicle was transition-
ing from one zone to another. All 9 error were eliminated when
the temporal activation pattern of the output units was examined.

These results are very preliminary, in that the system does
not take into account muitiple vehicles in the scene at once, and
do not address the problem of vehicle identification (cars vs.
trucks). However they do demonstrate that neural networks are
capable of effective traffic monitoring, even in the presence of
changing lighting conditions.

3. Vehicle Control Systems

A second successful application of artificial neural networks to
the domain of intelligent vehicles has been in the area of monitor-
ing, diagnosis and control of vehicle control systems. Increasing
demands for performance, safety and fuel economy and lead to
increasingly complex and sophisticated vehicle control systems
in today’s automobiles. A few of these advances include elec-
tronic ignition, anti-lock braking and active suspension systems.
To achieve the full benefit of these advances requires sophis-
ticated monitoring and control. What makes these applications
particularly challenging is that they require very rapid responses,
often based on quite limited amounts of data. Artificial neural
networks have demonstrated an ability to perform well within
these severe constraints.

3.1. Ignition Timing Estimation

A prime example of the effect use of neural networks for vehicle
control system monitoring is the work of Willson, Whitham and
Anderson [30]. They have focused on the task of neural net-
work based engine control using information such as cylinder
pressure, manifold pressure, engine temperature, engine speed
and engine emissions. Their preliminary work has focused on
on-line estimation of ignition timing, a crucial factor contribut-
ing to fuel economy and vehicle performance. With the proper
equipment, ignition timing is straightforward to measure. Un-
fortunately such equipment is difficult to integrate into a moving
vehicle. Recent development of high speed piezoelectric and
fiber optic pressure sensors have made it possible to indirectly
measure ignition timing by recording cylinder pressure at var-
ious crank angles. However the relationship between the time
course of cylinder pressure and ignition timing is highly non-
linear due to its dependence on engine speed, air/fuel ratio and
throttle setting.

Willson, Whitham and Anderson employed a single hidden
layer network similar in many respects to the network used for
traffic monitoring. However in their network, they employed
36 input units represented representing cylinder pressure at 36
different crank angles between —40° and +40° of top dead cen-
ter. The best network architecture they found for the task had
16 hidden units and a single output unit representing the spark
timing, which ranged from 5° to 35° before top dead center.

The network was trained on cylinder pressure data collected
from a 350 in.3 Chevrolet engine running at 4000 RPMs with



various spark timings. After training, the network was able
to estimate the ignition timing on a disjoint test set collected
from the same engine to within an average of 0.66°. While
quite encouraging, the network’s preformance under different
conditions (e.g. different engine RPM or air/fuel ratio) remains
to be tested.

3.2. Anti-lock Brake System Control

Another area of vehicle controls where early experiments suggest
neural networks can be effectively applied is in the control of
anti-lock braking systems [9]. In this task, the goal is to stop
the vehicle as quickly as possible. As anyone who has driven on
ice or snow realizes, the optimum braking strategy is not to slam
on the brakes. This response will cause the wheels to “lock-up”
and slide with much less friction than will occur when moderate
braking is applied. The task is complicated by the fact that
braking performance is heavily dependent on road conditions
and true vehicle velocity, factors which are difficult to measure
accurately.

The Davis et al. anti-lock braking system employs a two stage
training system typical of neural network control systems. In the
first stage, a “plant identification” network is trained to predict
the behavior of the physical system under a variety of conditions.
They trained a recurrent network to predict the wheel and vehicle
velocity in the next time step based on the current wheel and
vehicle velocity, and the current braking command. The training
algorithm used was the dynamic decoupled extended Kalman
filter (DDEKF) algorithm described in [11].

Once the identification network was trained to predict the
vehicle’s behavior, it was used to train a second recurrent network
to produce the braking command for optimal stopping. The
controller network learned from the vehicle model justhow much
braking force can be applied before the wheels lock under a
variety of road conditions and vehicle speeds. After training in
simulation using the identification network as the vehicle model,
the controller network was trained on-line using a real vehicle
driven on a test track. The controller network was also trained
using the DDEKEF algorithm.

Results showed that the network was able to learn to keep
the vehicle’s brakes from locking and the wheel slippage quite
close to the theoretical optimal under a variety of road conditions
(coefficients of friction between 0.2 to 1.0). While this perfor-
mance is encouraging, Davis et al. did notreport any comparison
between the stopping distance achieved by the neural network
controller and existing anti-lock braking systems.

Similar promising results have been achieved in active sus-
pension control and detection of engine misfires [15]. In the later
domain, a feedforward multi-layer perceptron was able to detect
all but four of 150 misfires in a test set of 7600 engine measure-
ments recorded from a vehicle in a wide variety of conditions
(potholed roads, rapid acceleration and braking). It exhibited
only 13 false alarms on the 7450 normal engine readings. This
was in fact the first successful automated misfire detection sys-
tem operating on a vehicle.
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Figure 2: The CMU Navlab autonomous navigation testbed
vehicle.

4. Vision-based Lateral Control

Perhaps the most widely studied application of neural networks
to intelligent vehicles has been in vision-based lateral control.
The goal in this task is to steer the vehicle based on input from
an onboard video camera.

There are a number of neural network-based vision systems
for autonomous vehicle control. Some rely primarily on color
information [32] [16] to determine where the road is in the scene,
while others use texture variations [7] in the image of the scene
ahead of the vehicle to make steering decisions. The neural net-
work architectures and algorithms employed by these systems
also varies considerably. Many rely on standard feedforward net-
works and the back-propagation algorithm for training [32] [16],
while others use recurrent networks [7] or radial basis func-
tions [1].

The first and most successful neural network-based au-
tonomous driving system is the ALVINN system developed by
Pomerleau [24]. The ALVINN system is designed to drive the
CMU Navlab autonomous navigation testbed shown in Figure 2.
The vehicle is equipped with a video camera, and motors on the
steering wheel, brake and accelerator pedal, enabling computer
control of the vehicle’s trajectory.

4.1. Neural Network Model

The connectionist model for autonomous road following used
in the ALVINN system [23] is the feedforward multi-layer per-
ceptron shown in Figure 3. The input layer consists of a single
30x32 unit “retina” onto which a video image is projected. Each
of the 960 input units is fully connected to the four unit hidden
layer, which is in turn fully connected to the output layer. The 30
unit output layer is a linear representation of the currently appro-
priate steering direction. The centermost output unit represents
the “travel straight ahead” condition, while units to the left and
right of center represent successively sharper left and right turns.

To drive the Navlab, an image from the video camera is re-
duced to 30x32 pixels and projected onto the input layer. After
propagating activation through the network, the output layer’s
activation profile is translated into a vehicle steering command.
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Figure 3: Architecture of the network designed for autonomous
driving.

4.2. Training “On-the-Fly”

The most interesting and novel aspect of the ALVINN system
is the method used to train it. In this technique, called training
“on-the-fly” the network is taught to imitate the driving reactions
of a person. As a person drives, the network is trained with back-
propagation using the latest video image as input and the person’s
steering direction as the desired output.

To facilitate generalization to new situations, variety is added
to the training set by shifting and rotation the original camera
image in software to make it appear that the vehicle is situated
differently relative to the road ahead. The correct steering direc-
tion for each of these transformed images is created by altering
the person’s steering direction for the original image to account
for the altered vehicle placement. So for instance, if the person
was steering straight ahead, and the image was transformed to
make it appear the vehicle is off to the right side of the road, the
correct steering direction for this new image would be to steer
towards the left in order to bring the vehicle back to the road cen-
ter. Adding these transformed patterns to the training set teachs
the network to recover from driving mistakes, without requiring
the human trainer to explicitly stray from the road center and
then return.

4.3. ALVINN Driving Performance

Running on two Sun Sparcstations onboard the Navlab, training
on-the-fly requires about two minutes during which a person
drives over about a 1/4 to 1/2 mile stretch of training road.
During this training phase, the network typically is presented
with approximately 50 real images, each of which is transformed
15 times to create a training set of 750 images.

Once it has learned, the network can accurately traverse the
length of the road used for training, and also generalize to drive
along parts of the road not encountered during training under
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Figure 4: Video images taken on three of the roads ALVINN has
been trained to handle.

a variety of weather and lighting conditions. In addition, since
determining the steering direction from the input image merely
involves a forward sweep through the network, the system is
able to process 20 images per second, and drive at up to 55 mph.
This is over five times as fast as any non-connectionist system
as driven using comparable hardware [14] [8].

The flexibility provided by the neural network has allowed
ALVINN to learn to driving in a wide variety of situations.
Individual networks have been trained to drive on single-lane
dirt and paved roads, two-lane suburban and city streets, and
multi-lane divided highways. Images taken from three of these
domains are shown in Figure 4. On the highway, ALVINN
has driving for for up to 21 miles without human intervention.
Measurements of the ALVINN systems driving accuracy show
it is able to keep the vehicle within 6.9cm of the center of its lane
on average [22]. This compares favorably with human driving
performance, which has been measured to average 5.7cm from
the center of the lane on average [3].

The eventual goal of the ALVINN project is to create an
advanced cruise control system which controls both longitudinal
and lateral motion of the vehicle. The system will be trained by
watching the person drive for several minutes. After training,
the person will push a button and ALVINN would take over
all vehicle controls. However this fully autonomous system is
still a long way off. In the nearer term, the ALVINN system
will be used as a lane excursion warning device, sounding an
alarm when the driver starts to swerve out of his lane. In fact,
a single chip hardware implementation of the ALVINN system,
integrating both the CCD array for image capture and the neural
network for image processing, is currently under development
at Carnegie Mellon University. This hardware implementation
should provide an inexpensive and reliable platform on which to
develop a practical lane excursion warning device.

5. Conclusion

Artificial neural networks have the potential to make large con-
tributes to the field of intelligent vehicles. Their ability to learn
complex non-linear mappings allow neural networks to perform
many difficult intelligent vehicle tasks, including traffic monitor-
ing, mechanical system monitoring and control, and vision-based
lateral motion monitoring and control.

While such applications of neural networks are still in the
experimental stages, their preliminary success, when coupled
with the fact that their simplicity allows them to be implemented



cheaply and reliably, should result in commercially viable intel-
ligent vehicle products. Such commercial neural networks are
already available in certain consumer products including models
of washing machines, vacuum cleaners and air conditioners sold
by Panasonic [17]. A single chip implementation of the ALVINN
neural network vision system is currently under development for
use as a lane excursion warning system.

However there are several factors currently limiting the
widespread application of neural networks to real world prob-
lems, including those of intelligent vehicles. The firstis a general
lack of rigorous performance comparisons with alternative meth-
ods. While there has been some limited experiments comparing
the driving accuracy of the ALVINN system with that of peo-
ple, in general intelligent vehicle applications of neural networks
have only reported qualitative results. Part of this lack of rigor
stems from the fact that it is often difficult to find good metrics
for performance in domains like traffic monitoring, and once
they are found, it is difficult to measure a system’s performance.
For example, measuring the accuracy of the ALVINN driving
system involved painstaking experiments in which water was
dripped from the center of the vehicle and then the position of
the water drops were measured relative to the road center. While
such quantitative measurements are difficult to perform, they are
absolutely necessary if neural network solutions to problems are
to be accepted.

The need for rigorous performance characterization is in-
creased by the inherent difficulty in analyzing artificial neural
networks. Neural networks are computationally a very powerful
technique, in fact they are able to represent arbitrarily complex
real-valued mappings from inputs to outputs [4]. But as a re-
sult of this power, the internal representations they develop are
often quite hard to interpret, and the processing they perform
can be quite difficult to understand. A number of techniques
are under develop which can provide greater insight into the
processing and representations of neural networks, including
cluster analysis [12), sensitivity analysis [21], explanation based
neural networks [18], and reliability estimation techniques [20].
When perfected and widely employed, these techniques should
mitigate many of the concerns over the “black-box” nature of
neural networks and allow them to be applied to critical real
world tasks like intelligent vehicles.
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