A Comparative Analysis of the Hardware Requirements
for the Lagrange-Euler and Newton-Euler Dynamics Formulations?

Pradeep K. Khosla? and Sandra Ramos?

Abstract

The improved performance of model-based control schemes for
manipulators has demonstrated the need for including a dynamical
model in the control law. This requires that the inverse dynamics be
computed at real-time sampling rates of about 500 Hz. There are two
major formulations which can be used to model the robot arm
dynamics: the Newton-Euler (N-E) formulation and the Lagrange-Euler
(L-E) formulation. Due to their large computational requirements a
challenging task has been to devise alternate methods of reducing
their computational cycle. Further, the proposed methods should
result in a feasible implementation that minimizes the hardware
requirements for the inverse dynamics computation. In our previous
work, we have proposed a parallel computational scheme that is
based on the mathematical decomposition of the equations into their
primitive matrix/vector arithmetic operations. We have shown that the
mathematical decomposition scheme provides an efficient mechanism
to reduce the computational cycle of both the L-E and N-E
formulations. In this paper, we analyze the N-E and L-E equations
from a hardware perspective and compare the results for each. Our
analysis shows that N-E is indeed more efficient than L-E from the
computational as well as the hardware point of view.

1. INTRODUCTION

Model-based control of manipulators requires computing the
dynamics equations, which are computation intensive, in real-time [4].
Researchers have concentrated their efforts on the minimization of the
dynamics computational cycle of the Newton-Euler(N-E) formulation
due to its computational advantages over the Lagrange-Euler(L-E)
formulation. In addition, dynamics formulations other than N-E and
L-E have been proposed [7, 6]. Some of the optimization methods
proposed for the real-time computation of the NE formulation include:
customization of the equations for a given manipulator [5, 3, 2], the
use of table-lookup methods [13, 14], the design of special-purpose
processors {8], and the design of special-purpose parallel
architectures [11, 10, 12]. In particular, the recently enhanced
performance of floating point processors and the inherent structure of
the recursive formulations makes implementing the dynamics
equations on parallel architectures an attractive alternative for
decreasing the computation time.

Researchers have proposed various multiprocessor architectures to
compute the recursive NE equations. The design approaches of the
proposed architectures differ on how to split the computations for

'This research has been funded by the Cooperative Research Fellowship Program
sponsored by AT&T Bell Laboratories and by the Electrical and Computer Engineering
Department at Carnegie Mellon University

2Assista_nt Professor, Department of Electrical and Computer Engineering, Carnegie
Mellon University, Pittsburgh, PA, 15213

3Graduate student, Department of Electrical and Computer Engineering, Carnegie
Mellon University, Pittsburgh, PA, 15213

4For expository purposes, we have called the process of decomposing the equations
a decomposition scheme.

291

CH2555-1/88/0000/0291$01.00 © 1988 IEEE

parallel execution®. The decomposition schemes proposed for inverse
dynamics are based on the allocation of functional subsets of the
computations to parallel processors. These functional subsets can
take many different forms. For example, one decomposition scheme
explores the allocation of processors to functional subsets of
operations pertaining to a manipulator joint, leading to a configuration-
dependent architecture [10]. Another approach decomposes the
computational space into modular subsets each of which are
dedicated to the computation of a dynamic variable [11]. Dedicating
processors to such high-level functional tasks leads to low processor
utilization since the execution of these tasks are not evenly distributed
throughout the computational cycle. A more efficient architecture
would be one based on the decomposition of the computations into
functional subsets of a more elementary nature, such as the
computation of fundamental matrix/vector operations. This is the
underlying idea of the decomposition scheme proposed in [17). This
scheduling approach is called the Mathematical Decomposition
scheme and has been shown to be an efficient technique for
exploiting parallelism in the equations of motion of a serial link
manipulator [17].

The main thrust of this paper is to present a comparative analysis of
the computational hardware requirements for the L-E and N-E
formulations. To achieve our goal, we have divided our analysis into
three stages. First, we apply the mathematical decomposition
technique to the L-E and N-E equations to obtain efficient scheduling
schemes® for the parallel computations required by each formutation.
Second, we analyze the scheduling schemes obtained for both
formulations in the first stage, and we obtain worst-case hardware
requirements for each case. Third, we compare the hardware
requirements for the L-E and N-E formulations, as well as their
computational cycles. Qur results show that the N-E formulation is
more efficient than the N-E formulation both, from the hardware and
the software perspective.

2. DYNAMICS FORMULATIONS

In this section, we present both the L-E and the N-E equations for
an n degress-of-freedom manipulator. Because of lack of space, we
have included only the equations without any detailed explanation.
For further details the reader is referred to the original articles for the
L-E equations [1] and for the N-E equations [9].

The 3x3 Lagrange-Euler equations, depicted in Table 2-1, consist
of two sets of recursions: forward recursions and backward
recursions. For the purpose of our analysis, we will henceforth refer to
the computation of each equation (for all the links) as a
Computational Chain (or CC). For example, the computation of W;
(for i=1,...,n) constitutes a computational chain.

The sequential implementation of the 3x3 L-E equations for a
typical 6 degrees-of-freedom manipulator (i.e., n=6) involves 2195
multiplications and 1719 additions, or a total of 3914 floating point
operations [1].

We define an efficient scheduling scheme as a scheduler of parallel computations
which leads to a high processor utilization.

W, = W_A; o)
W= WAy + Wody @
. . A 3Ca) 9(4)

W, = WA + 2W_— g, + W — g% + W_—g;,
i =144 'a(q;) i o-la(qi)g i i la(q,-) i

i = b - Wp, @
D; = AyyDyyy + Py + npl + TWT ®
e = e, + mpl + nl-T'V.{"-T 6)
€ = mf o+ A Gy a

W) W)

fi = Trl=D) - 8—=; ®
) g g

Wy = Wy = D,,; = c,,; = 0 Initial Conditions
Table 2-1: Recursive 3x3 Lagrange-Euler Dynamic Equations

The Newton-Euler formulation {9], depicted in Table 2-2, consists of
two sets of recursions: the forward recursions that transform the
kinematic parameters from the base to the end-effector and the
backward recursions that transform the dynamics variables and
comoute the joint torques.

“’i+1={ Al [0+2,8;,]

iv1 O
“’M’{

rotational
translational)

AL |[0+2,8;,) +0x(2,9;,p)] rotational

AT o, translational (10)
‘7.'+1={ AL V4o X, + 0 X(00;, XD,) Totational
AL V42,0, + 20(@,d,)] an
+ 01 XPyy + 0 X0, XP;,) translational
0=0;=V,=0 Initial Conditions
Vo=lg, 8y gJ7 gravitational acceleration
Vv =l0x8,+ 0 X(0XS) +V,
12
F=myv?* 12
. 13
N=liio; + ox(lw) @
(14)
f=A i +F;
15)
N=A; N+ Pod+ N+ 8,xF;
(16)
1= { n7(AZ,) rotational
17(A%,) translational 17

fv.1: extemal force at the end-effector.
Ny, - external moment at the end-effector.

Table 2-2: Newton-Euler Dynamic Equations

A sequential implementation of the N-E equations for a 6 degrees-
of-freedom manipulator (DOF), all joints being rotational, requires 882
multiplications and 708 additions, or a total of 1590 floating point
operations [16]. A uniprocessor implementation of the N-E formulation
yields a computational cycle which is greatly limited by the total

number of floating point operations and the operational speed of the
microprocessor. Such limitations can be overcome by exploiting the
parallelism inherent in the equations. The issue of parallelism is
addressed in the next section.

3. PARALLELISM IN MANIPULATOR DYNAMICS

In partitioning the computations of a system of equations, there are
many degrees of parallelism that can be exploited, each of which
operates at a different level of abstraction. For example, Inter-chain
parallelism is the parallelism existing among computational chains,
that is, among recursive equations. An example of inter-chain
parallelism is the concurrent execution of operations in the recursive

equations for W, (Equation(3)) and p; (Equation(4)). Nodal
parallelism, on the other hand, involves the parallel execution of
primitive vector arithmetic operations within the " iteration of a given
computational chain. An example of nodal parallelism is the parallel

computation of the terms A,,,D,., and JW.T in the calculation of D,
according to Equation (5). The lowest level of parallelism, called
operational parallelism, is that which can be obtained at an operand
level. For example, [a+b+c+d] can be computed as (a+b) and (c+d) in
parallel, followed by [sum,, + sum.], as opposed to [({({a+b) + ¢} +
d)], which is the uniprocessor implementation.

The robot dynamic formulations presented in this paper consist of a
group. of computational chains which can be executed in paraliel.
These equations have a computational structure which permit the
execution of parallel operations at all three levels: inter-chain, nodal,
and operational. However, as the degree of parallelism increases, so
do the hardware requirements to support the concurrent
computations. If ali three levels of parallelism are exploited, the
hardware required to implement the dynamic equations becomes
excessive. This is because a large number of basic arithmetic
processing elements, such as floating point adders and multipliers
must operate in parallel. In comparison, a much smaller number of
processing elements are required when operational parallelism is
neglected. For example, a single processor can multiply a 3x3 matrix
with a 3x1 vector in 9 multiplications and 6 additions. However, if
operational parallelism is exploited for every row of the matrix, the
operation can be completed in the time it takes to execute 1
multiplication and 2 additions. However, it would require 9 parallel
multipliers (one for each element of the matrix) and 3 adders. Due to
the excessive hardware requirements of operational parallelism, only
inter-chain and nodal parallelism are exploited in the hardware
implementation presented in this paper.

4. ANALYZING HARDWARE REQUIREMENTS FOR

MANIPULATOR DYNAMICS: APPROACH

The equations of motion of a manipulator involve a limited variety of
vector arithmetic operations, such as vector cross product (VC), vector
dot product (VD), matrix-vector multipiication (MV), etc. The
mathematical decomposition technique treats every one of these
operations as an atomic computation module®. For expository
convenience, we classify these atomic computation modules into
primitive classes, where a primitive class is a type of vector
arithmetic operation, such as VC, VD, MV, etc. Each primitive class
requires a given amount of floating point operations, such as additions
and multiplications. In order to synchronize all concurrent processing,
we define a macrocycle as the time it takes to compute the fastest
one of these primitive classes (i.e., that one which has the least
number of operations). In our case, a macrocycle is defined as the
time required to add two 3x1 vectors, that is, a VA (vector addition)
operation. Using a macrocycle as a basic time unit, allows us to
normalize the time required to compute all the other primitive classes
in terms of macrocycles. For example, if a 3x1 vector addition
operation, requiring 3 floating-point operations (flops) is the fastest
primitive class, then a macrocycle is defined as the time required to
execute 3 flops. Consequently, a 3x1 vector cross product, requiring

SAn atomic computation module is a subset of operations which are implemented
sequentially.

292

9 flops, would take 3 macrocycles to be computed. The assignment of
relative time weights to each primitive class in terms of number of
macrocycles is one of the basic principles of the mathematical
decomposition scheme.

The Mathematical Decomposition scheme consists of splitting the
computation of an equation into a group of primitive matrix/vector
operations and executing as many of these operations in parallel as
possible. The objective is to solve the equation in the least number of
stages. Applying this concept to a recursive equation and using the
relative time weights assigned to each primitive class, we determine
the number of macrocycles it takes to compute one iteration of the
equation. Furthermore, this scheme allows us to calculate the total
number of macrocycles it takes to complete an entire CC (i.e., all
iterations). However, the measurements thus obtained for a particular
recursive equation assume that the necessary data for each iteration
will be available when needed. When considering a group of
recursive equations such as the dynamic equations, this is not a valid
assumption since there are data interdependencies amongst CC'’s
(i.e, amongst the recursive equations). These data
interdependencies may cause delays in the computations of a
particular recursive equation if the primitive classes of such recursive
equation must wait for the arrival of operands from other CC’s which
have not been computed yet. Thus, in using the mathematical
decomposition scheme, we have 1o address the data
interdependencies also. In order to achieve this goal, we graphically
represent all parallel computational activity with reference to a
common time scale by using an activity chart.

Activity charts provide a graphical representation of all the
computational modules which are working in parallel at any instant of
time as well as their data interdependencies. The are thus a valuable
tool in assessing the time/space tradeoffs for various orderings of the
computations. Since the computation time of any given atomic
computation module (computational module) is that of the primitive
class to which it belongs, these operations are all plotted with
reference to a common time scale in terms of macrocycles. Hence,
activity charts provide a good working environment from which the
length of the computational cycle as well as the hardware
requirements needed to support all parallel computations can be
extracted. An activity chart for the 3x3 LE (of an 6 degrees-of-
freedom manipulator) is depicted in Figure 4-1. This activity chart
shows that the LE formulation comprises ten primitive matrix/vector
operations. On the other hand. the activity chart of the N-E
formulation, depicted in Figure 4-2, illustrates that it requires five
different primitive matrix/vector operations. Our analysis shows that
this is a crucial factor in determining the hardware utilization efficiency
for these two formulations.

The process of determining computational hardware requirements
consists of three steps. In the first step, we obtain tabular charts
which indicate the number of computational modules of each primitive
class that are needed at each instant of time throughout the
computational cycle. In the second step, we interpret the data
obtained in the first step and determine a preliminary processor count.
The third and final step is a hardware minimization task in which we
seek a reduction of peak computational demands. Each one of these
steps is discussed in more detail in the sequel. Since the tabular
charts for both formulations are fairly lengthy, they are not presented
in this paper. These tabular charts are listed in[15]. However, for
expository convenience we describe the process of creating a tabular
chart with a simple example.

To obtain the data for the tabular chart corresponding to a given
algorithm, we examine the number of parallel computations that have
been allocated per macrocycle as depicted on its activity chart. For
example, an entry in the tabular chart for the 40" macrocycle of the
N-E formulation, is obtained by tracing a horizontal line across the
activity chart at macrocycle 40, such as the one shown in Figure 4-2,
and observing how many computational modules of each primitive
class it intersects. The total number of active computational modules
for macrocycles 40-44 is depicted in Table 4-1. The abbreviations
used in Table 4-1 are explained in the activity chart of Figure 4-2. The

aANIL

0

i

i

et doedemrdemmden &

Ll

0SZOPZOECZ OZZ OLZ 00ZOBL00LOLLO9LOSL OYLOCL OZLOLL 001 06 08 0L 09 0§ Oy OC 0Z OF
i M P

"

Matrix * Matrx
Scaler * Matrix
Matrix « Matrix
Matrix ° Vector

i

"

Vector * Vecor

Teace of Matrix
3 vA vector + vecwr
sV Scalw * Vecor
EJ v Vecor * Matrix
) Pamal Computation
A\ Critical idle Delays

i

"

3

o,

TOTAL COMPUTATIONAL CYCLE : 751 FLOPS TIME SCALE: 1 UNIT~ 3FLOPS =

0|:IL'J]

Figure 4-1: Activity Chart for 3x3 Recursive Langrange-Euler
Case: N=6
first step of the extraction process is completed once this procedure
has been repeated over the entire computational cycle.

After data has been extracted from the activity chart, the
information contained in the tabular chart must be processed in order
to obtain the actual number of processing elements needed for an
architectural implementation. The interpretation of such information is
dependent on the type of target architecture being considered by the
designer. This statement will be further explained in the course of
presenting our analysis. We consider two types of architectures. The
first type of architecture uses general pumpose floating point
processors (GPP’s) which are capable of executing operations
belonging to any of the primitive classes. In contrast; the second type
is a VLSI architecture involving specialized computational modules
which are dedicated to computations belonging to only one primitive
class. We will see how the interpretation of the tabular data varies
depending on the type of architecture under consideration.

To process the tabular data within the context of a VLSI
architecture, we scan the tabular chart in a column-like fashion for the
entire computational cycle looking for the maximum value in each
column. This maximum value gives us the number of computational
modules of each primitive class that are needed to support all parallel
computations. For example, analyzing the data in Table 4-1, we
observe that the maximum number of MV and VP computational
modules needed to support parallel computations in macrocycles 40
through 44 is three and four, respectively. On the other hand, to
process the data within the context of a GPP architecture, we
generate a new column in our tabular chart which contains the number
of processing elements that are needed in each macrocycle
regardless of what primitive class they belong to. Then, we search for
a maximum value in that new column. This is equivalent to adding all
the columns in the tabular chart (i.e., those for each primitive class)
and then searching for a maximum throughout the totals obtained for
each row. This maximum value gives us the number of parallel GPP's

293

m VS Vector * Scalar
[VA Vector + Vector
I MV Marix * Vector
[£3 VP Vector * Vector
B VD Vector * Vector

- o - - " - w ~ - -3

-3 £-1 (-3 -] (-1 (-] D 2 (-3 'E

I 1 1 1 L T I i] =
: 3

Legend 1 £ F E & & &=

| 903 E e
N £
\ %
|

1+,

¢ | 3
3
B

LLLELL

= DS
TOTAL COMPUTATIONAL CYCLE : 87 FLOPS TIME SCALE: 1 UNIT~ 3FLOPS

Figure 4-2: Activity Chart for Newton-Euler

Case: N=6
needed to support all parallel computations. For example, the
rightmost column in Table 4-1 depicts the totals obtained by adding
the elements for macrocycles 40 through 44. A maximum of seven in
the rightmost column indicates that seven parallel processors, at most,
are required to support all parallel computational activity in
macrocycles 40 through 44. A plot of the values in this new column
versus the number of macrocycles is called a processor activity graph
and is depicted in Figure 4-4. Once tabular charts for each
formulation are completed and preliminary worst-case values for the
number of processing elements are obtained for each architecture, we
minimize the hardware requirements by performing optimized
scheduling.

PRIMITIVE CLASSES
MACROCYCLE [vs|va[mv|vP|vD|TOTAL
40 o o [3 [4 Jo 7
4 o o [3 |2 |o 5
42 o [2 [3 [o |o 5
43 o [1 |2 [o |o 3 .
44 o [1 [2 {1]o 4

Table 4-1: Tabular Chart Example for Newton-Euler lllustrating
Computational Hardware Requirements
for Macrocycles 40-44

Optimized scheduling consists of rescheduling operations taking
place in heavily-loaded macrocycles and re-assigning them to
macrocycles with a lower utilization of processing elements. The
objective is to reduce the preliminary worst-case computational
hardware requirements obtained in the second step of the extraction
process for both the GPP and VLSI architecture, without increasing
the dynamics computational cycle. Simply stated, optimized

scheduling is an attempt reduce peak computational demands by
attaining a more even distribution of computational resources. Once
again, this optimization process is dependent on the type of target
architecture. For example, in @ GPP architecture this optimization
process would strive to reduce the total number of processors,
whereas in a VLSI architecture the objective would be to reduce the
number of computational modules for each primitive class. The resuit
of this step is a scheduling scheme with a minimum number of
processing devices and maximum computational speed. In the
following Sections the results obtained from the application of the
computational extraction process to the N-E and L-E tormulations for
both, the VLS! and GPP architectures, are presented and compared.

4.1. ANALYZING THE HARDWARE REQUIREMENTS FOR
INVERSE DYNAMICS

4.2. Hardware Requirements for Lagrange-Euler

The analysis of the tabular chart for the L-E formulation from the
VLSI perspective yields a maximum of 28 computational modules,
belonging to the ten primitive classes described in Figure 4-1. The
breakdown is shown in Table 4-2. On the other hand, the analysis
from the GPP perspective yields a maximum of 11 general-purpose
floating point processors. This is the absolute maximum of the
pracessor activity graph for L-E, depicted in Figure 4-3.

PRIMITIVE CLASSES
MP | SM[MA[MV|[VM|VP|TR|AD|VA|SV|TOTAL
10 |7 |4 |1 1 L R I R 28

Table 4-2: Primitive Modules needed for a VLS| implementation
of the 3x3 Recursive Lagrange-Euler formulation

We compare the results for both architectures according to two
important criteria: total number of processing elements and their
utilization. First, the L-E formulation requires a relatively high number
of primitive classes {ten) which would occupy too much space if they
were implemented in integrated circuit form. Second, the tabular chart
for L-E indicates that the utilization of primitive modules in a VLS!
architecture is very low. For example, in macrocycle 100, as
illustrated in Table 4-3, only 5 of the required 28 primitive
computational modules will be in use, which corresponds to about
18% of the total available processing power. Unfortunately, this low
utilization of computational resources is consistent throughout the L-E
computational cycle [15]. These observations indicate that a-special-
purpose architecture using GPP's would be more efficient than a VLSI
implementation. Therefore, we analyze the GPP architecture in more
detail in the sequel.

One of the major factors to be taken into account when analyzing
the utilization efficiency of a GPP architecture is to observe the
processor activity throughout the computational cycle. This task is
easily accomplished by analyzing the processor activity graph
depicted in Figure 4-3. This graph shows that while the maximum
number of GPP's required is 11, the eleven processors will be active
only during four macrocycles (numbers 12-14 and number 49).
Moreover, a significant decrease in processor utilization occurs during
the backward recursions (i.e., for macrocycles > 129), where a
maximum of only 3 processors are needed. Therefore, if the L-E
formulation is implemented in a special-purpose GPP architecture only
27% of the hardware would actually be used during 52% of the
computational cycle. Further, the average processor utilization for the
remaining 48% of the computational cycle, corresponding to the
forward recursions (i.., for macrocycles < 129) is also low. These
results indicate that a GPP implementation of the L-E formulation also

PRIMITIVE CLASSES
MACROCYCLE [MP [SM|MA MV | VM [VP | TR|AD | VA| SV | TOTAL
100 3 |0 (0 |1 1 jo |o (0 |O |O 5

Table 4-3: Tabular Chart Example for Lagrange-Euler

294

results in a very inefficient architecture. In the following Sections we
analyze the GPP and VLS! implementation of the N-E algorithm and
show that it results in a more efficient architecture.

| Purpose P

Running In Paraliel

[SRS Sl Kl S S Sp . o o

Number of

o 10 20 30 49 50 08 TO 00 90 'd.1‘.‘!.1'.1‘.!'.".‘7."9
Time Units (1 Time Unit ~ 3 Fiops)

Figure 4-3: Processor Activity Graph for a GPP implementation
of Recursive L-E

4.3. Hardware Requirements for Newton-Euler

We analyze the tabular chart for the N-E formulation to determine
the computational hardware requirements for a VLS| architecture. We
observe that a maximum of 12 computational modules are needed.
Each one of these computational modules is capable of executing one
of the five primitive matrix/vector operations involved in the N-E
formulation, described in Figure 4-2. The primitive modules needed
for a VLS| implementation is shown in Table 4-4. Before presenting
our results for the GPP architecture, we discuss the process of
extracting the computational hardware requirements for the N-E
formulation.

PRIMITIVE CLASSES
VD |VC|VS|MV |VA| TOTAL
1 (2 |3 |5 |1 12

Table 4-4: Primitive Modules needed for a VLSI implementation of
the Newton-Euler formulation

In our analysis, we extracted the computational hardware
requirements for the GPP implementation of N-E dynamics by
considering two different scheduling schemes, both of which have
identical computational cycles. The first scheduling scheme includes,
in the forward recursions, the execution of primitive computations
which are functionally associated with backward recursions. In other
words, in this scheduling scheme, computational modules are
activated as soon as the required operands are available regardless
of whether they are partial computations which functionally contribute
to a forward recursion or backward recursion iteration. On the other
hand, the second scheduling scheme attempts to maintain a higher
degree of coupling between the primitive computational modules and
their functional counterparts (the forward and bacward recursions) by
excluding the activation of primitive computations belonging to the
backward recursions during the forward recursions. The activity chart
depicted in Figure 4-2 corresponds to the second scheduling scheme.
In our previous work, we have obtained the activity chart pertaining to
the first scheduling scheme [16]. One of the goals of our design
methodology is to obtain a high utilization of computational resources.
Hence, we must select a scheduling scheme which exhibits a high
processor utilization. Due to the higher processor utilization of the
second scheduling scheme, which we present in this paper, we have
excluded the activity chart for the first scheme in this presentation.

The extraction of computational hardware requirements for the first
case produced a processor count of 12, as depicted in Figure 4-4, as
opposed to only 8 GPP’s for the second case, as illustrated on Figure
4-5). Due to the results obtained, the second scheduling scheme has
been selected for a GPP architecture since it has lower computational

hardware requirements and also exhibits a more uniform processor
utilization throughout the computational cycle. Hence, by scheduling
the operations more evenly throughout the dynamics computational
cycle, a decrease in overall computational hardware requirements and
an increase in processor utilization is achieved. High-processor
utilizations are essential to special-purpose architectures, since idle-
processing time represents a loss of computational resources. The
observations presented in Sections 4.3 and 4.2 are compared in the
next Section,

Forwprd

3
b e e = 4

Purpose

Running In Parallel

1

O 5 10 15 20 25 30 35 40 45 50 S5 60 €5 70 75 60 &5 SO
Time Units {1 Time Unit - 3 Flops)

Figure 4-4: Processor Activity Graph for N-E with Partial
Computations for the Backward Recursions executed
during Forward Recursions

5. COMPARING THE NEWTON-EULER AND
LAGRANGE-EULER FORMULATIONS
In this Section, we compare the results obtained for Lagrange-Euler
and Newton-Euler in two steps. First, we compare the computational
requirements for both formulations. Second, we compare the number
of parallel computational units required in each case for both, VLSI
and GPP implementations.

To compare the computational requirements for L-E and N-E
dynamics, we refer to the activity chart for the 3x3 L-E tormulation,
depicted in Figure 4-1 and the activity chart for the N-E formulation,
depicted in Figure 4-2. Both cases have been illustrated for a 6 DOF
rotary manipulator. Several observations are in order: First, the
macrocycle lengths for both cases are proportional to the time it takes
to execute 3 floating-point operations. Therefore, the time scales for
both activity charts are expressed in the same units. Second, the
computational cycle for the L-E formulation takes 251 macrocycles, or
753 floating-point operations. This represents an 81% reduction in the
computational cycle as compared to its sequential implementation
which required 3914 flops. By the same token, the computational
cycle for the N-E formulation, requiring 87 macrocycles (i.e., 251 flops)
represents an 81% reduction as compared to its sequential
implementation which requires 1356 flops’ [16]). Hence, after
mathematical decomposition, the length of the L-E computational
cycle is about 3 times that of the N-E computational cycle. Before
reaching any conlusions about the comparative efficiency of these two
formulations we must compare their hardware requirements.

A VLS| implementation of the dynamic equations consists of the
interconnection of a group of computational modules belonging to one
or more primitive classes. A large variety of primitive classes requires
a large area on a silicon chip, which is obviously undesirable. The
analysis presented in Section 4.2 demonstrates that the structure of
the L-E algorithm is such that it requires a larger number of primitive
classes than the N-E formulation (ten primitive classes versus five).
Moreover, the excessive amount of computational modules required
by L-E (twenty eight) are, in general, underutilized . On the other
hand, N-E requires only twelve computational modules which are

’Note that the number of flops we have used for a sequential implementation of N-E
in this Section is less than the theoretical maximum number of operations presented in
Section 2, which are 1590 flops. The difference is due to the application of a few
sunplifying assumptions we have presented in our previous work.

295

utilized much more efficiently. Therefore, N-E dynamics is a more
desirable formulation for a VLS| implementation.

From the GPP architecture viewpoint, the N-E formulation aiso
leads to a more efficient implementation than the L-E formulation. Our
analysis shows that the N-E equations require a maximum of eight
GPP's for the parallel architecture, whereas the L-E equations require
twelve GPP’s. Hence, not only is N-E about 3 times faster than L-E,
but it only requires 67% of the computational hardware required for
L-E.

-

Forwagd Back¢ard Recury

Running in Parallel
-
b

Number of General Purpose Processor:

30 15 20 25 30 35 40 48 5O 5§ l".l 70 75 30 85 9
Time Units (1 Time Unit ~ 3 Flops)
Figure 4-5: Processor Acuvity Girapn 1or N-E with an even
distribution of operations throughout
the Computational Cycle

In spite of its disadvantages, the L-E tormulation has several
advantages over the N-E formulation from a structural point of view.
One of the advantages of the L-E formulation is a higher modularity of
the computations and fewer inter-chain data dependencies as
compared to the N-E formulation. This feature allows us to easily
obtain closed-form formulas for the total execution time for a
computational cycle as a function of the number of joints [17].
Furthermore, hardware scheduling is more flexible for L-E than for N-E
since the computational hardware allocation scheme for L-E is
completely independent of the manipulator configuration (i.e., which
joints are rotational and which are translational), which is not the case
for N-E dynamics. Therefore, once a robot manipulator has been
characterized, the same scheduling scheme can be used regardless
of any change in its configuration.

Since our main goal is to obtain a high-speed architecture, we
conclude that the disadvantages of the recursive L-E algorithm
outweigh its advantages. Therefore, due to the increased speed,
reduced computational hardware requirements and higher utilization
of computational resources, we propose the Newton-Euler formulation
as the basis of a multiprocessor implementation of inverse dynamics.

The actual design of a multiprocessor implementation of the N-E
formulation requires a careful evaluation of a number of tradeoffs such
as: internal buffering and storing of intermediate results, storing and
accessing global variables with deadiock prevention, and inter-
processor communication mechanisms. All of these factors should be
considered in the design of an efficient memory configuration scheme
and a compatible data allocation mechanism. In addition, the design
of a memory configuration scheme involves a caretful analysis of what
impact the use of local or global memories will have on the
performance of the parallel architecture. A presentation of our
architectural design is beyond the scope of this paper; however, we
include a detailed description of our analysis in [15].

6. SUMMARY

In this paper, we have presented a new approach for mapping
parallel algorithms into architectures. We have demonstrated the use
of our methodolgy by applying it to both the L-E and N-E manipulator
dynamics formulations. Our scheme for scheduling the parallel
computations is called the mathematical decomposition scheme. We
have used this decomposition scheme to obtain the hardware
requirements for both the Newton-Euler and Lagrange-Euler
formulations. We have also compared the hardware requirements for
both of these formulations, as well as some of their structural features,

in order to propose an efficient formulation to be used as the basis for
the implementation of a special-purpose dynamics computation
architecture. Our results show that the Newton-Euler lormu!atlon is
about three times faster than the Lagrange-Euler formulathn and
requires less hardware to compute the dynamics equations in real-
time. In our analysis of special-purpose parallell architectures, we
have considered the implementation of two archltectgres :a VLSI
architecture and a multiprocessor architecture consisting of general
purpose floating point processors (GPP's). Ogr analysis shows that
the GPP architecture has less hardware requirements compareq to
the VLS| architecture and is better suited for a practical
implementation.
References

{11 John M. Hollerbach.
A L

of

L Dynamics
and a Comparative Study of Dynamics Formulation
Col

mplexiy. X
IEEE Trans. on Systems, Man, and Cybemetics
SMC-10(1):730-736, November, 1980.

2} Hotlerbach J.M. and Sahar,G. 5
Wrist Partiti Inverse L and
Manipulator Dynamics.
In Paut, R.P. {editor), Proceedings of the first International
IEEE Conl. on Robotics and Automation, pages 152-161.
IEEE, March, 1984.

{3] Kanade, T., Khosla,P.K. and Tanaka,N.)
Real-Time Control of the CMU Direct Drive Arm Il Using
Customized Inverse Dynamics.
In Polis,M.P. (editor), Proceedings of the 23rd IEEE
Conference on Decision and Control, pages 1345-1352
IEEE, Las Vegas,NV, December 12-14, 1984.

[4] Khosla,PK and Kanade, T.
Real-Time implementation and Evaluation of Model-Based
Controls on CMU DO ARM |1
in Bejczy,AK. (editor), 1986 IEEE International Conference on
Robotics and Automation. EEE, Aprit 7-10, 1986.

[5] Khosla, P.K. and Neuman, C.P.
C i i of C

Newton-Euk

Algorithms.
Journal of Robotic Systems 2(3):309-327, Fall, 1985.

[6) P.M. Kogge and H.S. Stone.
A Parallef Algorithm for the Efficient Solution of a General
Class of Recurrence Equations.
IEEE Trans. on Comput. C-22:789-793, Aug., 1973.

[71 Richard H. Lathrop. »
Parakelism in Manipulator Dynamics.
Intl. Journal of Robotics Research 4, 1985.

i8] C.S.G. Lee, T.N. Mudge, and J.L.Turney.
Hierarchical Control Structure Using Special Purpose
Processors for the Controf of Robot Arms.
In ings 1982 Pattern ition and image
Processing Conl., pages 634-640. Las Vegas, Nevada,
June 14-17, 1982.

)] Luh, J.Y.S., M.W. Walker, and R.P.C. Paul.
On-ine C ionat Scheme for A i
Teans. of ASME, J. of Dynam. Syst..Meas., and Contrl.
102:69-76, June, 1980.

{10 Luh, J.Y.S.andC.S. Lin.
Scheduling of Paralle} Computation tor a Computer-Controlled
Mechanical Manipulator.
IEEE Trans. Syst. Man, and Cyber. SMC-12(2):214-234,
MarchvApril, 1982.

[11] NigamR. and Lee,C.S.G.
A Muttiprocessor-Based Controller for the Control of
Mechanical Manipulators.
1EEE Journal of Robotics and Automation 3(1):214-234, April,
1986.

[12] OrinD.D.
Systolic for Cs for Robotics
Applications.
Specialized Computer Architectures for Robotics and
Automation.
Gordon ant Breach Publishers, New York, to appear.
Edited by James Graham.
[13] RabertM.H.
Analytical Equations vs. Table Lookup for Manipulation: A
Unitying Concept.
InF ings of the IEEE C: on Decision and
Control, pages 576-579. {EEE, New Orleans, La.,
December, 1977.

(14] Rabert,M.H. and Hom,B.K.P.
Manipulator Control Using Configuration Space Method.
Industrial Robot §:69-73, June, 1978.

[15] Sandra Ramos.
A High-Speed Paraliet Architecture for Robot Control.
Master's thesis, Camegie Mellon University, To appear, 1988.

{16] Ramos.S. and Khosla,P.K.
A Computational Decomposition Scheme for the Newlton-Euler
Dynamic Formulation.
Technical Report, Carnegie-Mellon University, 1o appear.

{17] Ramos,S. and Khosla,P.K.
A Paraliel C: Schema for L Euk

Dynamics.
30th Midwest Symposium on Circuits and Systems , August,
1987.

296

