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Abstract

A computer model of rodent navigation, based on coupled mechanisms
for place recognition, path integration, and maintenance of head direction,
o�ers a way to operationally combine constraints from neurophysiology and
behavioral observation. We describe how one such model reproduces a va-
riety of experiments by Collett, Cartwright, and Smith [6] in which gerbils
learn to �nd a hidden food reward, guided by an array of visual landmarks
in an open arena. We also describe some neurophysiological predictions
of the model; these may soon be veri�ed experimentally. Portions of the
model have been implemented on a mobile robot.

1. Introduction

Landmark-based navigation is a rich domain for exploring issues of visual and
spatial cognition. At the behavioral level, there is a wealth of data on how animals
use landmarks to locate food or return to their nests. At the neurophysiological
level, hippocampal pyramidal cells called place cells have been discovered that �re
when the animal is in a certain location in its environment [12, 20, 24]. These cells
change their �ring patterns in response to displacement or removal of prominent
landmarks [21]. Cells in the subicular complex [34], the thalamus [19, 33], and
the parietal cortex [4] whose �ring rates are correlated with the animal's heading
(head direction cells) have also been found to be controlled in part by visual cues.

In this chapter we describe a theory of navigation in rodents that is constrained
by both behavioral and neurophysiological data. The theory is embodied in a
computer model called crawl, allowing us to replicate various experiments in
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the rodent navigation literature and make predictions about place cell responses
in novel situations. Some of this work has been previously reported in [37, 40, 41].
Portions of the model have also been implemented on a mobile robot [38, 40].

2. Experimental data from rodents

2.1. Representations

Place cells. Single-unit recordings from hippocampus have demonstrated that
rats have an internal representation of space consisting of cells that �re when the
animal is in a particular region of the environment (see [20] for a review). The
activity in these cells seems to be dependent on the arrangement of visual cues: a
rotation in visual cues causes a corresponding rotation of the �ring �elds, or place
�elds [15]. However, most place cells maintain their �ring �elds when some of the
visual cues are removed [23, 25]. Place cells also continue to respond when the
lights are turned o�; thus they cannot be driven by visual cues alone. The response
pattern may be rotated if the animal originally enters a symmetric environment
such as a radial eight-arm maze in the dark, but the spatial relationships among
place �elds remain intact [28].

Head direction cells. Cells in other parts of the rat nervous system, in-
cluding postsubiculum [34, 35], thalamus [19, 33], and parietal cortex [4], are
unimodally tuned to head direction. The preferred direction for such a cell (i.e.,
the direction eliciting maximal response) is constant throughout an environment.
Furthermore, the di�erence in preferred directions for any pair of cells is constant
across environments. But a single cell's preferred direction measured with respect
to true north may di�er across environments. Head direction cells also main-
tain their activity in the dark, presumably by integrating vestibular cues, but the
animal's directional sense will eventually drift if no external input is available [14].

There is evidence that rats use visual landmarks to correct for cumulative
integration errors. If visual cues rotate while the rat is in a familiar environment,
preferred directions of head direction cells rotate by a corresponding amount. On
the other hand, rotation of an unfamiliar environment does not shift the cells'
preferred directions [17].

Path integration. Mittelstaedt and Mittelstaedt [18] and Etienne [8] have
shown that rodents are able to execute a direct path back to their starting location
in a cue-controlled environment after having taken a complex path away from it.
When the salient cues (such as the nest itself) are moved, the animals ignore
those cues and return to the starting location. This suggests that the animals
are maintaining their position relative to the start by means of path integration.
There is no direct neurophysiological evidence for a path integration system, but
there is some evidence that lesion of the caudate nucleus impairs such tasks [1, 26].
Other anatomical and physiological evidence has prompted Douglas [7] to posit
that striatum and/or the parietal lobe are involved in updating an attention-
related spatial vector by path integration.
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Local view. A fourth representation of space comes from direct perception: it
consists of a set of bearings and distances to currently visible landmarks. Although
a great deal of work has been done on the neurobiology of the visual system,
the mental representation of individual landmarks in a scene remains unknown.
Nonetheless, the concept of \local view" is an important component of many
hippocampal models [3, 16, 22].

2.2. Behavior

Collett, Cartwright, and Smith [6] trained gerbils to dig for a food reward at a
�xed position relative to an array of circularly-symmetric cylindrical landmarks.
In all of the experiments we will be concerned with, the array was translated
but not rotated from trial to trial, and the animals were released from di�erent
starting points to ensure that the landmarks provided the only reliable cues to
the reward location. The walls of the experimental chamber were painted black,
and a single light bulb illuminated a central circular region, leaving the walls in
darkness. This was done to limit the external cues the animal could glean from its
environment, encouraging it to focus on the landmarks. The 
oor of the chamber
was covered with wood chips.

Once the gerbils were trained to criterion, they could be tested by occasional
probe trials in which the food was absent. The distribution of each animal's search
e�ort during probe trials was plotted as a 2D histogram. In some probe trials the
landmark array di�ered from that of the training trials. The distribution of search
e�ort in these modi�ed arrays is particularly informative, because it shows how the
animals coped with discrepancies between memory and visual perception. Each
animal was trained on only one landmark con�guration and experienced probe
trials only rarely, intermixed with the training trials.

Collett et al. trained one group of gerbils using a single landmark to indicate
the food location (the one-landmark task). The gerbils learned to search for
the food at the correct distance and bearing from the landmark: well-trained
animals went directly to the food location upon release from the start box. (See
Figure 1.) The fact that the animals could learn to search at the correct bearing
as well as distance from a single symmetric landmark implies that they have some
independent means of determining bearing information. Collett et al. supposed
that the animals found some external cue that provided bearing information,
despite their attempts to block this. But the subsequent discovery of an internal
compass in rats (the head direction cells) suggests that external cues might not
be necessary. Our model makes use of this compass.

Another group of gerbils were trained with two landmarks (the two-landmark
task). Again, they successfully learned this task: well-trained animals went di-
rectly to the goal location. (See Figure 2.) With more than one landmark, the
array can be modi�ed; the animals' search patterns in response to the modi�ed
array can be very informative.

When one landmark was removed (the two-minus-one task), the gerbils searched
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(a) (b)

Figure 1: Distribution of gerbils' search e�ort during probe trials in Collett et
al.'s one-landmark task. The large solid circle is the cylindrical landmark. The
food reward, a sun
ower seed, marked as a small triangle in the schematic (a),
was located 50 cm south of the landmark during training trials. (b) Size of blobs
shows time spent searching in each location during probe trials. Part b reprinted
from [6] with permission of author and publisher.

 

Copyrighted �gure;
see [6] for original.

(a) (b)

Figure 2: (a) Schematic of training with the two-landmark task. Food location is
denoted by the small triangle. (b) Distribution of time spent by gerbils searching
for food during probe trials in the two-landmark task. Part b reprinted from [6]
with permission of author and publisher.

Copyrighted �gure;
see [6] for original.

Figure 3: Distribution of time spent by gerbils searching for food after training
with two landmarks and testing with only one. This is the two-minus-one task.
Reprinted from [6] with permission of author and publisher.



1. NAVIGATING WITH LANDMARKS 5

 

Copyrighted �gure;
see [6] for original.

(a) (b)

Figure 4: (a) Training in the three-landmark task. Food (small triangle) was lo-
cated at the center of the landmark array. (b) Distribution of time spent by gerbils
searching in the three landmark task. Part b reprinted from [6] with permission
of author and publisher.

Copyrighted �gure;
see [6] for original.

Copyrighted �gure;
see [6] for original.

(a) (b)

Figure 5: Distribution of time spent searching for food by gerbils trained with three
landmarks and tested (a) with only two landmarks (the three-minus-one task), or
(b) with only one landmark (the three-minus-two task). Reprinted from [6] with
permission of author and publisher.

alternately in two locations, each at the correct bearing and distance from one of
the landmarks they observed during training (Figure 3). Collett et al. theorized
that they were binding the cylinder �rst to one and then to the other of the two
remembered landmarks. Note that the visual environment in the two-minus-one
task is the same as in the one-landmark task, the di�erence in response results
from the di�erent training.

A third group of gerbils learned to �nd food at the center of a triangular array
(the three-landmark task, Figure 4). Because there are now three landmarks, a
number of manipulations can be made to the array. Similar to the two-landmark
array, one or more landmarks can be removed. When only one landmark was
removed, the gerbils concentrated their search in a single location (Figure 5a).
The visual environment in the three-minus-one task is identical to that of the
two-landmark task, but again the di�erent training results in di�erent responses.
With two landmarks removed (Figure 5b) the visual environment reverts to that
of the one-landmark task, but now the gerbils search three locations, equivalent
to binding the remaining landmark to each remembered landmark in the three-
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(a) (b)

Figure 6: (a) Training in the three-plus-1 task; same con�guration as Figure 4a,
save for orientation. (b) Distribution of search time during probe trials with a
fourth landmark added. Part b reprinted from [6] with permission of author and
publisher.

Copyrighted �gure;
see [6] for original.

Figure 7: Distribution of time spent by gerbils searching when the one of the three
landmarks is moved. This is the stretched-triangle task. Reprinted from [6] with
permission of author and publisher.

landmark task.

Collett et al. tested a third group of gerbils by adding a landmark to one side
(the three-plus-1 task). Adding a landmark produces two triangles with opposite
orientations, one correct and one reversed (Figure 6). The gerbils concentrated
their search at the center of the correctly oriented triangle and spent little time
in the triangle with opposite orientation.

Some other manipulations of the triangular array produce inconsistent cues.
For example, if one landmark is moved further away from the other two, it provides
evidence for a di�erent goal location than the other two landmarks. This is the
stretched-triangle task (Figure 7). The gerbils concentrated their search at the
location suggested by the two mutually consistent landmarks; they did not search
at the learned bearing and distance from the outlier landmark.

To account for the gerbils' behavior on these tasks, Collett et al. posit that the
gerbils predict the goal location by remembering vectors from each landmark to
the food. Because the landmarks are identical, they apply every learned vector to
every perceived landmark, as in Figure 8. The locations receiving the most votes
are the ones searched. We shall refer to this as the vector voting hypothesis. It is
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(a) (b)

Figure 8: (a) Remembered vectors hypothesized by the vector voting hypothesis.
Small triangle denotes food reward (sun
ower seed) at the goal location. (b)
Probe trial showing how vector voting determines the location to be searched. The
location with two votes is searched while those with only one vote are ignored.
From [37].

compatible with all of the above results but requires O(n2) operations to compare
perceived with remembered landmarks.

However, the vector voting hypothesis is not compatible with results from two
additional manipulations performed by Collett et al.: the split-array task and the
rotated-triangle task.

The two-landmark array can also be stretched. When trained on two land-
marks and tested with the distance between them doubled (the split array task),
the gerbils searched at two locations, each at the correct distance and bearing from
one landmark (Figure 9a). The simplest form of the vector voting hypothesis in-
correctly predicts search at four locations (Figure 9b). Collett et al. suggest that
the gerbils may have used their perception of the array as a whole to disambiguate
the two landmarks, but the mechanism for this is left unspeci�ed.

When the three-landmark array was inverted, or equivalently, rotated by 60�,
the gerbils �rst searched at the center of the rotated triangle and then at three
exterior locations, as in Figure 11a. These three exterior locations can be de-
rived by considering any two landmarks in the correct orientation. Figure 11b
demonstrates how the vector voting hypothesis explains the three exterior search
locations, but not the interior one.

The gerbils' tendency to search the center �rst can be explained by two possible
strategies: At a distance, they may treat the entire array as a beacon, i.e. a single
landmark co-localized with the goal. Alternatively, if a gerbil rotated its internal
compass by 180�, the landmark array would appear in the \correct" orientation,
and the animal would search the center of the array. However, when the animal
failed to �nd food there, it would have to restore the previous alignment of its
head direction system in order to generate search hypotheses at the three exterior
points.

In the following sections we present an alternative model that reproduces
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(a) (b)

Figure 9: (a) Distribution of search e�ort for gerbils trained on the two-landmark
task (Figure 8a) and tested with distance between the landmarks doubled. (b) Vec-
tor voting applied to the split-array task. Part a reprinted from [6] with permission
of author and publisher.

Figure 10: The three-landmark task: remembered vectors hypothesized by the vec-
tor voting hypothesis. Small triangle denotes food reward (sun
ower seed) at the
goal location.
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(a) (b)

Figure 11: (a) Distribution of search e�ort for gerbils trained on the three-
landmark array but tested with the triangle inverted. (b) Vector voting applied
to the rotated-triangle task. Part a reprinted from [6] with permission of author
and publisher.

the above tasks, including the two tasks that vector voting cannot. We will
then show that our mechanism can be understood as a distributed connectionist
implementation of vector voting, and discuss why it can explain the split-array
and rotated-triangle tasks.

In all of these tasks, information from multiple landmarks must be combined
to solve a problem: where to search for food. This involves an instance of the
well-known binding problem: perceived landmarks must be bound to remembered
landmarks to give a maximally consistent interpretation of the scene. Our model
takes an indirect approach to the binding problem. Instead of asking \Which
visual landmarks bind to which remembered landmarks?" our model asks \Where
am I?" By answering this simpler question the model can derive answers to the
more complex one, because once it knows its location, correspondences between
visual percepts and remembered landmarks are highly constrained.

3. Overview of our theory of rodent navigation

The central points of our theory are (1) that behavior arises from an interaction
between multiple representations of space and (2) that those representations me-
diate associations of internal and external stimuli. In our model, both the place
cells and the head direction cells process combinations of internal and external
information.

There is a well-established relationship between certain types of changes to the
visual world and changes in place cell �ring [20]. A number of computer models
of visually-driven place cells have now been published [2, 3, 29, 30, 31, 39], but
these fail to explain the persistence of place �elds in the dark. In a circular arena,
Quirk et al. observed that place �elds in the dark are similar in size to �elds in
the light; their centers don't di�er in distance to the wall, but the �elds are often
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Figure 12: Components of the crawl model.

rotated [28]. If place cells were responding to non-visual cues, the size or shape of
the �elds might change, but the general location of the �elds would not. The fact
that place �eld locations change in a regular fashion in the dark suggests a source
of internal cues. Our theory is that place cells receive an estimate of the animal's
position from a path integration module, and the observed rotation of �elds in
the dark is a result of drift in the head direction system. Place cells and head
direction cells have in fact been observed to drift in synchrony in the dark [15].

Head direction cells also associate internal with external cues. The preferred
directions of cells in postsubiculum [34], thalamus [19, 33] and parietal cortex [4]
rotate in response to the rotation of the visual environment. But cells also main-
tain their directional preferences in the dark, and therefore must be driven in
part by internal (probably vestibular and motor e�erent) signals. As mentioned
earlier, rodents can integrate a complex exploratory path and return directly to
their starting point. Mittelstaedt and Mittelstaedt [18] further demonstrated that
gerbils could integrate angular acceleration as long as it was above the vestibular
threshold of 0:24�sec�2. On the other hand, Etienne [8, 9] showed that when
given an external orientation cue (a red light in a otherwise dark environment),
hamsters preferred to rely on it rather than on internal cues.

4. The model

4.1. Structure

Figure 12 is a diagram of our model. Each box denotes a functional system; it
should not be presumed to correspond to a single anatomical location. Visual
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input provides a tuple of information hTi; ri; �ii specifying the landmark type and
its range and bearing with respect to the animal. The animal's head direction

�h is updated by vestibular cues and e�erent copies of motor commands as the
animal moves. In the box labeled local view, allocentric bearings to landmarks
are calculated by adding the head direction estimate to each egocentric bearing:
�i = �i + �h.

The animal is also assumed to maintain an estimate of its position hxp; ypi in
some internal coordinate system. This value is updated by the path integrator

as the animal moves, based on vestibular input (via the head direction module)
and motor e�erence copy.

The place code in our theory consists of place units1 which maintain an as-
sociation between the local view and path integrator coordinates. Place units are
radial-basis units tuned to type, range, and allocentric bearing of two individ-
ual landmarks, plus retinal angle between one pair of landmarks and a point in
path integrator coordinates. The activity of each unit is a product of univariate
gaussian functions of each of these quantities.

We use redundant sources of cues in order to adequately cover a range of animal
behaviors in a single model. For example, allocentric bearings to two landmarks
are su�cient to uniquely localize a point in space only if the point is not co-linear
with the landmarks. In environments with multiple identical landmarks, or only
a single prominent landmark, combinations of range and bearing information help
to e�ciently disambiguate the visual input. Another type of information comes
from the bearing di�erence between two landmarks, which is equivalent to their
retinal angle. This de�nes a line of position, which can perhaps be measured more
accurately than distance, and is especially useful when the internal compass has
been disrupted and allocentric bearings cannot be determined.

Our place units compute a \fuzzy conjunction" of their inputs in which terms
drop out when information is unavailable. Thus, in the dark, place units are
driven solely by the path integrator. Conversely, each time the animal is re-
introduced into a familiar lighted environment, path integrator coordinates are
unavailable, so place units are driven solely by visual input until the animal has
self-localized. Once the path integrator has been initialized, place units respond
to a combination of internal and external cues.

Mathematically, we say that the activity of a place unit u is

A(u) = C(u) � L(u)

where C(u) is a two-dimensional gaussian tuning to path integrator coordinates
centered at hxu; yui and L(u) is a product of univariate gaussian functions of
perceptual variables. The width of these gaussians are determined by parameters

1We refer to the elements in our simulation as \units," reserving the term \place cells" for

real hippocampal neurons. We do not assume a one-to-one correspondence between the model's

place units and individual pyramidal cells.
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which have been tuned to match neurophysiological data from [21]. We say that
a cell with activity A(u) greater than a dynamic threshold � is active.

In the dark the L(u) term drops out of the equation, leaving A(u) = C(u),
while on being re-introduced into a familiar lighted environment, the C(u) term
drops out, leaving A(u) = L(u).

The local view term L(u) can be further broken up into feature terms, cor-
responding to the univariate gaussian functions of spatial variables. If a feature
term is tuned to a landmark of a type that is not present in the current environ-
ment, then that feature term will drop out of the equation for L(u). We also allow
feature terms to drop out when there are not enough landmarks of a type to �ll
the place unit's local view. For example, a place unit tuned to spatial variables
of two cylinders in the two-landmarks task will, when faced with one cylinder,
still show a signi�cant amount of activity in its corresponding place �eld. One
might ask why such a place unit will not show two place �elds, corresponding to
matching the one observed cylinder to each of the two remembered cylinders. It
will only show a single �eld because it is constrained by the C(u) term; in only
one location in the environment will the path integrator coordinates match its
remembered coordinates.

4.2. Training the model

In order for an environment to be familiar, the simulated animal (hereafter sim-
animal) must have recruited enough place units that with high probability every
location will activate some minimum required number. For the experiments re-
ported here, it does not matter how these units were created. Therefore, we
\train" the sim-animal using a method that is behaviorally unrealistic, but quickly
produces enough place units to cover the space.

Training proceeds as follows: The sim-animal is deposited at a random spot
in the arena, with a random heading. It is told its head direction �h and path
integrator coordinates2 hxp; ypi. Distances and angles to all visible landmarks are
calculated and fed to the place units. If fewer than 20 units become active, a new
place unit is recruited. Its �eld is centered at the present location by the following
steps:

1. The response function to path integrator coordinates is tuned to the current
coordinate values hxp; ypi.

2. Two visible landmarks are chosen at random, and the response functions for
allocentric bearings �i and distances ri are tuned to their positions. We do
not require that the two landmarks be distinct. Hence, for some units the
two will be identical, making the unit e�ectively tuned to a single landmark.

2We assume the origin of the path integrator coordinate system to be at the food location.

The actual location of the origin is irrelevant in the tasks described in this chapter, as long as it

is consistent across trials.
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Figure 13: Spatial variables used in tuning a place cell to two landmarks i and j

at path integrator coordinates hxp; ypi.

3. Another two (possibly di�erent) landmarks are chosen, and the response
function for retinal angle �ij is tuned to the di�erence in their bearings.

Figure 13 shows the relations of the spatial variables used in tuning a typical place
cell.

The sim-animal is then moved to another location chosen at random and the
process is repeated. Training continues until the sim-animal reaches criterion,
de�ned as 20 locations visited in succession without recruiting a new place unit.
For the Collett et al. tasks, approximately 10,000 units were required to adequately
cover the environment.

4.3. Entering a Familiar Environment

On entering a familiar environment, the animal may need to reset either or both of
its head direction and path integrator modules. If the animal has been disoriented
(for example by being spun rapidly) before entering the environment, it may know
that its head direction is incorrect. Similarly, if it has been passively moved
(for example by being carried by an experimenter), it may know that its path
integrator coordinates are incorrect. However, even if it believes its path integrator
coordinates and head direction to be correct, it may still reset either or both to
align itself with familiar cues.

Our model uses a measure of the consistency of the place code to determine
whether the sim-animal is aligned with the familiar cues:

C =

P
uA(u)P
u C(u)

When the current local view is compatible with the local view remembered for
these path integrator coordinates, or conversely, when the current path integrator
coordinates match those evoked by the current local view, C will be high. When
the two are are not compatible, C will be low.

In our model, on entering a familiar environment, the sim-animal takes note
of its current path integrator coordinates and head direction. It then attempts
the following sequence:



14 REDISH AND TOURETZKY

1. If it does not know its path integrator coordinates, those must be reset.

2. If it does not know its head direction, that must be reset.

3. It then attempts a head direction reset, and, if the consistency C is improved,
it uses the newly-derived value in place of the old one.

4. It checks whether a combined path integrator and head direction reset will
improve the consistency. It does this by letting allocentric bearing terms
drop out of the activation equation (followed necessarily by a head direction
reset). If C is again improved, it uses the new values, otherwise it restores
the remembered values.

In summary, the sim-animal performs a series of path integrator and head-
direction resets, and when these improve the consistency of the place code, it uses
the new values. In future work we hope to simplify this algorithm, but since it
need only be performed on initial entry into an environment, the cognitive cost
of even the present version does not seem unreasonable.

For the experiments discussed here, because the sim-animal has been placed
in the environment at a random location, it does not know its path integrator
coordinates. It therefore always resets the path integrator (step 1). However,
the sim-animal is not disoriented, so it always knows its head direction at the
start of a trial (step 2). It may still reset its head direction, depending on the
environmental cues (steps 3-4). Once the sim-animal has determined its location
and head direction, computing the trajectory to the goal can be done by vector
subtraction.

4.4. Operations to Enforce Consistency Among Representations

We have de�ned several operations in the model that bring inconsistent internal
and external cues into correspondence. They have been constrained to replicate
a variety of behavioral and neurophysiological data [37, 38, 40, 41]. Here we will
concentrate on just two operations: reset of the path integrator, and reset of the
head direction module.

4.4.1. Reset of the Path Integrator

Reset of the path integrator is implemented by a parallel relaxation process that
brings the locations represented by the place code and the path integrator coor-
dinates into correspondence.

The simulator generates a perceptual tuple hTi; ri; �ii for each landmark visible
from the animal's present location. The local view component converts egocentric
to allocentric bearings, producing hTi; ri; �ii. These tuples are input to the place
units, whose activation values re
ect the match between the tuples seen and the
values to which each unit is tuned. When multiple landmarks of the required type
are available, a unit's activation value is the maximum obtainable for any choice
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of landmarks.3 We apply a dynamic thresholding operation (varying �) to select
a set of active place units of reasonable size.

Each place unit maintains an association between a speci�c location in space
and the visual cues at that location when the unit was recruited. Activation of
unit u can therefore be taken as evidence that the sim-animal's location is near
the path integrator coordinates to which unit u is tuned. The set of active units
therefore serves as a coarse-coded representation [10] of the sim-animal's current
position. (In actual rats, Wilson and McNaughton have shown that the collective
activity pattern of roughly 100 hippocampal place cells gives a highly accurate
estimate of position in a rectangular arena [42].)

Because locations sharing visual features will be perceptually similar to the
animal, the set of active place units might not represent a unique point in space.
Figure 14a shows the place �eld centers of all units activated when the trained
sim-animal was deposited at a random spot in the three-landmark environment.
The active units have place �elds centered at widely varying locations, meaning
the place code is incoherent.

Coherency is achieved by parallel relaxation. First, weighted mean coordinate
values are calculated based on the active place units. The contribution of each unit
to the mean is scaled by its activation level. The path integrator is initialized to
this mean value. Now path integrator coordinates can be used to further constrain
the set of active place units. The width of each unit's path integrator tuning curve
was set at some large value initially, and is tightened as the relaxation proceeds.

At each step of the relaxation process, place activation values are recalculated.
(It is important that this be done for all units, not just those currently active,
because some units that were below the dynamic threshold may rise above it given
the new input from the path integrator.) Units whose place �elds are too distant
from the mean coordinate estimate are inactivated; this in turn causes the mean
to shift a bit toward the centroid of the remaining active units. Repeating the
process while successively tightening the tuning to path integrator coordinates
causes the place code to quickly converge to a state in which all active units have
highly overlapped place �elds, meaning they are in agreement as to the animal's
location. The place code is now coherent, as shown in Figure 14b.

4.4.2. Reset of the Head-Direction Module

The procedure for resetting head direction is as follows. Every place unit has
associated with it the learned allocentric bearings of two landmarks. These are
two of the feature terms of L(u).

For each active place unit, the model computes the di�erence between the
learned allocentric bearing �i(u) and the egocentric bearing �k of whichever land-
mark k it is presently using to compute that feature term. This gives roughly
twice as many bearing di�erences as the number of active units. These are his-
togrammed, and the histogram segmented to �nd the peaks. The model then

3Note that this is an instance of the binding problem.
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Figure 14: Incoherency in the place code when the animal is �rst reintroduced
into a familiar environment. The sim-animal was trained and tested on the three
landmark task. Large �lled circles are landmarks. Each small dot marks the center
of the place �eld (de�ned by path integrator coordinates) of an active place unit.
(top) Incoherent initial state: the �elds are widely dispersed. (bottom) Coherent
�nal state.
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Figure 15: Simulation of the one-landmark task. Blobs show distribution of goal
prediction from various starting locations. Compare with Figure 1.

probabilistically chooses one of these peaks for the new heading estimate �h.

There are probably more natural ways to compute head direction from visual
landmarks. The above procedure is easy to program and captures the essential
claim of our theory: that the animal is sensitive to discrepancies between predicted
and perceived landmark bearings.

5. Correspondence with data

Our model does not produce explicit behavior such as locomotion or search for a
food reward. Thus, we cannot directly reproduce the sequence of motor actions a
gerbil goes through to travel to a presumed goal location and dig about for buried
food. Instead, to replicate Collett et al.'s behavioral results we run the model's
self-localization procedure at 100 randomly-chosen locations in the environment.
On each trial the model produces a position estimate, and from that it derives an
estimate of the goal location. We plot 2D histograms of goal location estimates
to compare our results with the gerbil behavioral data.

Collett et al. examined distribution of search e�ort over trials lasting 30 to
120 seconds. During this time, the animals must physically move between the
di�erent search locations. This is one reason why Collett et al.'s histograms
should be noisier than ours and show broader peaks. In addition, it is likely that
the animals were aware that the environment had changed [27, 36], so some of the
time may have been spent exploring rather than searching for food. We do not
model exploration. The main point, though, is that the analogy between their
search time distributions and our goal prediction distributions is straightforward,
and there is good agreement between the two sets of histograms.4

Figure 15 shows the distribution of goal predictions when the sim-animal was
trained and tested on one landmark. As previously explained, the model was able
to correctly estimate the bearing of the goal location from the landmark because

4Each of histograms from our simulations (Figures 15 through 20) is plotted to the same scale
as the corresponding experimental �gure (Figures 1 through 7). However, we have used a �ner
bin size to show additional detail.
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(a) (b)

Figure 16: Simulation of (a) the two-landmark task and (b) the two-minus-one
task. Compare with Figures 2 and 3.

Figure 17: Simulation results: distribution of goal predictions for the three-
landmark task. Compare with Figure 4.

its place units are tuned to allocentric bearings derived from the internal compass.

When trained on the two-landmark array, the model again predicts a single
goal location (Figure 16a.) Because place units tune to allocentric bearing infor-
mation, it does not search at the mirror image of this spot. When one of the
two landmarks is removed, the model distributes its goal predictions between two
locations (Figure 16b). Although the visual environment is identical to that of
the one-landmark task, the place units are tuned di�erently and thus the goal
predictions di�er.

When trained on the three-landmark array, the model also produces a single
goal estimate (Figure 17), and with one landmark removed, the goal predictions
are still concentrated at a single location (Figure 18a). With two landmarks
removed the model makes three goal predictions (Figure 18b), as did the gerbils.

When presented with an extraneous landmark, the model uses allocentric bear-
ing information to distinguish the correct from the inverted triangle (Figure 19).
When the triangle is stretched, it ignores the third landmark and searches only
at the correct distance and bearing to the other two (Figure 20).

In the critical experiments that vector voting was unable to handle, the split-
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(a) (b)

Figure 18: Simulation of (a) the three-minus-one task and (b) the three-minus-two
task. Compare with Figure 5.

Figure 19: Simulation of the three-plus-1 task. Compare with Figure 6.

Figure 20: Simulation of the stretched triangle task. Compare with Figure 7.
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Figure 21: Simulation of the split-array task. Compare with Figure 9.

Figure 22: Simulation of the rotated-triangle task. Compare with Figure 11.

array task and rotated-triangle tasks, our model agrees with Collett et al.'s ob-
servations.

In the split-array task, the sim-animal concentrates search at the two locations
interior to the array (Figure 21). Our model produces a concentration at the
interior locations of the split-array for two reasons.

1. Calculation of mean coordinate value. The model estimates the sim-
animal's position by computing a weighted mean coordinate value using all
active place units. The result will normally be near the center of the array.
The two exterior goal locations predicted by vector voting will be further
from the mean than the two interior positions. Thus, place units coding for
exterior goal locations are much more likely to be rejected as outliers by the
parallel relaxation process, leading the model to prefer predictions near the
centroid of the candidate set.

2. Partial activation of place units. In the split array condition, no place
unit tuned to two distinct landmarks will see an exact distance and bearing
match for both.5 However, because place units are radial-basis functions

5Units tuned to single landmarks can still get perfect matches, but there will be an approxi-
mately equal number of these for each of the four candidate goal locations, so their e�ects cancel
out.
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with a smooth gaussian fall-o�, those tuned to locations interior to the split
array can still have an exact match for one landmark and a partial match
for the other. Units tuned to exterior locations cannot get even a partial
match, and will thus be at a disadvantage.

In the rotated-triangle task, the sim-animal divides its predictions between
four locations: the three exterior predicted by vector voting and one interior at
the center of the triangle. We believe the interior and exterior goal predictions
occur because of a divergence in the possible outcomes of the algorithm described
in Section 4.3..

1. Interior goal predictions. On some trials, resetting the head direction
produces an improvement in consistency (steps 3-4). On trials in which
the head direction is reset, the sim-animal will e�ectively see the three-
landmark task (a correctly oriented triangle) and will predict the goal to be
in the center of the array.

It is unclear how such a reset could later be undone, yet Collett et al. report
that the gerbils �rst searched in the center and then proceeded to search at
exterior locations. Further work is need to determine whether our model is
compatible with this observation.

2. Exterior goal predictions. On other trials, the improvement in consis-
tency is too small to override the initial values (from step 1). On trials
in which the head direction is not reset, the animal will use pairs of land-
marks in the correct orientation to localize itself and will search the exterior
locations as predicted by the vector voting hypothesis.

Our simulations are deterministic and might be sensitive to the starting posi-
tion of the sim-animal. We do not know whether there are regions of the space in
which one goal prediction is preferred over another or whether all goal predictions
are mixed together randomly. It is also possible that adding noise to the sys-
tem will reduce any systematic dependence on initial position. We are currently
exploring these questions.

6. Our model and the vector voting hypothesis

According to the vector voting hypothesis, the animal remembers vectors from
each landmark to the goal, and applies these n remembered vectors to each of the
m perceived landmarks, generating n �m goal predictions. It then distributes its
search e�ort over the locations with the most votes. The animal must somehow
keep track of multiple candidate locations in order to tally votes for each of them.

Our self-localization operation can also be understood as a distributed form
of vector voting. The goal location is not what is being determined; rather the
animal's own location is. Each place unit can be viewed as voting for the animal
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being at the path integrator coordinates associated with that unit. Calculating
the mean coordinate value for the set of active place units serves indirectly as a
vote tallying mechanism. Deactivating units that are proposing locations too far
from the current mean eliminates the decisively outvoted candidates.

The parallel relaxation algorithm always produces a single winner, while vector
voting allows for ties. The latter therefore directly supports a division of search
e�ort between multiple goal locations during the course of a single trial, which is
what gerbils actually do. Our own model would require a di�erent mechanism to
produce alternation among tied candidates.

In the experiments reported here, the sim-animal was started from multiple
locations and we simply plotted the distribution of goal predictions. A mechanism
that could produce alternation among search candidates, and is supported by
some preliminary simulations, is to inhibit the currently active place units when
a search proves unsuccessful. If the sim-animal then performs a new relaxation
based on currently perceived landmarks, a new set of place units will become
active, indicating that its present position is not actually the goal as previously
believed, but instead some other spot displaced from the goal. Calculating a
trajectory from this spot to the goal (whose coordinates are always known) will
take the animal to the next candidate search location.

7. Predictions

Our theory makes predictions about both behavior and neurophysiological activ-
ity. We give three examples here.

1. Viewing the self-localization procedure. Place unit activity in our
model re
ects where the animal believes it is. During normal navigation, the place
code at any time is coherent, i.e. all active place cells have �elds near each other.
The self-localization procedure requires that many place cells be brie
y activated
at the beginning of a trial, before coherency has been enforced. We therefore
predict that in a brief initial phase of each trial, the hippocampal activity patterns
of real animals will form an incoherent place code, i.e., there will be simultaneously
active place cells with �elds far from each other. In ambiguous environments such
as the split array task we might see a multi-modal distribution of activity during
the transitory initial period.

2. Shifting goal locations. When the animal abandons one search location
in favor of another, our theory requires that it �rst change its estimate of its own
location. The place code must shift accordingly. Our theory therefore predicts
a change in the hippocampal activity pattern will be observed just prior to the
animal beginning a move to a new search location.

3. Place cell activity in the split array task. McNaughton, Knierim,
and Wilson [15] recently proposed an alternative theory that also combines visual
landmarks with path integration. Place cells in their formulation are only tuned
to single landmarks. When trained on the two-landmark array, there would be
two populations of cells, one tuned to the east landmark and one tuned to the west
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one. In the split array task, these populations would dissociate. This con
icts
with the prediction of our own theory: that a single population of units will be
active at both search locations.

In McNaughton et al.'s version, if place �elds are small relative to the distance
between the landmarks, the animal will exhibit distinct place codes as it searches
the two locations during a probe trial. If, on the other hand, place �elds are large
enough that the �elds of the two populations still overlap when the landmark
array is stretched, McNaughton et al. predict that the active units should still be
dissociable into two populations, with place �eld centers shifted by an amount
equal to the shift in the landmarks [15]. That is, units tuned to the east land-
mark will have their �elds shifted eastward relative to the center of the array, and
conversely for units tuned to the west landmark. Demonstrating this shift may
be di�cult, however, because the animal would have to spend substantial time
traveling around the arena in the split landmark condition in order for the experi-
menter to accurately measure �ring rates to map the place �elds. During this time
the animal might modify its place code to take the new landmark con�guration
into account.

If our theory is correct, when hippocampal activity is recorded during search
in the split-array task, as the animal alternates between goal predictions all place
cells coding for the goal location will show two disjoint �elds, or else a large �eld
with two peaks, depending on the width of the �elds relative to the inter-landmark
distance. In either case, the population will not dissociate.

8. Discussion

Animals clearly use con�gurations of visual cues to navigate. In the tasks de-
scribed here, rodents used range and bearing to nearby landmarks to locate food.
However, their behavior cannot be accounted for by visual cues alone. The same
environment can produce radically di�erent behavior depending on the animal's
past experience. For example, the two-minus-one and three-minus-two probe tasks
use identical environments to the one-landmark task. In the two-minus-one task,
gerbils searched in two locations, and in the three-minus-two task they searched in
three locations, while in the one-landmark-task they searched in only one location.
Thus we see the role of visual learning in guiding navigation behavior.

Our model relies on multiple representations of space: local views, an inter-
nal compass, coarse coded place units, and Cartesian coordinates maintained by
path integration. Interactions among these representations maintain a consistent
relationship between the visual environment and the animal's internal state. In
addition to the data presented here, our model successfully replicates other neuro-
physiological data, such as from Muller et al. [20, 21] and Sharp et al. [32] on rats
in small circular arenas, and behavioral experiments, such as data from Cheng,
Gallistel, and Margules [5, 13] on rats in symmetric environments.

We are in the process of extending the model to incorporate yet more data
(for example, di�erences in salience among cues, both for head direction [11, 15]
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and self-localization [6]) as well as considering how rodents really learn novel
environments.

In novel environments, drift in the head direction system [15] cannot be de-
tected by taking bearings to landmarks. Head direction errors can accumulate,
leading to errors in path integration. And since the environment is unfamiliar,
the place code cannot reset the path integrator. Rodents must have some way
to correct for path integration errors simultaneous with tuning their place cells
during exploration. Their solution to this problem would be of value to mobile
robots.
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