CHIMERA: A Real-time Programming Environment

For Manipulator Control

Donald Schmitz Pradeep Khosla
The Robotics Institute Department of Electrical and Computer Engineering
and The Robotics Institute
Regis Hoffman
Department of Computer Science Takeo Kanade

Department of Computer Science
and The Robotics Institute

Carnegie-Mellon University
Piusburgh, Pennsylvania 15213 U.S.A.

Abstract

CHIMERA is a real-time computing environment for the CMU
Reconfigurable Modular Manipulator System (RMMS) project. CHIMERA
is both a hardware and software environment which allows rapid
development and implementation of real-time control programs. It provides
a C/UNIX flavored concurrent programming environment for a Motorola
68020 multiprocessor hardware configuration connected to a SUN
workstation. CHIMERA has been impk d using c 1
hardware in conjunction with a sophisticated, locally developed software
package, making for a reliable, reasonably priced, and easily duplicated
system. We are currently porting CHIMERA for real-time control of the
CMU Direct-Drive Arm II. This paper describes the implementation and
capabilities of the CHIMERA environment, and illustrates how these
features are used in robot control applications.

1. Introduction

The CMU Reconfigurable Modular Manipulator Syswm (RMMS) project
is a research effort aimed at developing a g lized and
controller. Mgwduwmpctmmmow:usawmpldlydeﬂmm
assemble a manipulator, and unmedmely put it into operation. Physically,
the RMMS ofa ber of d (joint) and structural
(link) modules. These modules can be assembled via quick connect
mechanical and electrical couplings into a manipulator with an arbitrary,
user specified configuration and range of capabilities. One component of
this research addresses the theoretical issues in mapping the kinematic and
dynamic characteristics of a task into a manipulator configuration. Another
component is the development and implementation of conﬂgurauon
independent algorithms for ipulator path planni ki
dynamics, and position control.

From the outset, the RMMS project was envisioned as extremely
programming intensive. Our prior experience with the CMU Direct Drive
Arm 1I project was that making even a minor change in a control program
required a considerable development effort, yielding a precious few minutes
of actual experimentation. Within the RMMS project, we intended to
implement and cxhaustively test numerous control algorithms. To make
this programming requirement more manageable, a computing environment
was envisioned which would extend the powerful program development
features and unified software environment of computer workstations to the
real-time computing arena.

CH2750-8/89/0000/0846$01.00 ® 1989 IEEE

846

The resulting computing environment (christened CHIMERA) consists of
one or more Ironics 68020 CPU boards, acting as real-time computing
engines, residing on the VME bus of a SUN 3 workstation. The SUN
provides a powerful, high-level computing environment (cditors, compilers,
etc.) in which to develop real-time control programs, which arc then
executed on the Ironics real-time processors. CHIMERA also includes a
multi-tasking real-time kerncl, an inter-processor communication package,
and a software library that emulates common SUN/UNIX utilities on the
real-time processors, and provides a high-level interface to the system
hardware.

This paper discusses the CHIMERA design, implementation, and
capabilities in detail. The paper is organized as follows: In the next section,
we survey other efforts in this area and present the CHIMERA design
philosophy. In Section 3, we describe the hardware architecture and
evaluate its real-time performance. The CHIMERA kernel is described in
Section 4, and inter-processor communication and the CHIMERA extended
file system in Section 5. Finally, in Section 6 we demonstrate the utility of
the system through several examples.

2. CHIMERA Design Influences
Robot computer systems have traditionally used a dual processor family
computing architecture: a gencral purpose, multi-tasking machine
supporting a high-level software development environment that is closely
coupled to one or more high performance numeric processors with rcal-time
capabilities. This architecture is dictated by the following softwarc
requirements of an experimental robot controller:
1. High-level computing, performed on a general purpose
processor, for real-time program development and offline
storage and analysis of experimental results.

2. High performance numerical computing, with well defined
exccution timing criteria, executing on dedicated real-time
processor(s) to implement the control law, and sample and
buffer data for later storage on the general purpose system.,

While such an architecture is efficient in terms of hardware utilization,
the accompanying software environment is often a clumsy patchwork of
special purpose compilers and interface code. Fortunately, advances in
micro-processor technology now allow general purpose processors 10
achieve the computing performance required of robot controllers, while
remaining compatible with a large basc of existing software. By replacing
the special purpose numeric processors in previous architectures with high
performance general purpose processors, a unified, high level software
environment can be supported for the entire processing system.

R ol

2.1. A Case Study of an Early System

An example demonstrating the problems associated with past robot
controller designs is the system dcveloped for the CMU
Direct Drive Arm I [1, 5). In this system, a major emphasis was placed on
obtaining high floating point computing performance. The system
implemented an inverse dynamics based non-linear control scheme for a six
axis manipulator, at a control update rate of 500 Hz. This required scalar
floating point performance on the order 1.0 MFlop. The CMU Direct Drive
Arm 1I control architecture consisted of several special purpose real-time
processors operating in parallel under the supervision of another general
purpose processor. A Marinco APB-3204 floating point processor
performed most of the floating point computation, while six Texas
Instruments TMS32010 DSP optimized processors were dedicated to the
low level /O and sensor signal processing of each manipulator axis. These
two sets of processors were coordinated by a Motorola 68010 bascd,
Omnibyte single board CPU, with 3 Mbytes of local memory for data
recording. This real-time system was coupled to a general purpose
VAX/UNIX based development system via an Ethernet connection, which
supported both program downloading and data transmission between the
two families of processors.

While the computing performance of the system was more than adequate,
the programming environment imposed by this hardware was barely usable.
The Marinco FPU and the TMS32010 DSP processors each required
program development in their own (somewhat unconventional) assembly
languages. The Marinco FPU utilized a different floating point format than
the M68010 and VAX, requiring a number of format conversion operations
when transferring data between processors. Although a C compiler was
available for the M68010, many speed critical sections of code were re-
written in assembly language. High Ethemet network traffic often caused
severe communication problems between the host and M68010 system,
forcing data recording to be offline (the attainable transmission rate to the
VAX was much slower than the rate at which data was generated).

An analysis of the system hardwarc and software revealed several
problems:

© The execution speed of the control calculation was critical, and
a great deal of effort was spent in optimizing this code. This
was made extremely difficult by the need to write entirely in
assembly language.

» Surprisingly, an equal amount of effort was required to
implement the remainder of the code, comprising the user
interface and data recording utilities. Although in general
much less demanding in terms of efficiency, this code is much
larger than that of the control calculation, and requires
extensive error detection and special case handling capabilitics.

o The principle source of programming errors involved the
interface to hardware devices, such as I/O ports, timers, etc.
Documentation beyond the data sheets for the devices was
often non-existent - the only way to debug such code was with
an oscilloscope and a great deal of patience.

Our experience shows that pting to develop h and software
at the same time should be avoided. Every clement in such a system is an
unknown - it is very difficult to decide if a system failure is a hardware or
software failure. Also, building and using special purpose hardware can
introduce maintenance nightmares. The larger and more diverse a system
becomes, the more likely it is to fail, the more difficult it is to diagnosc, and
the longer it takes to repair or replace.

2.2. Trends in Controller Architecture

Advances in commercial micro-processor performance have had two
important effects on the design of robot control systems. First, they have
made the computer workstation a reality, allowing an entire general purpose
software development system to be (affordably) dedicated to controlling a
manipulator. The high-level and real-time processors can be coupled on the

847

same system bus, allowing for very reliable, high bandwidth

ication and coordi between the two. Second, the computing
performance now available from a general purpose micro-processor rivals
that of special purpose numeric processors available several years ago. For
many control applications, this allows a general purpose CPU 1o replace a
number of special purpose processors, reducing both the hardware and
software complexity of the total system.

[V

Several examples of such close coupled, workstation/real-time processor
systems have been reported in recent literature:

The IBM SPARTA project {6] has built a multiple DSP processor system
residing in an IBM PC that also serves as a software development system.
Coupled with an extensive software package, PC programs can interact with
the DSP processors via shared memory and memory mapped control
registers. A high level language is provided to write programs for the DSP
Processors.

The MIT CONDOR project [4] has developed a multiple Motorola 68020
processor system built around a SUN 3 workstation. The SUN 3 C
compiler is used to generate single process thread programs for each of the
real-time processors. A runtime library and communication package are
also provided to simplify programming the real-time processors and
cooperating SUN programs. Although developed independently (and
concurrently), CONDOR is very similar to the CHIMERA environment in
both concept and implementation - the primary difference between the two
are the programming constructs supported by the two packages, reflecting a
difference in applications programming philosophy between the two
projects.

3. The CHIMERA System Design
Based on our past experience and available hardware, we established a
numbser of requirements for the CHIMERA computing environment;
« The software environment would appear to the user as a real-
time extension of a typical UNIX development system:
«The C programming language would be used for all
levels of the control program.

+Real-time programs would be designed as multiple,
concurrent processes, running under a real-time
executive or kernel. This kernel would support access to
hardware devices via a library of high level routines,
hiding the hardware details from the applications
programmer.

« Standard UNIX utility libraries would be ported or
emulated, allowing ready portability of existing UNIX
programs.

© Only one family of CPU would be used in the entire sysiem.
This would be a well supported, general purpose CPU chosen
for overall performance and software portability.

« The system would be expandable through the addition of one or
more CPUs operating in parallel to achieve the desired level of
computing performance.

o The hardware, aside from application specific 1/O devices,
would be commercially available itcms, and be easily
integrated into the locally supported SUN workstation
environment.

Based on the above requircments, we developed the CHIMERA
computing environment. CHIMERA is built around the SUN 3 workstation
and Ironics 68020 CPU boards. The SUN’s extensive utilities, e.g. window
managers, editors, and debuggers arc used for program development.
Because the Ironics and SUN CPUs share the same 68020 based
architecture, no additional cross-compilers/linkers are required. CHIMERA
code is compiled and linked with the standard SUN C compiler and linker
(although a separate run-time library is loaded with CHIMERA code, not

the usual SUN library). This ensures that code developed on the SUN for
the real-time processors will behave exactly the same when executed on the
real-time processor.

The CHIMERA architecture is shown schematically in Figure 3-1. The
major component of the CHIMERA hardware is a SUN 3 workstation,
based on the VME bus and the Motorola 68020/68881 CPU. The SUN is a
VAX class computer, running the UNIX operating system, supporting a
window based software development environment. Residing on the SUN
VME bus are one or more Ironics IV-320X family single board computers.

As expected, the Ironics 3204 is faster than a SUN 3/160 by roughly the
ratio of their clock speeds on the Dhrystone benchmark, which is a measure
of data transfer and integer arithmetic performance. The combination of a
faster FPU clock speed and the revised M68882 architecture yielded an
even larger increase in floating point intensive operations, as indicated by
the Whetstone and matrix arithmetic results. Interestingly, although the
scalar floating point speed (speed of a single arithmetic operation) of the
Ironics (and SUN) is much slower than either the VAX or the Marinco,
operations such as matrix multiplication do not reflect this disparity. This

Communication Channel
To RMMS Manipulator
: Optional Processors
1
i ics IV-3204 Ironics 1V-3204
SUN3 Workstation Mamies Cpt ' | Slave CPU- .
| (Compute Engme)
M68020/63881 M68020/63881 : M68020/6388
J L I 1 I T

SUN VME BUS

Figure 3-1: Block Diagram of CHIMERA Hardware Architecture

The Ironics CPU is also M68020/68881 based, with up 10 4 megabytes of
local RAM. The Ironics dual port memory can be accessed by both the
Ironics and SUN CPUs. This allows programs w0 be easily downloaded
from the SUN to Ironics. This also allows simple mailbox communication
between the two CPUs. The local VMX bus connection of the Ironics
provides the interface to the manipulator ArmBus, discussed in a following
section.

3.1. Real-Time Computing Performance

We used a general purpose CPU rather than a special purpose FPU
(floating point unit) as the CHIMERA real-time compute engine. Special
purpose, single board FPUs are now available with performances in the 5 to
10 MFlop range, whereas few general purpose CPUs exceed 0.5 MFlops.
However, the relatively low performance of a general purpose machine is
offset by also providing high level language support, a simple instruction
set, a large memory space, and a simple programming model - features
lacking in most special purpose FPUs. In the final analysis, the simplicity
of using the SUN 3 C compiler to generate code for the general purpose
M68020 was the deciding factor in its choice as the CHIMERA real-time
CPU.

Although the real-time processor was not chosen for performance alone,
an effort was made to obtain the best performance possible from this
general purpose CPU. The Ironics 1V-3204 processor was specified with a
20 MHz M68020 CPU; the standard 20 MHz M68881 FPU was replaced
with a 20 MHz M68882 second generation FPU. The IV-3204 includes
4 MBytes of 1 wait state DRAM, and the CHIMERA software allows the
CPU to run with the on chip CPU instruction cache enabled, without an
MMU, for optimum memory performance.

This hardware configuration has been tested using both conventional
benchmark programs and a locally written (in C) matrix arithmetic package
as computing performance tests. All code was compiled using the standard
SUN C compiler, with the -O (optimize) swilch. Table 3-1 summarizes the
results obtained, including results for a VAX 780, SUN 3/160, Ironics, and
the special purpose Marinco FPU used in the Direct Drive Arm II sysiem
for comparison.

848

suggests that typical floating point code actually performs a good deal of
integer arithmeltic to support loop constructs and address generation. These
results indicate that a well balanced system such as the M68020/63882,
with both good data manipulation, integer and floating point performance
can compete with less general, floating point optimized processors in many
real applications.

To give perspective to this performance, consider a numeric reverse
kinematics algorithm for a 6 axis robot using the iterative inverse Jacobian
algorithm [2]. The dominant computational requirements of this algorithm
are six 4x4 matrix multiplications and one 6x6 matrix inversion per
iteration. Typically, 3 10 5 iterations are required for the algorithm to
converge to an acceptable error. On the Ironics 3204 CPU, each iteration
requires approximately 8 milliseconds to execute, for a total of 40
milliseconds®. This allows an Ironics dedicated to calcul ipul
inverse kinematics for Cartesian space control to run at
Hz.

ing T

approximately 25

4. The CHIMERA Kernel

The CHIMERA kernel differs from conventional operating systems, such
as UNIX, in that constructs are provided to allow precise control of process
execution as a function of time (hence its designation as a real-time kernel).
The CHIMERA kernel is functionally similar to a number of commercial
products, such as pSOS. The decision was made to locally develop the
kernel to ensure source code availability, considered important for the
research environment for which CHIMERA was intended.

The CHIMERA kemel was designed to provide much of the functionality
of a true multi-tasking operating system while preserving the response time
of a dedicated real-time processor. This was made possible by eliminating
many of the high overhead features required of a multi-user operating
system, in particular inter-process security, a large process space, and
virtual memory. In typical real-time control applications, the absence of
these features is negligible.

—_—_—

SOf course, the algorith has additional

minor compared to the matrix multipli
Ttiplicat: h

ai P

10 be further optimized if speed is essential.

¥ '_ i . however they are
anfi . Also, the ds of the matrix
, which allows the matrix maltiplication operation

R

Benchmark | VAX780 | SUN 3/160 Ironics? Marinco®
Dhrystone 1449 3302 4429 N/AY
‘Whetstones 448K 704K 1195K N/A
Scalar
Addition 5.5 psec 14.6 psec 8.8 psec 2.4 psec
Scalar
Multiplication | 7.9 psec 16 psec 9.9 psec 2.3 psec
4x4 Matrix
Multiply 1500 psec 898 usec 514 psec ~ 166 psec
6x6 Matrix
Inversion’ | 9900msec | 7880psec | 4670psec 1164 psec

Table 3-1: Ironics IV-3204 Performance Benchmark Comparison

The CHIMERA kemel provides the following set of concurrent
programming primitives which control process creation and execution:
« P() and V() - classic semaphore operations.

o block() and wakeup() - suspend and restart a process.
 spawn() and kill() - initiate and terminate a process.
o pause() - suspend process for some interval.

o lock() - lock an executing process in the CPU.

The kernel process representation and context switching mechanism is a
conventional Motorola 68000 family implementation. Every process is
defined by an instruction segment, the CPU register sel, a user stack, and a
process control block. The process control block contains the current
process state (execution status, scheduling priority, timing constraints), as
well as a supervisor stack space. This stack space is normally used to save
the CPU register set when the process is swapped out of the CPU, however
it also provides each process with a unique supervisor stack for exception
processing. Process exception handling can thus be multi-tasked,
eliminating a potential cause of poor system response.

Process scheduling is performed using two different algorithms
depending on the source of the initiating context switch. When a context
switch is triggered by the hardware timer (indicating expiration of a time

fair CPU allocation, with a small scheduling overhead. The scheduler code
is written in the C programming language, making for simple modification
if necessary.

4.1. Kernel Performance

The duration of a process context switch is considered an approximate
measure of a multi-tasking system’s overall performance. While many
other factors can adversely effect the system performance, context switch
time represents a hard limit on system response and CPU utilization which
can not be changed by algorithm or process design.

The results shown in Table 4-1 indicate that processor utilization is
typically in the 90% range with a time quanta of 1 millisecond.
Extrapolating to a 0.5 millisecond time quanta, CHIMERA would yicld
approximately 80% processor utilization, and at the limit of 0.25
milliseconds 60% processor utilization. Utilization in this range is
sufficient for many control applications, while providing extremely fine
control over process execution timing. When a process is locked in the
CPU (at the programmers discretion), the kernel imposes very litle
overhead, yielding processor utilization of 99.5%. This yields added
performance for processes which must run to completion once triggered by
timing criteria.

Process Type Measurcment Minimum | Maximum Average
Timer Driven Context Switch | Context Switch time | 107 psec 127 psec 119 psec
" Processor Utilization’ 87.6% 89% 88%

Locked in CPU Context Switch time N/AB N/A S psec

" Processor Utilization N/A N/A 99.5%
Exception Driven Context Switch | Context Switch time 73 usec 94 psec 85 psec

" Processor Utilization 90.6% 92.7% 91.5%

Table 4-1: CHIMERA Context Switch Timing
quanta), the highest priority process is scheduled as the next active process. 5. CHIMERA File System

Processes scheduled to execute at a specific time are given higher priority
than other inactive processes. A context swilch driven by resource
contention implements a "round robin” type scheduler, chosing the next
active process from a circular list of processes. These two algorithms were
chosen to provide accurate control of time critical process execution and

168020 (16 MHz) + 68881 (12 MHz)
268020 (20 MHz) + 68882 (20 MHz)
3AMD 29116 (16 Mhz) ALU

4Not available

5Gauss Jordan Elimination with full pivoting

849

The CHIMERA file system takes a UNIX-like approach and treats all
devices as files. A device driver is written for each device in the system,
and the driver’s entry points arc entered into a device table. Examples of
CHIMERA devices include pipes (for inter-process communication), a
console terminal, and communication channels to other CHIMERA
processors. All the standard UNIX 1/O functions such as open(), close(),
read(), write(), and fprintf(), operate with any CHIMERA device. This
standardized interface eliminates the need for special library functions for
each different device. Section 6 presents an example of how an interface to
a robot controller is easily incorporated into the CHIMERA file system.

7All CPU utilization ratings based on a nominal 1 millisecond time quanta.

8Not applicable

e Lt

CTRONICS ENGINEERS, INC.

5.1. Inter-Processor Communication

Inter-processor communication (Ironics-Ironics and SUN-Ironics) is
supported in CHIMERA by an interrupt driven, UNIX device oriented
communication channel. A SUN UNIX driver (and its CHIMERA kemnel
equivalent) was written to implement a simple byte stream model of
communication accessible on both processors by the standard file system
utilities. Physically this communication occurs over the VME bus between
any pair of CPUs. The driver software establishes several logical
communication channels® multiplexed over the single physical VME
channel. Any SUN process can communicate with any Ironics process by
this channel mechanism.

Communication channels serve several important functions. As the
Ironics CPU has no physical terminal anc-hed to it, a communication
channel is established between a SUN server and the Ironics. The SUN
server creates a SUN window to act as a pseudo-terminal. Thus the user can
interact directly with programs running on the Ironics CPU. A second
application is the extension of the SUN file system to Ironics programs. A
communication channel is created between a server process on the SUN and
a server process on the Ironics. Requests for file system access by Ironics
programs are passed from the Ironics server to the SUN server and serviced
(effectively emulating the SUN file system on the Ironics). Effectively, the
entire SUN file system is available to Ironics programs.

Communication channels are essential in controlling and monitoring
robot performance - without them, it would be impossible to exchange data
between the SUN and Ironics processes. High level control programs,
running on the SUN under a robot programming language (AML/X) [3],
send commands to control programs on the Ironics by opening a
communication channel (by a UNIX open() call), then read or write data to
this port (using any standard UNIX I/O function such as read() or putc()).
An Ironics process waits for commands from the robot programming
language and acts upon them. When the commands are completed, data
regarding the manipulator motion is stored on disk files, again using the
Ironics/SUN communication link.

5.2. File System Performance

The CHIMERA file system performance is inherently limited by that of
the SUN file system, as CHIMERA simply requests the SUN perform the
file operation for the real-time process. In order to provide a rough measure
of this performance, a number of rcad and write operations of various sizes
were performed on a SUN disk file and timed using the CHIMERA system
clock. Each transaction was repeated scveral times to determine the range of
expected values.

This experiment demonstrated an inherent shortcoming in the CHIMERA
file system implementation: a high, fixed overhead associated with every
file transaction independent of the transaction size. By observing the time
required to read and write single bytes, an approximation of this overhcad
was obtained ranging from 7 to 50 milliseconds, with typical values of 15
milliseconds. As the transactions become much larger, the overhead is
dominated by the actual data transmission, and transactions times closely
track the transaction size. Write transactions of 1000 bytes or more occur at
an average rate of 65K bytes per second (500 Kbaud), corresponding read
transactions at rates of 190K bytes per second (1.5 Mbaud). These data
rates are typical of the SUN Ethemet connection to the SUN file server,
suggesting that this is the limiting factor in disk transaction specd.

In practice, the high file overhead, and the large range of variation in this

overhead. suggest that time critical file transactions be double buffered.
Using the CHIMERA concurrent programming constructs, a process can be

°Currently six

850

dedicated to managing a pool of large buffers on the order of 100K bytes.
This manager process monitors the contents of buffers in use, writing
almost full buffers to disk, and substituting emptied buffers in their place.
This technique allows a real-time program to store data on disk ‘files at
nearly the full speed of the SUN file system, while adding very little
overhead to the real-time program.

6. Examples

This section illustrates the use of CHIMERA in two solving two common
manipulator control problems. The first example describes how CHIMERA
is used to isolate the user control programs from the low-level details of
special hardware devices. The second shows how a multi-process model
coupled with inter-processor communication, can be used to decompose a
system into simpler parts.

6.1. Control Hardware Interface

In the RMMS system, a communication channel is needed between the
controller computer and the actual manipulator modules. This channel
provides both feedback from the manipulator joint sensors, and output
commands to the joint actuators. This communication must be done at
servo rates, for an arbitrary number of modules. To allow the RMMS
modules to be easily assembled, this communication must take place over a
fixed, and small number of conductors which are bussed through each
module. This communication channel is implemented as a serial data bus,
referred to as the ArmBus (figure 6-1).

The current ArmBus design is a self clocking, low-overhead, bi-
directional scrial data bus, operating at a nominal S MBit (million
bits/second). A data transaction on the ArmBus is initiated by writing an
appropriate address and function (read or write), and the data (in the case of
a write) to memory mapped control registers on the ArmBus/Ironics
interface. Upon completion of the ArmBus operation, an interrupt is
generated on the Ironics CPU, indicating that data is ready or has been sent.
Conceptually, the ArmBus can be considered a serial port. Data written to it
will control the arm - data read from it indicates the state of the arm.

The serial port analogy illustrates the utility of a multi-tasking kernel.
User level programs that send commands to the ArmBus are suspended
awaiting completion (rather than busy waiting), allowing other compute
bound processes to run. The interrupt signaling completion of the ArmBus
operation is handled at the system level, transparent from the user level
code. Thus the user who is primarily interested in robotic control is
insulated from low-level system details (such as how to handle an
interrupt). Also, because the ArmBus device is part of the file system, the
standard read() and write() 1/O routines are used to access it - no special
library routines are needed.

6.2. Task Level Robot Control

A simple example is presented to illustrate the use of CHIMERA in a
representative robot control environment. The example consists of
generating a high level task description from a robot programming
language, sending a series of MOVE commands defining a cartesian
trajectory to a robot, interpolating a series of joint angles and supplying
these to joint level servo-controllers. During the execution of the trajectory,
record the results of the motion on disk files for later analysis of the control
scheme.

Without a real-time operating system such as CHIMERA, this common
robot programming task becomes formidable. Consider doing this with a
single Ironics program with no multi-tasking. The program would be
required to:

RMMS Controller ArmBus
Chime&a) Master Interface
v VMX BUS ARMBUS SERIAL BUS coo
SUN 3 VME BUS |_ArmBusNode | ["ArmBusNode |

[LocAL Bus| | LocAL Bus]

| Joint Sensors int I
and Actuators a‘l’l(n)i":\gﬁgfgg

Figure 6-1: ArmBus Architccture

* Poll the SUN for experiment parameters (such as controller
gains, sampling time, ezc.) and trajectory data.

Implement a control calculation at regular intervals to
compute the manipulator actuator commands required
for the specified motion. This implements the servo

Position Control

* Every T, time interval, compute a new series of joint positions control process.
by interpolation of MOVE command joint values. Data Logging Records the state of the manipulator as a function of
¢ Every T, time interval, update the control loop and send these time, for later analysis.
values to the arm. ArmLab An interactive process that simulates a conu;iol panel,
joi iti i i i ller gains and monitor
« Every T, record joint values (position, velocity). When reading allowing the operator to set controll !
these values from the ArmBus, we must busy wait untl the the state of the manipulator. This is the Ironics master
ArmBus interrupts to signal completion of the request. process. by IBM (3]
i AMLIX A robot programming language developed by .
¢ Send the recorded data back to the SUN to store on disk files. Used in high leve! task planning.
Note that in general, T, < 7,,, < T,. From a programming standpoint, such File Server Sys‘l:m process that acts as interface to SUN disk file
system.

time dependent code is difficult to write correctly. Efficiency also suffers,
as considerable time is wasted busy waiting for completion of /O
operations.

A multi-tasking operating system makes the design of the system
significantly easier, as each logical module of code can be written
independently, and can ignore low level system details. For example, one
possible division of code into separate Ironics processes:

These processes are depicted pictorially in figure 6-2.

The main ArmLab process creates the data logging, motion control, and
position control processes on the Ironics. The motion control process
generates straight line trajectories and continuously updates the inputs to the
position controller. The position controller interfaces to the manipulator via
the ArmBus, and generates actuator commands to drive the manipulator
through the desired motion. The motion control process receives

zl(‘:ll'ert;lm'y Servo Control Data Logging commands from the robot programming language AML/X running on the
This process Records the SUN. Com.muous data logging of the manipulator state requires periodic
This process reads implements a measwred data storing of this data to SUN disk files.
cartesian MOVE control law for the from the arm for
ds from the ipul joints. later analysis. The above examples demonstrate the following important capabilities of
robot Gets reference LOOP: CHIMERA:
programming angles from Buffer arm data © Multi-taski
language, and trajectory control, IF buffer full sking allows use of a process model.
converts them into and measured write data (o *Reliable high bandwidth communication between separate

Joint space motion.
These joint angles

angles from arm.
LOOP:

disk
Pause 7, seconds

CPUs allows distributed computing.

are. .used by the Get reference END LOOP Because of CHIMERA’s multi-tasking, separate manipulator software
individual joint angles_ . modules (such as motion control, data logging, and error detection) are
E‘(’)’(‘)’r"ﬂ - g:“"‘: ﬁ]&l:l z::[:)gnl;il written as stand-alone units and run concurrently. The high level robot
R ead MOVE law programming language (running on the SUN) communicating with an
commands Update controller Ironics processor is an example of distributed computing in CHIMERA.
LOOP: Pause T, seconds Other processors could be added to perform other compute bound functions.
Compute joint END LOOP
angles
Send to servo 7. Summary
COT]I;I‘OHCT The CHIMERA programming environment provides a high level, UNIX
Sec;:l;: T likg development system for real-time critical programs. Through careful
END LOOP design of hardware and software, relatively high computing performance is
END LOOP achieved while using standard commercial processors and programming

languages. Furthermore, this performance is achieved while supporting

In the CHIMERA system, this experiment is mediated by several

processes, distributed between the SUN and Ironics: high level concurrent programming constructs, allowing time and event

driven programs to be written independent of the system hardware.
Motion Control

Generates a series of position controller inputs that
move the manipulator through a desired path. This is
the Ironics trajectory control process.

R ol

Ironics SUN
Processes Processes

Data

Position

1
!
Logging
@ |

Control

[}
h '
Mot ion 1

1

Indicates Data Flow

AML/X

Figure 6-2: Processes to Control and Monitor Arm

8. Acknowledgements

The research reported in this paper was supported in part by NASA under
contract NAGS5-1091 and by the US Ammy Armament Research,
Development and Engineering Center and DARPA under contract
DAAA-21-89C-0001.

852

{1}

(21

{31

(4]

(51

[6]

References

Takeo Kanade, Pradeep Khosla and Nobuhiko Tanaka.

Real-Time Control of CMU Direct-Drive Arm II Using Customized
Inverse Dynamics.

In 23rd IEEE Conference on Decision and Control. December,
1984,

L. Kelmar and P. Khosla.

Automatic Generation of Kinematics for a Reconfigurable Modular
Manipulator System.

In IEEE Conference on Robotics and Automation. 1EEE, April,
1988

L. Nackman, M. Lavin, R. Taylor, W. Dietrich Jr., and

D. Grossman.

AML/X: A Programming Language for Design and Manufacturing.
In Proceedings of the Fall Joint Computer Conference. 1EEE, 1986.

S. Narasimhar, D. Sicgel, and J. Hollerbach.

Condor: A Revised Architecture for Controlling the Utah-MIT
Hand.

In Proceedings of the IEEE Conference on Robotics and
Automation. 1EEE, 1988.

D. Schmitz, P. Khosla and T. Kanade.

Development of CMU Direct-Drive Arm II.

In Proceedings of the 15th International Symposium on Industrial
Robots, pages 471-8. 1985.

Jeduda Ish-Shalom and Peter Kazanzides.

SPARTA: Multiple Signal Processors for High-Performance
Robotic Control.

In Proceedings of the IEEE Conference on Robotics and
Automation. TEEE, 1988.

