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ABSTRACT

Reduced visibility is a common casual factor in
many traffic accidents. This paper describes a for-
ward looking vision system which simultaneously
track the lane and estimate visibility. The system
estimates visibility by measuring the attenuation of
contrast between consistent road features at various
distances ahead of the vehicle. Results of experi-
ments on simulated images, as well as live vehicle
tests are presented.

1. Introduction

Reduced visibility caused by fog, rain, snow, dark-
ness and glare is a frequent contributing factor to
traffic accidents [Najm et al., 1995]. In fact, some
of the most serious of all highway incidents, some-
times involving dozens or even hundreds of vehi-
cles, occur when reduced visibility conditions
result in a chain reaction of crashes. Paradoxically,
some advanced technology, like Adaptive Cruise
Control (ACC) systems have the potential to
decrease, rather than increase safety in these situa-
tion by encouraging drivers to travel at a speed and
headway distance that may not be safe for the
ambient environmental conditions. This paper
describes the first step in the solution to this prob-
lem, a system that can estimate the ambient visibil-
ity from a moving vehicle.

There are several technologies typically employed
to estimate visibility, including transmissometers,
which measure the transmittance of the atmosphere
over a baseline distance, and nephelometers which
measure the scattering coefficient of an air sample
caused by suspended particles [Federal Meteoro-
logical Handbook, 1996]. Unfortunately, these sys-
tems suffer from several drawback for automotive

applications. Transmissometers require a transmit-
ter and a receiver a substantial distance (typically
hundreds of meters) apart, which is very difficult to
implement on a moving vehicle. Stationary trans-
missometers located near stretches of roadway
commonly plagued with poor visibility can be
effective for a local area, but may miss nearby
reduce visibility conditions because of the very
localized nature of some reduced visibility phe-
nomena.

Nephelometers can be mobile, since they use a col-
located transmitter and received to measure the
backscatter of light off particles in the air. However
they are prone to miss many of the important phe-
nomena effecting how far a driver can truly see.
These phenomena include:

* Opacity of the atmosphere due to particu-
lates

* Ambient lighting conditions - sun, moon,
overhead lights, direction of lighting

* Headlights from the driver’s own vehicle and
other vehicles

* Windshield transmissive -Froperties due to
dirt, water, snow or ice buildup.

The only way to automatically estimate the cumu-
lative influence of these factors on the driver’s abil-
ity to see potential obstacles ahead is to employ a
sensing system which reasonably match the
driver’s perceptual characteristics, The system
described in this paper accomplishes this match by
using a CCD video camera pointing out the wind-
shield of the vehicle, and processing the same fea-
tures as the human driver to estimate visibility.
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2. Approach

Manual visibility estimates are typically made by
attempting to detect high contrast targets at various
known distances. The farthest distance at which a
target can be reliably detected is considered the
visibility distance. Ideally, an automated visibility
estimation system should work the same way.
Unfortunately, it is very difficult to consistently
find high contrast targets at various known ranges
from a moving vehicle. Even the features that are
supposed to be consistent on a roadway, the lane
markings, vary greatly in their appearance, and are
in fact frequently missing or obscured. The
RALPH (Rapidly Adapting Lateral Position Han-
dler) system [Pomerleau et al., 1996] overcomes
this difficulty when detecting the position and cur-
vature of the road ahead in camera images by uti-
lizing whatever features are visible on the roadway,
including lane markings, road/shoulder boundaries,
tracks left by other vehicles, and even subtle pave-
ment discolorations like the oil stripe down the
lane center when necessary.

The visibility estimation system described in this
paper exploits RALPH’s ability to find and track
arbitrary road features. In short, the system esti-
mates visibility by measuring the attenuation of
contrast between consistent road features at various
distances ahead of the vehicle.

2.1. Road Feature Detection

To measure contrast between consistent road fea-
tures, first these features must be detected in
images of the road ahead. The algorithm the
RALPH system uses to find road features is based
on the observation that when viewed from above, a
road resembles a ribbon of parallel bands formed
by lane markings and other road features. To
exploit this characteristics, RALPH first extracts
from the image a trapezoidal region of the road
ahead (See Figure 1). RALPH automatically varies
the position of this trapezoid based on the vehicle’s
velocity and the current visibility, but under good
conditions the top of the trapezoid is typically
viewing the road between 50m and 120m ahead of
the vehicle. RALPH resamples the image from this
trapezoid. The horizontal extend of the trapezoid is
set so that its width on the ground plane is identical
at each row of the image. The horizontal distance
that each row of the trapezoid encompasses is
approximately 7.0 meters, about twice the width of
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Figure 1: Forward looking image (left), and
RALPH’s sampling strategy (right).

a typical lane. This trapezoid is selectively sampled
according to the strategy depicted in the schematic
on the right of Figure 1 to create an aerial view of
the road ahead. This sampling process results a low
resolution (35x50 pixel) image in which important
features such as lane markings, now appear parallel
in the low resolution image (see schematic aerial
view in the lower right of Figure 1, and the actual
aerial view show in the lower left of Figure 1).
Note that this image resampling is a simple geo-
metric transformation (based on the assumption
that the road is locally planar), and requires no
explicit feature detection.

RALPH then uses this aerial image to locate the
road ahead. To accomplish this, RALPH uses a
one-dimensional representation of the road, created
by taking a cross section of the aerial image per-
pendicular to the road, called the road template.
The aerial image for the road in Figure 1 and road
template created from a cross sections at the bot-
tom of the image, are shown in Figure 2

Lane Markings
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Figure 2: An aerial road image (left) and cross
sections taken from the bottom of the image
(right).

There are several things to note about the template
cross section. First, the lane markings show up
quite distinctly as the two highest peaks. Also
apparent in the cross section are two sharp dips just
outside the lane markings, caused by a black filled

, A Lane Center
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seam in the pavement on the left side of the lane,
and the dark banding of a rumble strip on the right
side. Finally, down the center of the lane the pave-
ment is slightly lighter in intensity than the more
heavily worn pavement closer to the lane bound-
aries, causing a wide shallow peak in the center of
the cross section.

RALPH exploits all of these features to find the
road ahead by using the entire one-dimensional
cross section as a template. For each row of the
aerial image, RALPH shifts the template left or
right until it best matches the particular row’s cross
section. The amount of shift required to match a

_particular row is proportional to the lateral dis-

placement of the lane center at that row of the
image. For more details on the algorithm RALPH
employs to generate and maintain the template, and
how RALPH finds the position and curvature of the
road ahead using the template, see [Pomerleau et
al., 1996].

2.2. Visibility Estimation

In order to estimate visibility, the system uses the
shifted road cross sections generated during the
road detection process. Two such cross sections,
one from the top of the aerial image, and one from
the bottom, are shown in Figure 3. Notice that at
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Figure 3: Road cross sections from top (dashed
curve) and bottom (solid curve) of the aerial image

the top of the image, relative far ahead of the vehi-
cle, the peaks in the cross section are not quite as
high, and the dips are not quite as low as the at the
bottom of the image, close ahead of the vehicle.
Qualitatively, it is this attenuation of contrast
between features with increasing distance from the
vehicle that the visibility estimation algorithm
(described below) is measuring.

To quantify the feature attenuation, the system esti-
mates for several rows at the top and bottom of the
image, the median intensity around the lane center,
as well as the maximum deviation from this

median intensity within the row. The system aver-
ages the maximum intensity deviation for the rows
at the top, and the rows at the bottom of the image,
to overcome the effects of intermittent dashed lane
boundaries and other image artifacts. The differ-
ence between the average maximum intensity devi-
ation at the bottom and the top of the aerial image
is the system’s estimate of contrast attenuation.

In order to estimate visibility, it is not enough to
simply measure contrast attenuation, since visibil-
ity should be a function of distance. Therefore, the
contrast attenuation as measured above is scaled
based on the distance between the top and bottom
of the RALPH’s view trapezoid (which can vary as
mentioned previously). The resulting value is a
measure of contrast attenuation per meter.

The final step in estimating visibility is normaliza-
tion. Even under clear conditions like that shown in
Figure 1, the contrast in the aerial image is signifi-
cantly attenuated, even over the relative short dis-
tance between the bottom and the top of the image
(see Figure 3). This is cause primarily by imaging
artifact relating to the pixel spacing on the CCD
array, and the camera’s limited depth of field.
Together these artifacts result in a blurring towards
the top of the aerial image under all conditions. To
eliminate the effect of this blurring on the visibility
estimate, the contrast attenuation per meter value is
normalized, so that the rate of attenuation on a
bright clear day is equivalent to a visibility of 1.0,
and visibility under degraded conditions are
expressed relative to this baseline.

Figure 4 depicts an example of a reduced visibility
condition, night driving. In this situation, the
driver’s visual range is reduced due to the limited
range of the vehicle’s headlights. This can be seen
in the reduced contrast towards the top of the view
trapezoid. Cross sections from the top and bottom
of the aerial image for this night image are shown
on the right of Figure 4. Note how the absolute
intensity of the cross section, as well as the maxi-
mum contrast in the cross section, are greatly
reduced towards the top of the image when com-
pared with results from the daytime scene shown in
Figure 3. As a result of the greater feature attenua-
tion, the visibility for this situation, as computed
with the algorithm described above, has dropped
to33% of the clear daytime visibility (reported as
*0.33 vis” in the lower right comer of Figure 4).
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Figure 4: Night scene (left) with cross sections
(right) from top (dashed) and bottom (solid) of the
aerial image

3. Results

Two sets of experiments were conducted to test the
visibility estimation algorithm’s performance
under a wide range of conditions. The first set of
tests involved running the algorithm on a sequence
of real road images in which various levels of sim-
ulated fog had been introduced through image
manipulation. The second set of experiments
involved live on-road tests of the visibility estima-
tion algorithm.

3.1. Simulated Fog Experiments

As part of a project to test lane tracking systems
under reduced visibility conditions [Pomerleau et
al., 1995], Battelle Memorial Institute previously
generated a set of images depicting various levels
of fog from an image sequence collected on Carn-
egie Mellon’s test vehicle, using Battelle’s Electo-
Optical  Visualization and Simulation Tool
(EOVAST) software. Given an original image, and
accompanying estimates of camera characteristics,
scene geometry and lighting conditions, the
EOVAST software generates degraded versions of
the same image as they would appear under user
specified adverse weather conditions. The
EOVAST software was originally developed for
military targeting applications, and has been exten-
sively validated for accuracy. For more details on
EOVAST, and the results of the lane tracking tests
under reduced visibility conditions see [Pomerleau
et al., 1995].

In total, EOVAST was used to generate 120
reduced visibility images from 30 original images.
These images depicted an interstate highway under
foggy conditions with 700, 400, 300 and 100 meter
visibility. A single one of the 30 original image,

along with the same image in each of the four
reduced visibility conditions is shown in Figure 5.
These 150 images (30 original + 120 fog) were
used to test the visibility estimation algorithm.
Figure 6 shows the mean and standard deviation of
the algorithm’s visibility estimates for each of the
five visibility conditions.

Original Image 700m Visibility

400m Visibility

300m Visibility

100m Visibility

Figure 5: Original Image and four versions of the
same image with simulated fog.

The first important characteristic of Figure 6 to
notice is the substantial reduction in the algo-
rithm’s estimated visibility as the degree of fog
increases (and hence the simulated visibility
decreases). The second important attribute of
Figure 6 is the large standard deviation in the algo-
rithm’s visibility estimates at each fog level (shown
as the large spread in the error bars). Automatic
visibility estimation with the algorithm reported
here is a statistical process, since local variations in
the underlying image features used to compute vis-
ibility can mask the contrast attenuation caused by
ambient environmental factors. Therefore a rela-
tively large number of images (more than 30) is
required to determine visibility with certainty.

4. On-road Experiments

To overcome the problem of limited image data,
and to test the algorithm under realistic conditions,
a set of in-vehicle experiments were conducted
using Carnegie Mellon’s Navlab 8 test vehicle.
Navlab 8 is an Oldsmobile Silhouette minivan
equipped with a black and white video camera
mounted behind the rear view mirror pointed
through the windshield, and a Pentium-100 proces-
sor executing both the RALPH lane tracking algo-
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Figure 6: Mean and standard deviation of visibility
estimates for the original image set, and the four
reduced visibility conditions.

rithm and visibility estimation algorithm in real-
time (15 frames per second).

Data on the visibility estimation algorithm’s per-
formance was collected on a 15 mile stretch of
interstate highway, which offers several pavement
types (concrete and asphalt) as well as a variety of
lane delineating techniques, including solid and
dashed white lane markings, yellow lane markings,
retroreflectors, and roadside rumble strips. Data
was collected on this stretch of roadway under six
different conditions (See Figure 7 for example
images from each condition):

* Daytime in good weather in the right lane

* Daytime good weather in the left iane

* Daytime in rainy weather

* Early morning with glare from the rising sun
* Nighttime with overhead lighting

» Nighttime without overhead lighting

The morning glare and the nighttime with overhead
lighting conditions occurred on only limited
stretches of the 15 mile test road. Therefore the
results reported below for these two conditions
were compiled over only two and three miles of
testing, respectively.

Figure 8 shows the results of the experiments on
the six conditions, in decreasing order of estimated
visibility. First note the visibility estimates in the
left and right lanes in good daytime conditions
were nearly identical to each other, and were far
above the estimates for the other conditions. The
next best visibility was reported for the nighttime
with overhead lights condition. As can be seen

Good Day Right  Good Day Left

Rainy a ,

Figure 7: RALPH tracking the lane under various
conditions, and estimating visibility.

from Figure 7, the overhead lights increase the
range at which the road features are discernible,
resulting in a corresponding increase in estimated
visibility.

The nighttime condition with only headlight illu-
mination was the situation the algorithm estimated
to have the next best visibility, equivalent to
approximately 30% of the good daytime visibility.
Daytime rain, with significant water buildup on the
windshield and substantial suspended spray in the
air was determined by the algorithm to be the next
to worse visibility condition tested. As Figure 7
shows, it is quite a bit more difficult to detect the
road features, as well as other vehicles in this situa-
tion. However the lowest estimated visibility of the
six tested was in the early morning glare condition.
As is apparent in Figure 7, specular reflections off
the pavement obscured the road features, and the
very high ambient brightness saturated the camera,
making it extremely difficult to detect the road (or
anything else) anywhere except directly in front of
the vehicle.

5. Discussion

The visibility estimation algorithm presented in
this paper appears to perform well under a wide
variety of conditions. The rank ordering of six con-
ditions tested corresponds reasonably well to ones
intuitive notion of how difficult it is to see in these
situations. Note that traditional instruments for
estimating visibility, which only detect suspended
particles in the atmosphere, would have report less
than unlimited visibility in only one of the six con-
ditions tested, daytime rain.
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Figure 8: Mean and standard deviation of visibility
estimates for the original image set, and the four
reduced visibility conditions.

Interestingly, it is the very property for which
vision systems are often criticized, their reduced
effectiveness in adverse environmental conditions,
which gives the algorithm its power. This is
because the conditions in which the vision system
has trouble seeing features are the same ones in
which people have difficulty seeing.

One potential drawback of the visibility estimate
technique presented is that it provides only a rela-
tive visibility measure, and not an absolute esti-
mate of how far ahead road features or obstacles
can be detected. However for a reduced visibility
warning system, or a system to adjust the set speed
and following distance of an adaptive cruise con-
trol, a consistent relative visibility measure may be
sufficient. If an absolute measure of detection dis-
tance is required, it should be possible to calibrate
the relative visibility estimates provided by the
algorithm, although this hypothesis remains to be
tested.

Live vehicle tests in fog still need to be conducted
(fog is rare in Pennsylvania, particularly during the
winter when these experiments were done). How-
ever, the results from the simulated fog experi-
ments, and the live daytime tests in rainy
conditions suggest that the algorithm should per-
form well, and report significantly reduced visibil-
ity under foggy conditions.

While all the work reported here has been done
with a standard black and white CCD camara, we
are investigating the potential for usingalternative
sensors for improved performance. For example, a

high-dynamic range camera would respond more
like the human eye in extreme lighting conditions,

and could therefore provide better visibility esti-
mates.

Another possibility would be to combine this visi-
bility estimationtechnique with a multispectral
imaging device. By testing thevisibility at different
wavelengths, it may be possible to select thebest
wavelength(s) for operation under the current con-
ditions.
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