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Abstract

We present an approach for real time planning and exe-
cution of the motions of complicated robotic systems. The
approach is motivated by the observation that a robot’s
task can be described as a series of simple steps, or a
script. The script is a general template which encodes
knowledge for a class of tasks and is fitted 1o a specific in-
stance of a task. The script receives information about its
environment in the form of parameters, which it uses to
bind variables in the template and allows it to deal with the
current task conditions. Changes or variations in the ro-
bot’s environment can be easily handled with this parame-
terized script approach. New tasks for the robot to perform
can be added in the form of subscripts, which could handle
exceptional cases. We apply this approach to the task of au-
tonomous excavation, and demonstrate its validity on an
actual hydraulic excavator. We obtain good results, with
the autonomous system approaching the performance of an
expert human operator.

1.0 Introduction

As robotic machines become more advanced in order to
solve more challenging problems, they themselves become
increasingly more complicated. An example of this is a
class of robots known as mobile manipulators, which con-
sist of a multi-link manipulator that is mounted on a mobile
base. Applications for such robots include autonomous ex-
nloration, inspection, mining, construction, and excavation
[1]. These robots tend to have a high number of degrees of
freedom. This makes optimal path planning in real time dif-
ficult because of the high dimensionality of the robot’s
configuration or state spaces. Trajectory generation can
also present a problem for these types of robots because it
requires knowledge of the dynamic characteristics of the
robot, particularly the velocity and acceleration limits of
each degree of freedom [2]. Changing payloads of the ro-
bot’s end effector, for example loading large rocks into the
bucket of an excavator, can drastically change the dynamic
characteristics of these robots. Furthermore, in some cases
the best thing to do is to simply move from point A to point
B as fast as possible regardiess of the dynamics instead of
following a specified trajectory.

Controtl of these robots is also a difficult problem. While
there does exist a wealth of information on robot manipu-
lator control strategies [3], many of which require accurate
dynamic models, control for some larger mobile manipula-
tors, or any manipulator in which dynamics is a large factor

such as a hydraulic excavator, is a difficult problem. Accu-
rate modelling of the actuators of an excavator’s hydraulic
system is difficult as well.

Fortunately, several observations about these types of ro-
bots make the problem of planning and executing their mo-
tions much simpler. The first is that these robots typically
have been designed for a specific purpose or task, so the en-
tire flexibility of motion is not used and does not have to be
reasoned about in the motion planning. Furthermore, the
tasks that these robots perform can usually be described as
a series of simple steps. It can be argued that this is how hu-
mans perform complicated tasks, such as driving to work or
cooking a meal, and is the key observation motivating the
approach presented here.

The idea of scripts as a way to store knowledge is not
new to the fields of Artificial Intelligence and robotics.
Scripts have been used to capture common-sense knowl-
edge about everyday situations with the intent to reason
about actions, predict future events, and answer questions
[4]. These scripts are “parameterized” in the sense that
script variables are bound to objects in the world, however
their use of parameters is different from the approach pre-
sented here, where parameters are calculated for the pur-
pose of controlling a robot.

The idea of using procedures to reason about and con-
struct plans has been presented in planners such as the Pro-
cedural Reasoning System [5]. The approach here,
however, does not exist at that level of planning which aims
to synthesize entire plans for performing a complex task
given a clever representation of the world and world states
[6]. One level down are entities such as SAUSAGES [7]
which is described as “existing between planning and ac-
tion.” Its role is to take plans generated from higher level
planners and execute them on an actual robot by control-
ling its subsystems. The parameterized script approach to
motion planning presented here can be considered to be at
an even lower level, almost to the point of robot control. It
uses the idea of scripts and procedures to control individual
degrees of freedom, such as the joints of a manipulator, in
order to perform a given task. This certainly doesn’t limit
the types of tasks that can be done with parameterized
scripts, as they can become arbitrary complex and can be
built upon by adding more scripts to do different tasks.

Parameterized scripts are a way of encapsulating high
level expert human knowledge and heuristics about how to
do a given task, while still being able to deal with environ-
mental variables by modifying the details of the procedure.
The structure of the script’s steps encodes procedural



knowledge of how the task is to be performed. For exam-
ple, a segment of a general script for a manipulator may
look something like...move joint 0 up, then move joint 1
down, etc. In this example, knowledge of the joint sequence
and the direction of joint motion is captured. This script
structure is unchanging, and usually requires human exper-
tise and study of the problem to construct it.

For these complex tasks, which typically involves inter-
acting with and manipulating its environment, just blindly
following a set sequence of steps, as with teach-playback
systems, will not work. They require information about
their environment in order to do something useful, which is
provided in the form of script parameters.

Script parameters fill in the details in the script steps.
They describe where objects are located in the environ-
ment, for example, or provide goals for the robot to
achieve. The parameters can come from a variety of sourc-
es, from data files to other software modules. The script it-
self may do some other internal computations on the
parameters it receives to convert them to a form that is
more useful to the script. The script parameters can define
the commands which are sent to the robot, the events which
cause a transition from step to step, or a signal which in-
forms the script it is time to handle an exceptional case. The
example manipulator script may now read... move joint 0
up to 20 deg., when joint 0 passes 10 deg., then move joint
1 down to 0 deg., etc.

Apart from simplifying the motion planning, the param-
eterized script approach has the additional advantage that it
does away with the need for complicated robot control al-
gorithms for trajectory tracking because explicit trajecto-
ries are not constructed. Rather, the only control that is
needed is low level control of the individual robot degrees
of freedom.,

2.0 Autonomous mass excavation

We apply the parameterized script approach to the real
world task of autonomous mass excavation. Most of the re-
search on autonomous excavation has focused on digging
without much attention given to the completion of the rest
of the task. The parameterized script algorithm implement-
ed in this paper is concerned with the excavator’s motions
after digging a bucket a soil. A survey of autonomous ex-
cavation systems is given in [8].

One common trend is the use of human expertise in con-
structing the digging algorithms because it has been found
in such an unpredictable domain traditional control algo-
rithms become impractical. For example, in [9], human
knowledge is used for constructing the finite state ma-
chines for various digging actions, and for defining fuzzy
logic rules to compute the excavator’s actions in each state.
The parameterized script approach also uses expert human
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knowledge to construct the script’s steps as well as to de-
cide the relevant script parameters for transitioning be-
tween steps and computing the robot’s commands,

Figure 1 shows a hydraulic excavator in a mass excava-
tion setting. The excavator consists of a 4 DOF manipulator
which is mounted on a tracked mobile base providing 2 ad-
ditional degrees of freedom. Mass excavation involves re-
moving large amounts of earth and loading it into trucks
which haul it away. The excavation task proceeds rapidly
with good excavator operators loading several hundred
trucks per day.

FIGURE 1: A mass excavation scenario

The task of mass excavation is a good candidate for plan-
ning and executing motions using parameterized scripts.
The excavator performs essentially the same series of
moves each time to load a truck. Each truck is parked in the
same general location. The earth to be removed is located
in the same area, typically directly in front of the excava-
tor’s tracks. There are usually no obstacles in the work-
space, and the appearance of an obstacle which could
impede the excavator is a very rare occurrence.

Things do change slightly in the excavator’s environ-
ment, however. For example, there could be slight varia-
tions in the pose and dimensions of each truck to be loaded.
The terrain of the earth that is being removed is obviously
changing. The earth cannot always be dumped in the same
place in the truck, nor can it always be dug from the same
location in the ground. While the overall sequence of steps
of the task remains the same, the script’s low level details,
or script parameters, do change.

There may also be times when action must be taken
which may not be considered part of a “normal” truck load-
ing procedure. For example, if the earth is loaded too high
in the truck bed it may need to be tamped down with the
bucket to avoid spilling over the sides. This is a special
event because it does not happen on each bucket load, rath-
er only when the truck is full, and it may not be needed in
all cases. Of course, safety is a large concern when dealing
with such a machine, so the parameterized script approach
must also be able to deal with an obstacle which could get
in the way of the excavator.



3.0 Mass excavation parameterized script

The art of designing a parameterized script comes in de-
termining how best to express a desired task as a series of
steps, and in the proper choice of the parameters that fully
describe the world in which the robot will perform its task.
This information could come from interviews with human
experts along with a thorough study of the task. For exam-
ple, in this case of mass excavation, expert human excava-
tor operators were observed and asked how they would
load a truck. Their sequence of steps ultimately became the
truck Ioading parameterized script.

The structure of the truck loading script was designed
with a number of considerations in mind. These include:

* loading a truck as efficiently as possible in normal
working conditions.

*  taking hydraulic flow coupling and hydraulic system
power limits into account. For example, the hydraulic
pumps can only deliver a finite amount of power, and
they also power more than one joint, so it is usually a
bad idea to move both coupled joints at the same time.

» safely avoiding all known obstacles in the workspace.
These include the truck and the unexcavated ground.

*  having minimal spillage of earth around the truck dur-
ing dumping.

3.1 External parameters

Figure 2 shows the software architecture for the truck
loading parameterized script. The script receives external
parameters from a number of outside perceptual modules.
These modules receive perceptual information, from a laser
rangefinder for example, and perform some useful function
involving analysis of the scene into symbolic or geometric
parameters. The perceptual modules then output their spe-
cific parameters to the script, which provide it with the in-
formation that it needs about its world. For example, the
Truck Recognizer module performs the task of locating and
measuring the truck to be loaded. The external parameters
that it sends to the script are the coordinates of the four cor-
ners of the truck bed and the truck’s dimensions. Other per-
ceptual modules decide where to dig based on the current
shape of the terrain, and where to dump based on how the
truck is currently loaded. These external parameters change
as the environment changes.

3.2 Internal parameters

Once the script has received all the external information
that it needs, it may perform other calculations to convert
the information to a useful form for the script. This infor-
mation is referred to as internal parameters. Both the exter-
nal and internal parameters take the form of numerical
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values which are specific to the script steps. There are two
ways internal parameters are computed, geometrically and
dynamically.

Perceptu]al Information

\ 2 v L 2 v
Truck Dump Dig Bench
Recog- Point Point Terrain
nizer Planner Planner Map
\ external
parameters

Parameterized Script

robot commands
FIGURE 2: Motion planner architecture

3.2.1 Geometric parameters

Geometric calculations use the geometry of the environ-
ment and the kinematics of the robot to compute the neces-
sary script parameters. For example, Figure 3 shows one of
these parameters, the joint angle which is required to raise
the bucket safely above the truck in order to avoid a colli-
sion. This computation requires knowledge about the di-
mensions and location of the truck, knowledge of its own
link lengths, and perhaps other internal parameters that
have already been computed such as the other joint angles
at this point in the task. Other internal script parameters
which are computed in this way are the angles which will
keep the soil captured in the bucket and dump the earth in
the truck.

FIGURE 3: Boom clearance angle

3.2.2 Dynamic parameters

Dynamic parameter calculations use simple knowledge
of the velocities and accelerations of the robot’s joints to
predict how long it will take to move a joint from a start an-
gle to a goal angle. While the same information could be
used for standard trajectory generation, it is not required
with this approach. Using this knowledge, the joints may
be better coordinated to achieve more optimal performance
during task execution. For example, immediately after dig-
ging, the machine does not have to wait until the bucket has



raised to the clearance angle, computed in the previous sec-
tion, before swinging to the truck. A better maneuver
would move both joints at the same time taking advantage
of the free space between the digging area and the truck,
keeping in mind that there is the danger of swinging too fast
before the bucket has fully raised. Knowledge of both
joint’s velocity and acceleration limits provides a way to
safely couple the two. Dynamic knowledge can also help
overcome system latencies. On an excavator, there are
quite significant delays (on the order of 0.5 seconds) be-
tween when a joint command is issued and when the joint
actually begins to move, primarily due to the time it takes
to open the large hydraulic valves and allow hydraulic fluid
to flow to the cylinders. By measuring these delays, the
commands can be sent out ahead of time so that the joint
moves at the right place in the task. For example, it is a
good idea to begin opening the bucket while the bucket is
moving over the truck. By anticipating the bucket joint de-
lay, the command to open the bucket can be issued at the
right point during execution so it begins to open just as it
reaches the truck.

3.3 Truck Loading Script

Figure 4 shows the joint enumeration of an excavator
used in the truck loading script. Figure 5 shows the full
script that was developed for the truck loading task. Each
circle represents the script step. Directly below each circle
is the position step command, which are script parameters
either provided externally or computed internally, that is
sent to the machine. Above each link is the event, also a
script parameter, which triggers a transition to the next
step. A brief description of each parameter is shown at the
bottom of the figure. For this particular task, each joint fol-
lows its own script, thus the trajectory of the end-effector
emerges from the combined motions of the joints. There-
fore, each truck loading pass could be slightly different
from the last one. Of course, scripts could explicitly encode
joint coupling as well. For example, a step in the script may
compute simultaneous stick and bucket commands as a
function of some partial trajectory.

All script step transitions are event based rather than time
based. This offers a notion of closing a larger loop around
the entire planning process and providing a layer of protec-
tion. If something should go wrong, such as a joint should
fail, then the script will fail because a certain event has not
triggered the transition to a new state, and the excavator
will come to a stop.
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FIGURE 4: The excavator’s manipulator
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FIGURE 5: Truck loading parameterized script

4.0 Adding additional capabilities

New robot capabilities and behaviors can be easily added
with the parameterized script approach as shown in Figure
6. Examples of new capabilities in a mass excavation sce-
nario could include tamping the soil in the truck, cleaning
up soil that has spilled around the loading area, and moving
around obstacles that are in the workspace. This last capa-
bility, collision detection and avoidance, is described here.

New capabilities are added onto the main parameterized
script in the form of parameterized subscripts, which con-



tain their own sequence of steps, required inputs, and inter-
nal parameter calculations to compute transition events and
robot commands. Each subscript consists of two parts, a
perceptual piece and a procedural piece. Like the external
modules in Figure 2 which send external parameters to the
main motion script, the perceptual part of the subscript
transforms perceptual information into a signal which in-
forms the main script that it is necessary to take another
course of action. This procedural part of the subscript is
then invoked, which directly controls the robot until it has
finished its subtask, and then returns control to the main
script. This part of the subscript may require information
from its perceptual half, as well as certain parameters from
the main script.

4.1 Coliision Detection

The perceptual part of the collision avoidance subscript
uses information about the current state of the robot, (joint
positions and velocities) to predict where it will move so
many seconds into the future. It acquires sensor data in the
area that the excavator’s manipulator will travel and deter-
mines if there will be an intersection between the excavator
and anything that it is in its way. The perceptual informa-
tion must be sensed far enough ahead of the robot so it has
the distance to stop if a collision is detected. If a collision
is detected, it immediately informs the truck loading script.
This portion of the subscript runs concurrently with the
main truck loading script, which continuously monitors for
any inputs from the subscripts during execution

Main script

gollisiocri] Tvoke
etecte subscript

1

1

Collision | Collision Tamping | Tamping
Detector | Avoider Detector Procedure
(perceptual) | (procedural) (perceptual)| (procedural)

[l 1

FIGURE 6: Adding capabilities with subscripts
4.2 Collision Avoidance

The procedural part of the collision avoidance subscript
contains a specific algorithm which is designed to maneu-
ver the excavator around an obstacle. When the collision
detector has sent a signal to the truck loading script, the
first course of action is to bring the excavator to a stop.
More sensor data is then acquired about its environment
before planning what to do next.

There are only a few courses of action that the excavator
can take to get around an obstacle. This usually involves
first moving the stick, for example to tuck in the bucket so
there is less extent to the manipulator, then raising the
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boom to a height so that the implements clear the top of the
obstacle, swinging the implements past the obstacle, and fi-
nally lowering the boom and moving the stick to their orig-
inal positions. This is the sequence of actions that the
collision avoider subscript takes to safely maneuver around
the obstacle.

5.0 Results

The parameterized script approach described above was
implemented and tested on a real 25 ton hydraulic excava-
tor testbed shown in Figure 7. The excavator was retrofitted
with resolvers and PD position controllers for each joint.
The tracks are not actuated. The excavator’s test environ-
ment is set up to emulate a mass excavation scenario. It sits
atop a high berm with an adequate amount of soil to dig in
front of it. A 15 ton dump truck is provided for loading.

FIGURE 7: Mass excavation test site
The excavator came equipped with an algorithm, known
as AutoDig, which uses pressure feedback to load the buck-
et with soil [10]. The rest of the excavator’s motions were
controlled using the parameterized script approach.

The external parameters of the truck’s location and di-
mensions, as well as where to dig, were provided through a
laser designator as used in surveying which is mounted on
the excavator’s cab. In future systems, these parameters
will be provided through perceptual software modules
which will use sensor data to calculate these parameters.

We asked a human expert excavator operator to load the
truck at out test site. The times to dig a bucket of dirt, dump
it in the truck, and return tc the soil face were recorded.
Typical dig-dump cycle times were between 15 to 16 sec-
onds, and the human expert could fully load the truck in ap-
proximately 2 minutes.

The parameterized script approach was then put to the
test. The results were very good. It consistently averaged
17 to 19 seconds for a dig-dump cycle. The AutoDig algo-
rithm dug slightly more heaped buckets of soil than the hu-
man expert did, therefore the throughput, or how many tons
of earth could be moved in a given time, equalled and



sometimes exceeded that of the human expert operator.
Figure 8 shows a comparison of the joint motions between
the human operator and the autonomous system for one
dig-dump cycle. Differences in the chosen dig location,
digging styles, soil conditions, and location and orientation
of the truck can be seen in the slight differences in the joint
motions between the two, however the general motion
trends are similar.

The script also gave good results in other less quantita-
tive aspects. First and foremost, the excavator safely avoid-
ed colliding with anything in its workspace. Although soil
conditions did play some part, there was in general little or
no spillage of the soil on the ground when loading the
truck. Different truck positions were tried all with good re-
sults.

a3 (de@)
a3 (dog)
7—

0 H 4 L] 8 10 2 14 1% 1 4 2 4 $ 8 1 ? % 1% 1

a) Autonomous system b) Human expert

FIGURE 8: Joint motions for human and robot

The collision avoidance subscript was also tested. For
these tests, the truck loading script received a pre-pro-
grammed signal from the collision detector at some point
during its motion to the truck, along with the dimensions of
an imaginary obstacle that was in its way. The truck load-
ing script took the correct actions by stopping the machine
before it collided with the obstacle, and safely moving
around the obstacle. Once the collision avoidance subscript
believed that it was safely past the obstacle, the truck load-
ing script took control again and continued on its way to
dump the soil in the truck.

6.0 Conclusions and future work

We have presented an approach to motion planning and
execution for complicated robotic systems that is based on
the observation that many tasks can be described as a series
of simple steps. This approach can be applied to any robotic
system whose task can be expressed as a series of steps. For
other tasks, such as robotic welding, the parameterized
script approach may not be the best method because the ro-
bot’s motions are a function of the measured error. We
have applied this technique to the real world application of
autonomous mass excavation with extremely promising re-
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sults. The approach is very simple conceptually and easy to
implement. It greatly simplifies the difficult problems of
planning and control for these complex machines. This ap-
proach also provides a way to add more advanced capabil-
ities and behaviors to the robot by simply adding on other
subscripts which fully describes what the robot is to do.

The immediate future goals of the autonomous mass ex-
cavation system is to add visual sensors to the excavator
and to integrate the different external perceptual modules
as we strive for greater autonomy.

This work on autonomous excavation using the parame-
terized script paradigm has advanced by adding an optimi-
zation routine to the internal script parameter calculation.
Data about each set of script parameters (one for each
bucket load), and the results of the excavator’s actions,
such as overall cycle time, are recorded. This information
is used to adjust the calculated script parameters for faster
loading times.
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