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Abstract

Tip position control of a flexible arm with friction in the joints
is carried out in this paper. The control scheme is based on two
nested feedback loops, an inner loop to control the position of
the motor and an outer loop that controls the tip position of
the flexible arm. The inner loop is controlled by a high gain
controller to remove the effects of friction. A control law parti-
tioning scheme that partition the control law into a model-based
portion and a servo portion, is used for the control of the outer
loop. To make the arm follow the desired trajectory without any
delay, a feedforward term is added to the control law. The con-
trol scheme is experimentally evaluated on two very lightweight
flexible arms.

1 Introduction

The tip position control of flexible arms with friction in the joints
is carried out in this paper using the control law partitioning
scheme. The control scheme is based on the general robust con-
trol scheme proposed by Rattan et al. [3] that overcame the
effects of friction in the joints. This scheme (Figure 1) is com-
posed of two nested feedback loops, an inner loop to control the
position of the motor () and an outer loop for the tip position
(6:). It was shown that the use of a high gain controller in the
inner loop removes the effects of friction. Once this is achieved,
the inner loop may be represented (for tip pesition control pur-
poses) as a linear system with constant coefficients whose input
is the desired angle of the motor (Bm-) and whose output is the
actual angle of the motor (0m)-

Another important result obtained by closing the inner loop
with a high gain controller is that the response of the inner loop
is much faster as compared to the dynamics of the mechanical
beam. This means that the inner loop may be represented by a
unity transfer function for the sake of analysis and design of the
outer loop. This is especially true in lightweight flexible arms.
But, when the reaction torque of the flexible arm is comparable
to the motor input torque, this assumption no longer remains
true. However, it may still be used as an approximation in the
design of the tip position control loop, and correction terms may
be added later in order to compensate for the delays that appear
in the response of the servo-controlled motor.

If we assume that the previous statement is true, the only
dynamics that needs to be considered for the design of the tip
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position loop is the transfer function of the beam, Gy(s) (Figure
1), which relates the angle of the motor (input) to the tip posi-
tion (output). Once this is done, either the classical or modern
control techniques may be used to design a controller for the
outer loop.

In this paper, the tip position control loop is controlled by a
control law partitioning scheme (Craig (6], Khosla and Kanade
[2]). In this scheme, the control law is partitioned into a model-
based portion and a servo portion. For the flexible beam with
one vibration mode, Gp(s) = w3 /(52 +w3), the model-based por-
tion of the control law is obtained by simply closing a positive
unity feedback loop around the tip position and pre-multiplying
by a gain factor, 1/w3. This has the effect of cancelling the
vibration mode of the beam and reducing the dynamics of the
beam to a double integrator. Once this is done, a servo portion
of the control law can be designed which is independent of the
dynamics of the beam. To make the beam follow a reference tra-
jectory without any delay, a feedforward term which is the second
derivative of the reference position can be added to the control
law. This simple scheme is best suited for flexible beams with
one vibration mode and is not directly applicable to beams with
more than one vibration mode. In this paper, we have extended
this scheme to flexible beams with two vibration modes. In the
case of beams with more than one vibration mode, the positive
unity gain feedback loop removes the first (dominant) vibrating
mode, independent of the transfer function of the beam. This is
then pre-multiplied by the inverse of the minimum phase portion
of the resultant transfer function (transfer function of the flex-
ible beam after closing the positive unity feedback loop around
the tip position). The feedforward term for this scheme also con-
tains terms to compensate for the minimum phase portion of the
simplified transfer function of the beam.

The paper is organized as follows. The control of the inner
loop is briefly described in section 2. Section 3 discusses the
design of the tip position control loop. A brief description of the
control law partitioning scheme and the design of the feedforward
term is also given in section 3. These results are applied to two
experimental systems, a single-mass arm and a two-mass arm, in
section 4. The performance data of the two arms are presented.
Some conclusions are drawn in section 5.

2 Motor Position Control Loop

The motor position control loop corresponds to the inner loop
of Figure 1. We want to achieve two objectives when designing
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a controller for this loop:

1. remove the modelling error and the nonlinearities intro-
duced by Coulomb friction and changes in the coefficient
of the dynamic friction,

2. make the response of the motor position much faster than
the response of the tip position control loop (outer loop in
Figure 1).

The fulfillment of the second objective allows us to substitute
the inner loop by an equivalent block whose transfer function is
approximately equal to one, i.e., the error in motor position is
small and is quickly removed. This simplifies the design of the
outer loop as illustrated in the next section. The differential

equation relating the angle of the motor to the applied current
can be written as

. d%60,,(t O, (¢
Kz:J—dT()+V——Tt(—)—+C¢(t)+CF (1)

where K is the electromechanical constant of the motor, i is
the current of the motor, 8,(t) is the angle of the motor, J
is the polar moment of inertia of the motor and hub, V is the
dynamic friction coefficient, C;(t) is the coupling torque between
the motor and the link (the bending moment at the base of the
link), CF is the Coulomb friction and t is time.

To simplify the design of the inner loop, the system de-
scribed in equation (1) can be linearized by compensating for
the Coulomb friction, and decoupled from the dynamics of the
beam by compensating for the coupling torque. This is done by
adding, to the control current, the current equivalent to these
torques (Figure 2) and is given by

ic(t) = (Ce(t) + CF (sign of motor velocity))/K . (2)

The magnitude of the Coulomb friction, CF, is identified
from the spectral analysis of the motor position and the cur-
rent signals. The details of the identification method can be
found in [5]. The coupling torque C;(t) can be calculated ei-
ther from strain gauge measurements at the base of the link
or by the difference of the measurements of the angles of the
motor and tip. The second approach is used in this paper.
Since the single-mass beam is nearly massless, we can assume
that the coupling torque Ci(t) = C(0m(t) — 6¢(t)), where C =
(3.E.I)/L is a constant that depends on the stiffness (E.I) and
length L of the arm. For a two-mass beam, the coupling torque
is more complex as compared to the single-mass case. But be-
cause of the limited computational capabilities of the micropro-
cessor used for this study, a simpler coupling term of the form
Ci(t) = C'(9m(t) — 6,(t)) was implemented. After compensating
for the friction and coupling torque, the transfer function be-
tween the angle of the motor and the current can be written as
Gm(s) = Om(8)/i(s) = (K/T)/s(s+V/J).

The block diagram of the inner loop control system is shown
in Figure 2 (discrete control version). The series and feedback
controllers (G.; and Gz, respectively) are designed so that the
response of the inner loop (position control of the motor) is sig-
nificantly faster than the response of the outer loop (position
control of the tip) and without any overshoot. This is done by
making the gain of the series controller large and is limited only
by the saturation current of the servo amplifier. It was shown
in [3] that, in theory, this gain could be made arbitrarily large
even in the case of the arm being a nonminimum phase system.
It was also shown that large gain in this loop reduce the effects
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of nonlinearities caused by friction.

When the closed-loop gain of the inner loop is sufficiently
high, the motor position will track the reference position with
small error. The dynamics of the inner loop may then be ap-
proximated by ‘1’ when designing the outer loop controller.

3 Tip Position Control Loop

The proposed control scheme for the tip position is composed of
two loops: a loop containing the model-based portion of the con-
trol law and a servo loop containing a classical proportional plus
derivative (PD) controller as shown in Figure 3. A feedforward
term is added to the tip position control system to make the tip
response follow the reference trajectory without any delay. We
assume here that the inner loop has been closed to minimize the
effects of friction and coupling torque. When the response of the
inner loop is much faster than that of the outer loop, the motor
closed-loop transfer function can be assumed to be unity.

Control law partitioning scheme with a feedforward term has
been used in the control of rigid arms (Craig [6], Khosla and
Kanade [2]). In this schemes, the feedforward term generates a
torque (current) to drive the arm that is a function of the desired
trajectory and the model-based portion of the control law gener-
ates a torque to compensates for the dynamics of the beam. The
servo control loop compensates for the tracking errors produced
by perturbations. Our feedforward term differs from the existing
methods in that it uses motor angle rather than the torque as
the generated signal. Thus, the feedforward term may be de-
fined as the second derivative of the reference trajectory. For a
beam with two vibration modes, transfer function of the feedfor-
ward term also contains terms to compensate for the minimum
phase portion of the beam transfer function. The feedforward
term used for this method is simpler than the terms generated
in the above mentioned methods and can be easily computed in
real-time.

3.1 Model-Based Control Loop
The purpose of this loop is to simplify the dynamics of the arm.

The model-based loop for both single-mass flexible arm (one vi-
bration mode) and two-mass flexible arm (two vibration modes)
will be discussed below.

3.1.1 Single-Mass Flexible Arm

For the case of a flexible beam with only one vibrational mode, a
very simple model-based loop can be implemented that reduces
the dynamics of the system to a double integrator. This is done
by simply closing a positive unity gain feedback loop around the
tip position. Provided that the inner loop has been satisfactorily
closed, the transfer function of a lightweight flexible arm with one
vibration mode (Gy(s) in Figure 1) can be written as

wa

8?4 w2

Gun(s) = 3)

The natural resonant frequency of the beam with the motor
fixed is w,, rad/sec. and is related to the constant C, the load at
the tip m and the length L by the expression w3 = C/mlL?.

By closing a positive unity gain feedback loop around the tip
position, expression (3) is transformed into w?/s? and is then
multiplied by Gpgi(s) = 1/w? to reduce the dynamics of the
beam to a double integrator (Figure 3). Thus, the transfer func-
tion of the reduced system is given by



Gla(s) = 5 - (4)

3.1.2 Two-Mass Flexible Arm

The transfer function of a two-mass flexible arm with two vibra-
tion modes can be written as

Ku(a’ - 82) (5)
(87 + wi )8 +why)
where w,; and wng are the natural frequencies of the two vibra-
tion modes. Also, for the final position of the tip to be the same
as the position of the motor, Kpa® = w?;wl,. By closing a pos-
itive unity gain feedback loop around the tip }()osition, the trans-
fer function given by (5) is transformed into —':;%—3}2—&;%'1, where
b = K3 +w3,w3,. This is then multiplied by Gaa(s) = K:%%j
(Figure 3) to reduce the dynamics of the beam into

Gm(a) =

Ghls) = 25~ . (6)

3.2 Feedforward Term

A general expression for the feedforward term was derived by
Feliu et al. [5] and is given by
88 G,,(~a)
G0 |Gi () @
NORNOLN
where Gy(s)Gi(—8) = G (8)G; (s). G (s) and Gy (s) group all
the poles and zeros of Gy(s8)Gs(—3) that are in the left and right
half-planes respectively.

Gy(s) =

3.2.1 Single-Mass Flexible Arm

A feedforward acceleration term for the single-mass flexible arm
that makes the tip follow the reference without any delay is given
by

Feedforwardl(s) = 820,.(s) (8)
where ;,(s) is the Laplace transform of the commanded trajec-
tory profile for the tip. Notice that (8) uses the second derivative
of the reference position. It means that parabolic profiles of at
least order two must be used as reference signals in this scheme.

3.2.2 Two-Mass Flexible Arm

Using the expression given in (7), a feedforward term for the
flexible beam with two vibration modes can be obtained as
b9 (9)

Equation (9) uses the fourth derivative of the reference input.
Therefore, a quasi-parabolic trajectory of at least order four must
be used as a reference input to the flexible arm.

2 2
2 3 4
Feedj orwa‘rd2(.s) = (6 + —s¥ 4+ —26 )

3.3 Servo Control Loop

As mentioned before, the use of a feedforward term allows us
to simplify the design of the servo controller. Generally, a pro-
portional plus integral plus derivative { PID ) controller is used
as a servo controller. However, since the compensation for the
Coulomb friction was provided in the inner loop, the servo con-
troller may even be simpler because the integral action is not
needed. This allows us to use high sampling rates improving the
general behavior of the digital control system.

The design of the servo controller can be carried out using
the classical frequency domain techniques or more sophisticated

modern control techniques. To move the arm to the desired
angle, most of the control action is provided by the feedforward
term. The function of the servo controller is to compensate for
the deviation of the tip position from the desired trajectory. It
is well known that the poles of a plant of the form (4) or (6) can
be perfectly placed by using a simple PD controller (Kuo 7).
Let us express this controller as G3(s) = Kp + sKp.

The resulting control scheme after closing loops described in
sections 3.1. and 3.2. is shown in Figure 3. If the load at the
tip were constant, this scheme would provide a nearly perfect
trajectory tracking and error compensation for the tip position.

4 Experimental Results

The method developed in this paper is used in this section to
control the tip position of two flexible arms. The description
and identification of both arms may be found in Feliu et al. {4].
The first arm is a minimum phase flexible beam, and the second
is a non-minimum phase flexible arm.

4.1 Experimental Setup

The mechanical system consists of a dc motor, a slender link
attached to the motor hub, and a mass at the end of the link
floating on an air table. Figure 4 shows the major parts of the
system. The link is a piece of music wire (7 inches long and 0.032
inch in diameter) clamped in the motor hub. The tip mass is
a 1/16 inch thick, 5 3 inch diameter fiberglass disk attached at
its center to the end of the link with a freely pivoted pin joint.
The disk has a mass of 54 grams and floats on the horizontal air
table with minimal friction. Since the mass of the link is small
compared to that of the disk, and because the pinned joint pre-
vents generation of torque at the end of the link, the mechanical
system, used for the first arm, behaves practically like an ideal,
single degree-of-freedom, undamped spring-mass system. For the
second arm, the wire is replaced by a longer one, and two free
pinned masses are attached, one at the middle and the other at
the end of the wire. The second system has the characteristic of
a flexible arm with distributed masses and is of non-minimum
phase type.

A direct drive motor drives the link. The motor is powered by
a 40V power supply through a DC servo amplifier. The amplifier
current limit is set to 4.12 amps., which corresponds to 9 Ib. inch
motor torque. Coulomb friction of the motor is about 0.288 Ib.
inch (corresponding to 0.132 amps) and has a significant effect
on the control when the torque applied to the arm is low, as with
our slender arm. The system was designed to a give tip response
that is much slower than the motor response. Mechanical stops
limit the travel of the motor and the hub to about +27 degrees.

Two sensors are used for the control of the system. A 7/8
inch, 360 degree potentiometer provides the angle of the motor
shaft. A Hamamatsu tracking camera (with an infrared filter)
senses the X-Y position of an infrared LED mounted on the tip
of the arm. The workspace of the arm is limited to about +3
inch (£25 degrees) by the field of view of the camera.

The control algorithm is implemented on an MC68000-based
computer with 512K bytes of dynamic RAM and a 10 MHz clock.
Analog interfacing is provided with 12 bit A/D and D/A boards.
Switch signals for starting and stopping control routines, as well
as other functions, are read through parallel I/O ports. As float-
ing point operations are slow (approximately 0.5 msec. per mul-
tiplication), real-time computations are done in integer (approx-
imately 0.08 msec. per multiplication) or short integer (0.02



msec.) arithmetic. A matrox graphics interface card permits
the display of data on a 12 inch monitor.

4.2 Single-Mass Flexible Arm

Using an identification technique described in Feliu et al. [4],
the parameters of the single-mass flexible arm shown in Figure
5 are given by

J = 0.005529 1b.in.sec?

V = 0.01216 lb.in./rad./sec.

K = 2.184 Ib.in. /amp.

Coulomb friction = 0.2883 Ib.in (0.132 amp.)
Ci(t) = C(Om(1) — 0:(2))

C = 0.674 Ib.in./rad..

The estimated value of the Coulomb friction corresponds to
an equivalent torque generated by a beam deflection of 25 de-
grees, so its effect is very noticeable. Using these parameters,
the transfer functions of the motor (assuming that the Coulomb
friction has been compensated) and the beam are given by

394.94(s? + 43.75)

G, =
m(®) = S 2260 16570 T 103.56) (10)
43.75
G = g (11)

4.2.1 Inner loop control design

The inner loop incorporates compensation terms for Coulomb
friction and the coupling between the motor and the beam, ac-
cording to (2). The scheme of Figure 2 is used for the inner loop.

A delay term is included in the scheme to take into account the
delay in the control signal because of the computations. A sam-

pling period of 3 msec. is used for this inner loop.

An optimization program was developed to get the best con-
trollers using the model obtained for the motor. The settling
time (considering an error of less than 1%) of the response of
the motor to step commands in the motor angle reference input
was minimized. The saturation limit of the current amplifier
was also taken into account in this design. Step inputs were
assumed as references for the inner loop because, in order to
get a good control action, the command angle for the motor
should experience very sharp changes. In fact, in our experi-
ments, the motor angle varied much faster than the angle of the
tip. The resulting controllers were Gy (z) = 17.442 — 2.442z7!
and G 3(z) = 6.667 — 5.667z~1.

Figure 6 shows the response of the motor position to a step
change in its reference keeping the tip of the arm fixed in the
zero angle position. This means that, in the steady-state of this
experiment, there is always a coupling torque ,C;, caused by the
bending of 200 mrad existing between the angle of the motor and
the angle of the tip. The zero steady-state error shown by the
experimental data demonstrates the effectiveness of compensa-
tion achieved for the Coulomb friction and for the coupling of the
motor with the beam. The settling time achieved for the motor
is 33 msec. which is significantly faster than the dynamics of
the beam. This allows us to assume that the equivalent transfer
function of the inner loop is 1.
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4.2.2 Outer loop control design

A simple model-based portion of the control law partitioning
scheme was implemented by closing a positive unity gain feed-
back loop around the tip position and premultiplying by 1/w3.
An analog PD servo controller was designed and then discretized
using the Tustin transform (VanLandingham [8]). The pulse
transfer function of the digital controller is given by

(12)

Figure 7 shows the tip position response to the parabolic trajec-
tory.

1—0.987z"1
Ge(2) = 3281.25(-1_—0‘74-2_—1) .

4.3 Two-Mass Flexible Arm

This system is similar to the single-mass system, with two con-
centrated masses spaced along the flexible beam as shown in
Figure 8. The transfer function of the beam was found to be

6e(s) _ —45.475(s% - 1273.3)
O(s) ~ 8% 4 1637.1s% + 57903.3175

(13)

and the coupling torque between the beam and the motor (ex-
pressed in normalized units) as

1+ .00135?

Cu(s) = 1941 oo (Om(s) = 61(s))

(14)

4.3.1 Inner Loop Control

It was shown in Feliu et al. [5] that the friction torque for the
motor for two-mass flexible arm remained the same as the single-
mass flexible arm but the coupling term given by equation (14)is
more complex. Since we are using a microprocessor with limited
computational capability and the sampling period is 3 msec., a
simpler coupling torque Cy(s) = 1.941(6n(s) — 0(s)) was used
in the implementation. The rest of control scheme for the inner
loop of the two-mass arm is the same as the inner loop control
of the single-mass arm.

Figure 9 shows the response of the motor to a step change in
its reference keeping the tip of the arm fixed in the zero angle po-
sition. The response is significantly faster than the dynamics of
the beam. This allows us to assume the overall transfer function
of the motor to be unity for the design of the outer loop.

4.3.2 Outer Loop Control Design

Using the results of section 3.2.2, a feedforward term for the two-
mass flexible arm was obtained as shown in Figure 10. A simple
PD servo controller was also designed in the s-plane and then
discretized. The pulse transfer function of the digital controller
is also shown in the Figure 10.

Figure 11 shows the fourth order parabolic trajectory and
the reference input for the tip position. A reference trajectory
obtained for maximum acceleration was applied to the tip posi-
tion control system and its response is shown in Figure 12. For
trajectory having acceleration less than the maximum accelera-
tion, the error between the reference and the actual position of
the tip will be less than that shown in Figure 12.



5 CONCLUSIONS

Tip position control of lightweight flexible arms in the presence
of joint friction is presented in this paper. The control scheme
consists of two nested feedback loop, an inner loop to control
the position of the motor and an outer loop to control the tip
position of the flexible arm. Effects of friction are removed by
closing a high gain inner loop. The design of the inner loop which
was developed in an earlier paper [3] includes compensation for
the coupling torque and the Coulomb friction.

A new method for the design of the outer loop is presented in
this paper. First, the dynamics of the beam are simplified using
a model-based controller. This controller contains a unity gain
positive feedback loop around the tip position to compensate for
the first vibration mode. For flexible beams with one vibration
mode, this is then pre-multiplied by a gain factor, 1/w?, to re-
duce the dynamics to a double integrator. For beams with more
than one vibration mode, the unity gain positive feedback loop is
pre-multiplied by a transfer function containing the inverse of the
minimum-phase portion of the loop transfer function. A simple
servo/feedforward controllers are then designed for the simpli-
fied systems. Nominal trajectory and the feedforward terms are
designed by taking into account whether the system is minimum
or non-minimum phase. The feedforward term, which is based
on the dynamics of the simplified system, is much simpler than
the term generated for the existing methods. This makes the
control scheme computationally efficient.

The control scheme developed in this paper was applied to a
class of lightweight flexible arms, a single-mass minimum phase
system and a two-mass non-minimum phase system. Controllers
designed here are simpler and provide fast and precise control of
the tip. The control scheme also proved to be quite insensitive
to noise in the measurement, and to error in modelling.
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