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Abstract

In this paper, we describe a statistical method for 3D
object detection. We represent the statistics of both object
appearance and “non-object” appearance using a product of
histograms. Each histogram represents the joint statistics of
a subset of wavelet coefficients and their position on ‘the
object. Our approach is to use many such histograms repre-
senting a wide variety of visual attributes. Using this
method, we have developed the first algorithm that can reli-
ably detect human faces that vary from frontal view to full
profile view and the first algorithm that can reliably detect
cars over a wide range of viewpoints.

1. Introduction

The main challenge in object detection is the amount of
variation in visual appearance. For example, cars vary in
shape, size, coloring, and in small details such as the head-
lights, grill, and tires. For example, a Lamborghini looks
much different from a Ford Pinto. Visual appearance also
depends on the surrounding environment. Light sources will
vary in their location with respect to the object, their inten-
sity, and their color. Nearby objects may cast shadows on
the object or reflect additional light on the object. The
appearance of the object also depends on its pose; that is, its
position and orientation with respect to the camera. For
example, a human face will look much different when
viewed from the side than viewed frontally. An object detec-
tor much accommodate all this variation and still distinguish
the object from any other pattern that may occur in the visual
world.

To cope with all this variation, we use a two-part strategy
for object detection. To cope with variation in pose, we use
a 2D view-based approach with multiple detectors that are
each specialized to a specific orientation of the object. We
then use statistical modeling within each of the detectors to
account for the remaining variation. We collect these statis-
tical models from representative sets of training images.

2. View-Based Detectors

We develop separate 2D detectors that are each special-
ized to a specific orientation of the object. For example we
have one detector specialized to right profile views of faces
and one that is specialized to frontal views of human faces.
We apply these view-based detectors independently and then
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combine their results. If there are multiple detections at the
same or adjacent locations, our method chooses the most
confident detection.

We empirically determined the number of orientations to
model for each object. For faces we use two view-based
detectors as shown below. To detect left-profile faces, we
apply the right profile detector to a mirror-reversed input
images. For cars we use eight detectors as shown below.
Again, we detect left side views by running the seven right-
side detectors on mirror reversed images.

Figure 1. Examples of training images for each face orientation

Figure 2. Examples of training images for each car orientation

Each of these detector is not only specialized in orienta-
tion, but is trained to find the object only at a specified size
within a rectangular image window. Therefore, to be able to
detect the object at any position within an image, we re-
apply the detectors for all possible positions of this rectangu-
lar window. Then to be able to detect the object at any size
we iteratively resize the image and re-apply the detectors in
the same fashion to each resized image.

3. Statistical Form of Detector

Within each view-based detector we use statistical mod-
eling to account for the remaining forms of variation. Each
of these detectors share the same underlying statistical form.
They differ only in that their models use statistics gathered
from different sets of images.

There are two statistical distributions we model within
each view-based detector. We model the statistics of the
given object, P(image | object) and the statistics of the rest of
the visual world, which we call the “non-object” class,



P(image | non-object). We then compute our detection

decision using the likelihood ratio test:

P(i‘mage|0bject)
P(image|non-object) *

P(non-object)
P(object)

M

If the likelihood ratio (the left side) is greater than the right
side, we decide the object is present.

This is equivalent to Bayes decision rule or MAP deci-
sion rule and will be optimal if our representations for
P(image | object) and P(image | non-object) are accurate.
The rest of this section focuses on our representation of
these distributions.

3.1. Representation of Statistics using Histograms

The difficulty in modeling P(image | object) and
P(image | non-object) is that we do not know the true statis-
tical characteristics of appearance either for the object or
for the rest of the world. For example, we do not know if
the true distributions are Gaussian, Poisson, or multimodal.
These properties are unknown since it is not tractable to
analyze statistical properties over a large number of pixels.

Since we do not know the true structure of these distri-
butions, the safest approach is to choose models that are
flexible and can accommodate a wide range of structure.
One class of flexible models are non-parametric memory-
based models such as Parzen windows or nearest neighbor.
The disadvantage of these models is that to compute a prob-
ability for a given input we may have to compare the input
to all the training data. Such a computation will be
extremely time consuming. An alternative is to use a flexi-
ble parametric model capable of representing multimodal
distributions, such as a multilayer perceptron neural net-
work or a mixture model. However, there are no closed-
form solutions for fitting these models to a set of training
examples. All estimation methods for these models are sus-
ceptible to local minima.and may be sub-optimal.

We choose to.use histograms as a compromise between
the above models. Histograms are almost as flexible as
memory-based methods but use a more compact representa-
tion whereby probability is retrieved by table look-up. Esti-
mation of a histogram is also trivial. It simply involves
counting how often each attribute value occurs in the train-
ing data. :

The ‘main drawback of a histogram is that we can only
use a relatively small number of discrete values to describe
appearance. To overcome this limitation, we use multiple
histograms where each histogram, Py(pattern | object), rep-
resents the probability of appearance over some specified
visual attribute, pattern,. We will soon specify these differ-
ent attributes. - But to do so, we need understand how we
would combine probabilities from different histograms and
the consequences of our chosen method of combination.

To combine these histograms, we approximate the class-
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conditional probabilities as products of histograms:
P(image|object) = [ | P(pattern,|object)
k

, 2
P(image|non-object) = [ [ Py(pattern x| non-object)
k

In forming these representations for P(image | object)
and P(image | non-object) there is an implicit assumption
that- the parrermys are statistically independent for both
classes. However, we can relax this assumption somewhat
because our goal is accurate classification not accurate
probabilistic modeling. For example, let us consider a clas-
sification example based on two random variables, A and B.
Let’s assume that A is a deterministic function of B, A =
f(B), and is therefore fully dependent on A, P(A=f(B) | B) =
1. The optimal classifier becomes:

P(A, Blobject) P(A|B, object) P(B|object)
P(A, B|non-object) " P(A|B, non-object) P(B|non-object)

P(B|object)

= P(B|non-object) > &)

If we wrongly assume statistical independence between A
and B, then the classifier becomes:

P(A, B|object) P(A|object)P(B|object)
P(A, B|non-object) - P(A|non-object)P(B|non-object)

P(B|object)

2
= (P(B|non—0bject)) Y @

Since the likelihood ratio of the statistically independent
classifier is the square of that for the optimal classifier, it
can achieve the same performance if we choose y = A2.

This case illustrates that we can achieve accurate classi-
fication even when we violate the statistical independence
assumption.

In the general case, in choosing how to decompose
visual appearance into different attributes we face the ques-
tion of what image measurements to model jointly and what
to model independently. Obviously if the joint relationship
between two variables, such as A and B seems to distin-
guish the object from the rest of the world, we should try to
model them jointly. If we are unsure, it is still probably bet-
ter to model them independently than not to model one at
all. In the next section we describe the qualities we model
jointly for face and car detection.

3.2. Decomposition of Appearance in Space,
Frequency, and Orientation.

For both faces and cars we use the same underlying rep-
resentation. Our approach is to partition visual appearance
along the dimensions of space, frequency, and orientation in



forming visual attributes, patterny.

First, we decompose the appearance of the object spa-
tially where each visual attribute describes a localized
region on the object. By doing so we concentrate the lim-
ited modeling power of each histogram over a smaller area.
To represent parts of different sizes, we use multiple
attributes that differ in spatial extent. Some attributes will
represent small spatial extents. These attributes will cap-
ture distinctive areas such as the eyes, nose, and mouth at a
high resolution. We also define attributes over larger spatial
extents to capture cues where, for example, the forehead is
brighter than the eye sockets on a face.

In combination with this decomposition in size we also
decompose appearance in frequency content. Since low
frequencies exist only over large areas and high frequencies
can exist over small areas, the most natural decomposition
is to use attributes with large spatial extents to describe low
frequencies and attributes with small spatial extents to
describe a broad range of high frequencies.

We also specialize some attributes in orientation con-
tent. For example, an attribute that is specialized to hori-
zontal features can devote greater representational power to
horizontal features than if it also had to describe vertical
features.

Our approach is to sample these attributes at regular
intervals over the full extent of the object, allowing samples
to partially overlap. Our philosophy in doing so is to use as
much information as possible in making a detection deci-
sion. For example, salient features such as the eyes and
nose will be very important for face detection, however,
other areas such as the cheeks and chin will also help, but
perhaps to a lesser extent. ,

Finally, by decomposing the object spatially, we do not
want to discard all relationships between the various parts.
We believe . that the spatial relationships of these various
parts is an important cue for detection. For example, on a
human face, the eyes nose, and mouth appear in a fixed geo-

In other words, each variable pattern; is a scalar number
representing a conglomerate of spatially localized and
quantized wavelet coefficients. We use a wavelet transform
based on 3 level decomposition using a 5/3 linear phase fil-
ter-bank.

Overall, we use 17 attributes that sample the wavelet
transform in one of the following ways [1]. Each of these
represents a spatially localized set of wavelet coefficients:

1. Intra-subband (7 attributes) - All the coefficients
come from the same subband. These visual attributes are
the most localized in frequency and orientation.

2. Inter-frequency (6 attributes)- Coefficients come
from the same orientation but different frequency bands.
These attributes represent visual cues that span a range of
frequencies such as edges. _

3. Inter-orientation (3 attributes) - Coefficients come
from the same frequency band but different orientation
bands. These attributes can represent cues that have both
horizontal and vertical components such as corners.

4. Inter-frequency / inter-orientation (1 attribute) - This
attribute is designed to represent cues that span a range of
frequencies and orientations.

Each coefficient in the wavelet transform is represented as
part of several different attributes, usually including one of
each of the 4 types mentioned above.

With this representation, attributes that use level 1 coef-
ficients will describe large spatial extents over a small range
of low frequencies. Those that use level 2 coefficients will
describe mid-sized extents over a mid-range of frequencies,
and those that use level 3 coefficients will describe small
extents over a large range of high frequencies.

3.4. Final Form of Detector

metric configuration. To model these geometric relation- .

ships, we répresent the positions of each attribute sample
with respect to a coordinate frame affixed to the object.
This representation captures each sample’s relative position
with respect to all the others and implicitly captures many
geometric properties. To capture this representation statis-
tically, each histogram now becomes a joint distribution of
attribute and attribute position, Py(pattern(x,y), x, y | object)
and P(pattern(x,y), x, y | non-object), where attribute posi-
tion, x, y, is measured with respect to rectangular image
window we our classifying (see section 2).

3.3. Implementation of Visual Attributes

To create visual attributes that are localized in space,
frequency, and orientation, we define each attribute to rep-
resent a moving window of quantized wavelet coefficients.
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The final form of the detector is given by:

17
H H Pi(patterm(x, y), x, y|0bject)

x, y € regiong = |

17
IT I Pupatternyix, y), x, y|non-object)

X,y € regiong = |

where “region” is the image window we are classifying.

>\
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4. Collection of Statistics

So far we have only specified the functional form of the
detector. We now need to do collect the actual histograms
for Py(pattern, x, y | object) and Py(pattern, x, y.| non-
object) . We collect P (pattern, x, y | object) from images
of the object. For each face viewpoint we use about 2,000
original images and for each car viewpoint we use between
300 and 500 original images. For each original image we
generate around 1,000 synthetic variations by altering back-
ground scenery and making small changes in aspect ratio,



orientation, freqiiency content, and position.

For the non-object class we use about 2,500 images that
do not contain faces or cars. We use bootstrapping to select
training samples from these images. In bootstrapping we
first train a preliminary detector using random samples
drawn from these images. We then run this detector on the
non-object images and select additional samples from sites
that give high response.

Finally we use an iterative method called Ada-
Boost[2][3] to assign weights to each sample, both for
objects and non-objects. AdaBoost assigns these weights
so as to minimize classification error on the training set.

5. Face Detection with Out-of-Plane Rotation

Currently, research in face detection has focused almost
exclusively on frontal views. To the best of our knowledge,
we have created the first robust algorithm for detecting
faces with out-of-plane rotation. To evaluate its perfor-
mance we collected a test set consisting of 208 images with
441 faces of which 347 were profile views from various
news web sites. These image were not restricted in terms of
subject matter or background scenery. Below we show our
results. Each row indicates a different sensitivity, ¥, of the
composite face detector. We indicate our results on profile
views in parentheses.

Table 1. Detection on faces with out-of-plane rotation

v Detection False Detections
0.0 | 92.7% (92.8%) 700
1.5 | 85.5% (86.4%) 91
2.5 | 752% (78.6%) 12

Below we show-some representative results for y= 1.5.
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6. Car Detection with Variation in Viewpoint

To the best of our knowledge, our method is the first
successful car detection algorithm that works accurately
over a wide range of viewpoints.

Below we show our results in passenger car detection
(excluding trucks and vans) over cars that varied from side
view to frontal view. This test set consists of 104 images
with 213 cars. We gathered these images both from various
web sites and with our own camera. Each row indicates a
different sensitivity of the composite detector:

Table 2. Detection of cars

Y Detection | False Detections
0.9 83% 7
1.0 86% 10
1.1 92% 71

Below we show some representative results for y=1.0.
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