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Abstract

We describe a theoretical model of spatial representation in corter,
including computer simulations, that is compatible with data from single
neuron recordings. Our proposed architecture, called a sinusoidal array,
encodes a polar vector T = (r,¢) as distributed activity across a neuronal
population. We demonstrate how sinusoidal arrays might be used for vec-
tor computations such as addition, subtraction, and rotation in tasks such
as primate reaching and rodent navigation.

1 The Sinusoidal Array

Spatial representation in the mammalian brain has been widely studied
in hippocampus, parietal cortex, and throughout the motor system. But
most of the modeling work to date has focused on place cells in hippocam-
pus and on the transformation of retinal to head centered coordinates in
parietal cortex. Our work models spatial representations in the motor
system, but it is also applicable to certain navigational tasks.

We offer a general computation mechanism, the sinusoidal array, which
is capable of representing n-dimensional vectors. (We will be primarily
concerned with 2 and 3 dimensional spatial vectors.) The sinusoidal
array is an encoding of a vector as a distributed pattern of activity
over N neurons. The firing rate of each neuron ¢ encodes the value
F(r,¢,i) = b;i + ki - rcos(¢ — ¢;) where b; is a baseline value that at-
tempts to keep F(r, ¢, 1) positive, k; is a scale factor, and ¢; is a pre-
ferred direction. We assume that preferred directions are uniformly dis-
tributed. Thus, for each cell we associate a preferred vector (in polar
coordinates) 7 = (k;, ¢s). With & = (r, ¢) the vector being represented,
and SAjz the sinusoidal array represention of @, the firing rate of neuron
iis F(SAg, i) = b; + 7.7 where the dot denotes inner product. The si-
nusoidal array is an extension of the population vector [6]. Because the
sinusoidal array includes magnitude information, it is capable of support-
ing vector arithmetic.
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Figure 1: A sinusoidal array representation of the vector ¥ = (r,¢) using 50
neurons. The orientation of each line indicates prefered direction ¢;; line length
is proportional to firing rate. For clarity, the b; and k; values were made the
same for all neurons.

2 Computing With Sinusoidal Arrays

Let ¥ (represented by SAs) be the vector sum @ 4+ @2 (SA; and SA;
respectively). Because vector addition distributes over dot product, this
sum can be accomplished by allowing S A3 neurons to sum spikes from
a subpopulation of cells in SA; and SAs. The probability of making a
synapse between a cell in SA; or SAz and a cell in S A3 is proportional to
a Gaussian function of the difference between their preferred directions.
In order to keep the average baseline of cells in SAs equal to B (the
average baseline for SA; and SAQ), SAs neurons must have a bias term
of —B.

Vector subtraction is equivalent to the addition of the negation of a
vector. Thus subtraction is analogous to addition, but the probability of
a synapse from SA; to SAs; must be inversely related to the difference
between their preferred directions, that is, a difference of 180° has a
maximal probability of synapse and 0° a minimal probability.

Vector rotation in phasor notation is equivalent to a phase shift. In
an earlier formulation of the sinusoidal array [12], we proposed a special-
purpose circuit for rotation by shifting. However, this proposal is incom-
patible with the more general formulation described here. Instead, vector
rotation in our new formulation could be performed by the repeated ad-
dition of tangent vectors with magnitudes that are a constant fraction of
the rotating vector. Such tangent vectors are obtainable from the rotating
vector using a maximal probability of synapse at 90°. This would predict
a linear relation between rotation time and angle of rotation, which is
compatible with results in both humans [11] and monkeys [8].

3 Computer Simulations

Our simulations are based on an abstract pyramidal cell, modeled at a
simpler level than compartmental models, but retaining many important
neuronal properties such as spiking behavior. Each cell integrates synap-
tic input linearly over time, and when the internal sum passes threshold,
it fires a spike. A spike lasts for one clock tick, after which the cell enters



a refractory state, modeled by a higher threshold which decays expo-
nentially over time until the threshold returns to normal. During the
refractory period, cells continue to integrate inputs. If the internal sum
surpasses the high threshold, the cell spikes and starts a new refractory
cycle. We add noise to a cell by adding or subtracting a percentage of
the average baseline at each time step.

Sinusoidal arrays in our simulations are of two types: input arrays
and summation arrays. Neurons in input arrays are constrained to spike
at a desired frequency F(SA,7). To accomplish this, the internal sum
is increased by F(SA,1) - At at each time step. Summation arrays take
synaptic input from two sinusoidal arrays (which may themselves be either
input or summation arrays) as described above. In order to implement
the necessary bias factor —B, at every clock tick the net activation of
each cell in the summation array is decreased by B - At. We have not
modeled synaptic or axonal delays.

It is important to note that input arrays are purely an artifact of our
simulations. All sinusoidal arrays in real neural tissue would be sum-
mation arrays, their non-array inputs being generated in some manner
beyond the scope of the current model. In the simulations reported here,
each array contains 1500 neurons.

4 Evidence from Single Neuron Recordings

The sinusoidal array representation of a vector ¥ = (r, ¢) requires that
the constituent neurons have a cosine relation to angle (¢) and a linear
relation to magnitude (r). Cells with a cosine response to head direction
have been found in parietal cortex of rats navigating on an 8-arm maze [2].
As yet there i1s no evidence for a linear relation between firing time and
vector magnitude, but experiments are under way to investigate this. In
primates performing a reaching task, cells have been found throughout the
motor system with a cosine response to hand motion direction [1, 5, 6, 7]
and a weak linear correlation with reaching distance [10].

In the primate reaching task, eight light emitting diodes (LEDs) are
arranged at equidistant points on a circle in front of the animal, with a
ninth LED in the center. The monkey points to the center LED until a
peripheral LED is lit, at which time the monkey points to the peripheral
LED.

In the context of this task, cosine tuning functions have been observed
in single neuron recordings throughout the monkey motor system, includ-
ing motor cortex (area 4) [6], premotor area (area 6) [1], superior parietal
cortex (area 5) [7], and cerebellum [5]. Although the linear response to
distance is weak [10], the response to torque is sigmoidal with a large
linear range [3].

Even if individual neurons only respond with a cosine function of
angle and not linearly to r, it is still possible to obtain an ensemble linear
response by assigning cells with the same preferred direction a variety of
magnitude thresholds. Cells with similar preferred directions would then



be recruited in proportion to magnitude.

5 Rodent Navigation

Rodents can find a hidden food reward by judging distance and angle
to visual landmarks [4]. In one experiment, gerbils learned to find food
at a constant distance and compass bearing from a cylindrical landmark
which was moved to a different location on each trial.

If the animal remembers the vector M from the food to the landmark
and can determine the vector P from itself to the landmark, the vector
from the animal to the goal can be found by vector subtraction: G =
P— M. We propose the sinusoidal array as a mechanism for representing
these quantities and computing the vector difference.

6 The Primate Reaching Task

In one variant of the reaching task [7], which we believe provides evi-
dence for a vector subtraction operation in the motor system [9], a load
is attached to the manipulandum in such a way that the load vector can
be applied in any of eight directions. This allows the dissociation across
trials of the target or “goal” direction from the direction in which the
monkey actually has to exert force in order to reach the goal.

In [9], we postulate that the animal constructs a goal vector G=CT
which points from the center hold location C' to the indicated target
location 7. Given a load vector [ applied to the manipulandum, the
motor command is equal to the vector subtraction M=G-1I. See figure
2.

Figure 2: Vector arithmetic interpretation of the variant of the reaching task
described in [7]. The monkey must move the manipulandum from the center

point C' to the target point 7" while counter-acting the load vector L. G is the
goal vector CT' and M is the actual motor vector required.

Cells in the summation array representing M show a sinusoidal re-
sponse to —I and to G. We define the peak of the response to —T tobe
the load axis and the peak to G to be the goal azxis. We expect the phase
difference between the load and goal axes to cluster around 180°. Plots
from our simulations bear a striking resemblance to recordings done by
Kalaska et al. [7]. See figure 3.
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Figure 3: Comparison of load axes with respect to goal axes for area 4, showing
distribution of angular difference between goal and load axes. Left, data from
[7], used by permission of the author. Right, output of our simulations. The
goal and load axes of each cell have been rotated so that the goal axis of each
cell points to the left. We then plotted a unit vector in the direction of the load
axis.

7 Discussion and Predictions

We have described the sinusoidal array, a computational mechanism for
vector arithmetic. We cite recordings of neurons that could be compo-
nents of sinusoidal arrays, but await system-level studies that will confirm
or falsify our theories. Specifically, we predict that representations of the
vectors forming the input to the summation arrays will be located some-
where previous to the activity of the summation array.

In the case of rodent navigation, we predict one should be able to find
neurons with a cosine response to angle and a linear function of distance
for each of the vectors M ]3 and G in either egocentric or allocentric
coordmates We also predict that the areas in which the vectors M and
P are represented will synapse on the area in which G is represented.

In the case of primate reaching, neurons with the required properties
to represent the goal vector G (notably, cosine response to angle, no
neuronal response to load) have already been found in premotor cortex
(area 6), and neurons with the required properties to represent the motor
activation vector M (cosine response to angle for both goal and load,
preferred load axis approximately 180° off preferred goal axis) have been
found in primary motor cortex (area 4). We predict that a representation
of load can be found in some area that synapses on area 4, such as,
perhaps, thalamus.
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Figure 1: A sinusoidal array representation of the vector ¥ = (r, ¢) using
50 neurons. The orientation of each line indicates prefered direction ¢;;
line length is proportional to firing rate. For clarity, the b; and k; values
were made the same for all neurons.

Figure 2: Vector arithmetic interpretation of the variant of the reaching
task described in [7]. The monkey must move the manipulandum from
the center point C' to the target point 7' while counter-acting the load
vector I. G is the goal vector CT and M is the actual motion vector
required.

Figure 3: Comparison of load axes with respect to goal axes for area 4,
showing distribution of angular difference between goal and load axes.
Left, data from [7], used by permission of the author. Right, output of
our simulations. The goal and load axes of each cell have been rotated so
that the goal axis of each cell points towards 0°. We then plotted a unit
vector in the direction of the load axis.



