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Introduction

Nearly 15,000 people die each year in the US in sin-
gle vehicle roadway departure crashes{11]. These
accidents are often caused by driver inattention, or
driver impairment (e.g. fatigued or intoxicated driv-
ers). A system capable of warning the driver when the
vehicle starts to depart the roadway, or controlling the
lateral position of the vehicle to keep it in its lane,
could potentially eliminate many of these crashes.
Nearly 70% of these crashes occur in rural or subur-
ban settings on undivided two lane roads[11]. Since it
is unlikely these roads will be upgraded in the fore-
seeable future, a system for preventing these crashes
must rely on the existing road structure.

Research into such systems has focused on machine
vision techniques that detect particular features in
video images of the road ahead of the vehicle, and
determine the desired vehicle trajectory based on the
relative positions of these features. Many of these sys-
tems [2][4]{5][7] rely on tracking specific features,
such as lane markings, from one image to the next.
Others depend on detecting regions of the image rep-
resenting the road based on features such as color
[1][6] or texture [12].

All these systems have a common characteristic. They
all have a strong, a priori model of the road’s appear-
ance, and employ hand programmed detection algo-
rithms to locate these characteristic features.
Unfortunately, roads are not always cooperative.
Road markings vary dramatically depending on the
type of road (e.g. suburban street vs. interstate high-
way), and the state or country in which it is located.
For example, many California freeways use regularly
spaced reflectors embedded in the roadway, not
painted markings, to delineate lane boundaries. Fur-
ther challenges result from the fact that the environ-
mental context can greatly impact road appearance.
Changes in illumination due to shadows, glare or
darkness, and obstructions by other vehicles, rain,
snow, salt or other foreign objects often cause dra-
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matic changes in the road’s appearance. Together
these variations often invalidate the assumptions
underlying vision algorithms, resulting in poor road
detection performance.

Alternative approaches that combine machine vision
and machine learning techniques have demonstrated
an enhanced ability to cope with variations in road
appearance [4][8][9]. ALVINN is a typical system of
this type. ALVINN employs an artificial neural net-
work to learn the characteristic features of particular
roads under specific conditions. It utilizes this learned
road model to determine how the vehicle should be
steered in order to remain in its lane. While systems
of this type have been quite successful at driving on a
wide variety of road types under many different con-
ditions, they have several shortcomings. First, the
process of adapting to a new road requires a relatively
extended “retraining” period, lasting at least several
minutes. While this adaptation process is relative
quick by machine learning standards, it is unquestion-
ably too long in a domain like autonomous driving,
where the vehicle may be travelling at nearly 30
meters per second. Second, the retraining process
invariably requires human intervention in one form or
another. These systems employ a supervised learning
technique such a backpropagation, requiring the
driver to physically demonstrate the correct steering
behavior for the system to learn.

A truly flexible system should 1) flexibly exploit
whatever features are available to determine vehicle
location, 2) adapt almost instantly when the available
features change, and 3) perform this adaptation with-
out human supervision. This paper presents a system
called RALPH (Rapidly Adapting Lateral Position
Handler) which demonstrates these characteristics.

RALPH Processing

RALPH decomposes the problem of steering a vehi-
cle into three steps, 1) sampling of the image, 2)
determining the road curvature, and 3) determining
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Figure 1: Image from the forward looking camera (left), and RALPH’s image sampling strategy (right).

the lateral offset of the vehicle relative to the lane cen-
ter. The output of the later two steps are combined
into a steering command, which can be compared
with the human driver’s current steering direction as
part of a road departure warning system, or sent
directly to the steering motor on our Navlab 5 testbed
vehicle for autonomous steering control[3].

Image Sampling

A typical scene of the road ahead, as imaged by a
video camera mounted next to the rearview mirror on
our testbed vehicle, is depicted on the left of Figure 1.
The scene depicted is a greyscale image, although
RALPH can utilize either black and white or color
images, using a color-based contrast enhancement
technique described in [8). Obviously much of this
image is irrelevant for the driving task (e.g. the parts
of the image depicting the sky or the dashboard of the
vehicle). These parts of the scene are eliminated, and
only the portions of the scene inside the white trape-
zoid are processed. While the lower and upper bound-
aries of this trapezoid vary with vehicle velocity
(moving further ahead of the vehicle, towards the top
of the image, as vehicle speed increases), they typi-
cally project to approximately 20m and 70m ahead of
the vehicle, respectively.

The second, and perhaps more important aspect of the
trapezoid’s shape is its horizontal extent. It is config-
ured so that its width on the groundplane is identical
at each row of the image. The horizontal distance that
each row of the trapezoid encompasses is approxi-
mately 7.0 meters, about twice the width of a typical
lane. This trapezoid is selectively sampled according
to the strategy depicted in the schematic on the right
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of Figure 1 so as to create a low resolution (30x32
pixel) image in which important features such as lane
markings, which converged towards to top of the orig-
inal image, now appear parallel in the low resolution
image. Note that this image resampling is a simple
geometric transformation, and requires no explicit
feature detection.

Determining Curvature

The “parallelization” of road features described above
is crucial for the second step of RALPH processing,
curvature determination. To determine the curvature
of the road ahead, RALPH utilizes an “hypothesize
and test” strategy. RALPH hypothesizes a possible
curvature for the road ahead, subtracts this curvature
from the parallelized low resolution image, and tests
to see how well the hypothesized curvature has
“straightened” the image. This process is depicted in
Figure 2. In this example, five curvatures are hypothe-
sized for the original image, shown at the top. For
each of the five hypothesized curvatures, the rows of
the image are differentially shifted in an attempt to
“ando” the curve and straighten out the image fea-
tures. For left curve hypotheses, rows are shifted
towards the right and for right curve hypotheses, rows
are shifted towards the left. For the more extreme
hypothesized curvatures (on the far left and right), the
rows of the original image are shifted further than for
the less extreme curvatures (in the middie). For all the
hypothesized curvatures, rows near the top of the
image, corresponding to regions on the groundplane
further ahead of the vehicle, are shifted further hori-
zontally than rows near the bottom of the image. This
differential shifting accounts for the fact that for a
given hypothesized curvature, the road will be dis-
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Figure 2: Technique for determining road curvature by “straightening” image features.

placed more at the top of the image, far ahead of the
vehicle, then at the bottom. The exact shift distance
for each row in the transformed images is determined
both by the geometry of the camera, and the particular
curvature hypothesis being tested.

As can be seen from Figure 2, the second curvature
hypothesis from the right, corresponding to a shallow
right turn, has resulted in a transformed image with
the straightest features, and therefore should be con-
sidered the winning hypothesis. The technique used to
score the “straightness” of each hypothesis is depicted
in Figure 3. After differentially shifting the rows of
the image according to a particular hypothesis, col-
umns of the resulting transformed image are summed
vertically to create a scanline intensity profile, shown
in the two curves at the bottom of Figure 3. When the
visible image features have been straightened cor-
rectly, there will be sharp discontinuities between
adjacent columns in the image, as show in the right
scanline intensity profile in Figure 3. In contrast,
when the hypothesized curvature has shifted the
image features too much or too little, there will be
smooth transitions between adjacent columns of scan-
line intensity profile, as depicted in the left scanline
intensity profile of Figure 3. By summing the maxi-
mum absolute differences between intensities of adja-
cent columns in the scanline intensity profile, this
property can be quantified to determine the curvature
hypothesis that best straightens the image features.

An important attribute to note about this technique for
determining road curvature is that it is entirely inde-
pendent of the particular features present in the image.
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As long as there are visible features running parallel
to the road, this technique will exploit them to deter-
mine road curvature. These features need not be
located at any particular position relative to the road,
and need not have distinct boundaries - characteristics
required by systems that utilize strong a priori road
models and edge detection.

Determining Lateral Offset

The next step in RALPH’s processing is to determine
the vehicle’s lateral position relative to the lane cen-
ter. This is accomplished using a template matching
approach on the scanline intensity profile generated in
the curvature estimation step. The scanline intensity
profile is a one dimensional representation of the
road’s appearance as seen from the vehicle’s current
lateral position. By comparing this current appearance
with the appearance of a template created when the
vehicle was centered in the lane, the vehicle’s current
lateral offset can be estimated.

Figure 4 illustrates this lateral offset estimation proce-
dure in more detail. Here, the current scanline inten-
sity profile is depicted on the left, and the template
scanline intensity profile, generated when the vehicle
was centered in the lane, is depicted on the right. By
iteratively shifting the current scanline intensity pro-
file to the left and right, the system can determine the
shift required to maximize the match between the two
profiles (as measured by the correlation between the
two curves). The shift distance required to achieve the
best match is proportional to the vehicle’s current lat-
eral offset.
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Figure 3: Technique for scoring curvature hypotheses based on straightness of resulting image features.

Note that as with the curvature determination step,
this process does not require any particular features be
present in the image. As long as the visible features
produce a distinct scanline intensity profile, the corre-
lation based matching procedure be able to determine
the vehicle’s lateral offset. In particular, even features
without distinct edges, such as pavement discolora-
tion due to tire wear or oil spots, generate identifiable
scanline intensity profile variations which RALPH
easily exploits to determine lateral offset. This is a
performance feature which edge-based road detection
systems do not share.

Adapting to Changing Conditions

Another important feature of RALPH stems from the
simplicity of its scanline intensity profile representa-
tion of road appearance. The 32 element template
scanline intensity profile vector is all that needs to be
modified to allow RALPH to drive on a new road
type. Modifying this vector is extremely easy. In the
current RALPH implementation there are four ways
of adapting the template to changing conditions.

The first method involves a human driver centering
the vehicle in its lane, and pressing a button to indi-
cate that RALPH should create a new template. In
under 100 msec, RALPH performs the processing
steps described above to create a scanline intensity
profile for the current road, and then saves it as the
default template. From that point on, RALPH can
drive (or warn the driver of road departure danger) on
this road using the newly created template to deter-
mine the vehicle’s position relative to the lane center.
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A second method for acquiring a template appropriate
for the current road type is to select one from a library
of stored templates recorded previously on a variety
of roads. RALPH can select the best template for the
current conditions by testing several of these previ-
ously recorded templates to determine which has the
highest correlation with the scanline intensity profile
created for the current image.

The third method of template modification occurs
after an appropriate template has been selected. Dur-
ing operation, RALPH slowly “evolves” the current
template by adding a small percentage of the current
scanline intensity profile to the template. This allows
the current template to adapt to gradual changes in the
road’s appearance, such as those caused by changes in
the sun’s angle.

RALPH handles more abrupt scene changes, such as
changes in lane marker configuration, using the final
and most interesting template modification strategy.
In this technique, RALPH uses the appearance of the
road in the foreground to determine the vehicle’s cur-
rent lateral offset and the curvature of the road ahead,
as described above. At the same time, RALPH is con-
stantly creating a new “rapidly adapting template”
based on the appearance of the road far ahead of the
vehicle (typically 70-100 meters ahead). This rapidly
adapting template is created by processing the distant
rows of the image in the same manner as described
above. The roads curvature is assumed to be nearly
constant between the foreground and background,
allowing RALPH to determine where the road is
ahead and therefore what the new template should
look like when the vehicle is centered in its lane.
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Figure 4: Technique for determining lateral offset by shifting scanline profile to match template.

If the appearance of the road ahead changes dramati-
cally, RALPH uses this technique to quickly create a
template appropriate for the new road appearance.
When the vehicle actually reaches the new road,
RALPH determines that the template it was previ-
ously using is no longer appropriate, since it does not
match the scanline intensity profile of the current
image. It therefore swaps in the rapidly adapting tem-
plate, and continues driving. Note that this rapid adap-
tation occurs in the time span of approximately 2
seconds, without any human intervention.

Ralph Performance

Using the above techniques, RALPH has been able to
locate the road and steer autonomously on a wide
variety of road types under many different conditions.
RALPH has driven our Navlab 5 testbed vehicle over
3000 miles on roads ranging from single lane bike
paths, to rural highways, to interstate freeways. Part
of this 3000 miles was a trip from Pittsburgh, PA to
Washington, DC. During this 302 mile trip, RALPH
steered autonomously 96% of the way. Times when
intervention was required included preventing
RALPH from following offramps, and changing lanes
to pass slow moving vehicles. Velocity was controlled
by the safety driver, and the vehicle’s average speed
during the trip was 57 mph. In another set of experi-
ments, RALPH has driven at speeds of up to 91 mph
on the TRC test track in East Liberty, Ohio.

RALPH has driven successfully in conditions includ-
ing bright sun with harsh shadows, dense fog, rain,
and nighttime using only headlight illumination. On
numerous occasions, RALPH has demonstrated a
flexibility not possible with previous lateral position
estimation and control systems. For instance, several
times glare off wet pavement has been severe enough
to entirely obscure the lane markings in the video
image. On those occasions RALPH has successfully
exploited the tracks left on the pavement by previous
vehicles to determine its lateral position and the road
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curvature, allowing it to continue driving. As another
example, when lane markers are worn or degraded,
RALPH has demonstrated the ability to utilize the dif-
fuse discoloration down the center of the lane, caused
by oil spots from previous vehicles, to locate the road
ahead and steer the vehicle.

RALPH has also demonstrated its ability to quickly
adapt to dramatic changes in road appearance. Using
the technique for rapidly adapting its template,
RALPH can handle changes in the number of lanes on
the road, as well as changes in the lane marker config-
uration. With this technique, RALPH has also driven
through tunnels, which are perhaps the most difficult
situation for vision-based road followers because of
the accompanying large changes in lighting condi-
tions and lane markings.

Future Work

The current focus on research on RALPH involves
both extending its capabilities and quantifying its per-
formance. For extensions, we are currently develop-
ing techniques which aillow RALPH to change lanes
automatically, as well as focus of attention methods
which allow RALPH to ignore or follow offramps as
appropriate.

In the area of performance quantification, we will
shortly embark on a cross country trip, from Pitts-
burgh to Los Angeles, during which RALPH will
steer autonomously as much as possible. We plan to
record data on both on the percentage of time RALPH
is able to steer correctly, and on the conditions in
which manual intervention is required. As with the
trip from Pittsburgh to Washington, we expect the
percentage of autonomous travel to be over 95%,
demonstrating RATLPH’s potential as a reliable system
for autonomous control and roadway departure warn-

ing.
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