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“ Position Estimator for Underground
Mine Equipment:

Gary K. Shaffer, Anthony Stentz, William L. Whittaker, and Kerien W. Fitzpatrick

Abstract—This paper describes a 2-D perception system that
exploits the accuracy and resolution of a laser range sensor to
determine the position and orientation of a mobile robot in a
mine environment. The perception system detects features from
range sensor data and matches the features to a map of the
mine to compute the sensor position. The features used are line
segments .and corners, which represent the typical geometry of
the mine walls and intersections found in room-and-pillar type
mining. The position estimate is refined by minimizing the error
between the map and sensed features. This position information
can be used for autonomous navigatien when a map of the mine
is available or to survey the mine to build such a map. The
technique is applied to robot navigation in a mine mockup. A
refinement of this system could guide machines to yield produc-
tive, safe mining operations.

- I. INTRODUCTION

NDERGROUND mining is a cooperative enterprise
of powerful, mobile equipment and the workers who
operate it. If mining equipment could be automated to
function without a worker’s full attention, the mining
industry could enhance productivity, access “unworkable”
mineral seams, and reduce human exposure to the inhos-
pitable environment of dust, noise, gas, water, moving
equipment, and roof fall. The critical missing link to
enable mine automation is the capability of equipment to
estimate its position relative to its surroundings (self-loca-
tion). (Note that we often use the word “position” to refer
to combined position and orientation). Several methods of
self-location such as dead reckoning, inertial systems,
beacons, and guidewires fail to satisfy the demands of the
mine environment. There is a clear, compelling need for a
position estimator relevant to robotic mine equipment.
This paper develops and demonstrates, for the first time, a
viable technology for self-location- by mine equipment.
Our approach is feature based and uses both line
segments and corners. It can handle the expected uncer-
tainty in the initial estimate (heavy clutter in the environ-
ment) and still compute an estimate quickly.
A review of background and related work appears in
Section II; position estimation algorithms and software
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are described in Section III; a physical robot implementa-
tion and position estimation results are presented in Sec-
tion IV. Section V is the conclusion.

II. BACKGROUND

Perception techniques gather data about the surround-
ing environment and infer position by interpreting rela-
tionship to the scene. Existing approaches to position
estimation fall short of mine navigation needs. Explicit
techniques estimate positions from sensors like beacons,
gyroscopes, and wheel counters that measure position
directly.

A. Explicit Position Estimators

The simplest position estimator for mobile equipment is
dead reckoning, in which the robot estimates its current
position by step counting (integrating its combined steer-
ing and propulsion history). This approach is vulnerable to
bad calibration, imperfect wheel contact, upsetting events,
and it provides, at best, only a rough position estimate.
This estimate generally gets worse as the distance traveled
(i.e., the length of the integral) increases.

Inertial navigation system (INS) position estimators use
multiple gyros (mechanical or ring laser) and accelerome-
ters (one for each axis) to provide an acceleration history
that is integrated to estimate position. Although an INS is
generally more accurate than dead reckoning, an INS is
subject to gyro drift, calibration problems, and sensitivity
limitations.

Sensors that can accurately locate beacons can estimate
the absolute position of the robot from known beacon
locations (Case [3], Cao [2), Giralt [8]). Major drawbacks
are that beacons must be emplaced and within range,
which means that a robot’s worksite must be appropriately
configured.

B. Position from Perception

Model-based perception can register sensed data to a
world model to determine a robot’s position. This method
does not suffer from the integration errors inherent to
dead reckoning and INS methods; however, the accuracy
of the position estimate depends on the sensor and the
accuracy and validity of the world model. This comparison
of sensed data to model data can be accomplished in a
number of ways. Two general paradigms are feature based
and iconic. The feature-based method processes the raw
data into a small set of features (such as line segments)
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and matches these against the corresponding features in
the model. Drumheller [5], Krotkov [10], and Crowley [4]
used feature-based approaches. Drumheller used a range
sensor to find line segment features to be matched against
a world model to determine the position of a robot within
a room (i.e., an environment that consisted of planar
surfaces such as walls). Krotkov used a CCD camera to
accurately determine the angles to vertical edges within
the scene (from walls and cabinets). Given these angles
and a map of the actual positions of the vertical edges, a
position estimate was computed. Crowley used a range
sensor to find line segments for constructing a world
model and matching against it. Bloom [1] suggested using
detailed descriptions of naturally occurring landmarks to
enable a vision system to locate them within the scene.

Elfes [6] used an iconic matching technique developed
by Moravec [11] to match occupancy maps in order to find
a position estimate. Occupancy maps model the environ-
ment using a spatial grid of cells, where each cell has a
probability value assigned to it, which represents the
likelihood that the cell is occupied. The iconic method
differs from feature matching in that raw data is matched
directly to the world model.

The choice of technique depends on the nature of the
problem. The feature-based approach reduces the data to
a small set of features, enabling the system to try all
matches of sensor to model features and, thus, compute
the position with little or no initial estimate. However,
poor quality features or too few features cripple the
accuracy of the position estimate. Another disadvantage is
that extracting features from the raw data takes extra
time. The iconic approach has the advantage of using
more data directly in the calculation of the position esti-
mate; therefore, the accuracy of a position estimate is
generally better. Iconic matches succeed without the need
for explicit features in the environment. The disadvantage
of the iconic approach is that the complexity of matching
all raw data points to all model points is prohibitively
high; consequently, a good initial estimate is required.

The type and quality of sensed data greatly impacts the
choice of position estimation method. Many researchers
have used wide-angle ultrasonic (sonar) sensors, often as a
default, because of their low cost; however, the accuracy
of these sensors is marginal, ambiguities occur, and the
data is difficult to interpret correctly. Often, because of
the texture of the reflecting surface or the angle of
incidence of the sonar beam, a totally false range reading
is reported. Furthermore, due to the large size of the
sonar footprint, it is impossible to measure a scene with
any detail. Relevant position estimation (especially when
using a feature-based approach) is virtually impossible
with wide-angle sonar sensors. Laser range sensors are
more narrowly focused and provide much higher accuracy
and ease of interpretation than sonar.

Another possibility is to process a video image to find
features, as in Krotkov [10], Kak [9], Bloom [1], and
others. Kak built a representation of the scene by seg-
menting the image into regions, finding the bounding
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edges of regions, and using them to define vertices, faces,
and objects. This constructed scene representation was
matched with an expected scene generated from a CAD
database.

C. Mine-Specific Issues

The underground mine environment imposes several
requirements on a position estimation system. Using dead
reckoning alone is ruled out because of the irregular
surface of the mine corridor floor, the often jerky motions
of the mine machine, and especially, the large amount of
slippage of the machine’s tracks. Long-term autonomous
operation of mine equipment precludes the use of an INS
since errors from the gyro drift quickly exceed acceptable
levels. It is desirable to work in newly mapped areas
without first installing the necessary beacons (especially if
the mapping is done automatically in conjunction with the
position estimation). Furthermore, since the environment
is cluttered with machines and people not in the model, a
significant number of optical beacons could be occluded.
Therefore, optical beacons alone are not viable in an
underground mine environment. Because mining equip-
ment is mobile, a relevant position estimator must have a
reasonably short cycle time. The jerky motions of tracked
mining machines and the subsequently poor dead reckon-
ing preclude good position estimates by simple means.

All existing approaches fall short of mine navigation
needs. Beacons will not always be within range. Jerky
motions frustrate iconic methods. Existing feature-based
approaches that use only lines or only corners require
good initial estimates or take too much time matching
against a complete map.

111. PERCEPTION SYSTEM

A. Overview

The position estimator takes as input a model of the
environment and a scan from the laser range sensor and
produces an estimate of the robot’s position. The laser
range sensor measures distance to points in the robot’s
surroundings by rotating like a lighthouse and casting
range measurements with its light beam. A scan is a dense
array of range measurements taken at equally spaced
angular intervals around 360° in a horizontal plane. Es-
sentially, the scan is a planar profile of the sensor’s
environment formed by finding the distance to the nearest
objects at a particular height. Position estimation is ac-
complished by predicting visible features from a map,
extracting features from the scan, matching features from
the scan and map, and estimating position from the match
(see Fig. 1). Feature prediction generates a set of candi-
date visible features from an approximate position of the
robot. Feature extraction finds features in the range scan.
Features extracted from the scan are paired with features
from the map in the process of feature matching. The
position estimator finds a position that minimizes the
error between sensed features and map features. These
processing steps are described in detail below.
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B. World Model

A typical underground coal mine map appears in Fig. 2.
For underground coal mines, this assumes that floors are
flat and walls are nearly vertical. With these assumptions,
a 2-D (line segment) model sufficiently represents the
features of underground coal mines.

C. Features

A world model composed of line segments contains two
categories of primitive features—line segments and cor-
ners. The term comner is used loosely to mean either a
nonoccluding corner (formed by two visible line segments
sharing a common endpoint) or an occluding corner
(formed when a visible endpoint of a line segment ob-
structs the view of part of another line segment). These
features are illustrated in Fig. 3. A corner is described by
four parameters: x, y, concave angle, and bisector orienta-
tion. The concave angle is the smaller of the two angles
formed by a corner’s two line segments. The bisector
orientation is the angle that the bisector of the concave
angle forms with respect to the positive x axis.

Line segments are described by three parameters:
length, perpendicular distance from the origin, and orien-
tation, which is the angle that the perpendicular forms
with respect to the positive x axis.

D. Feature Prediction

Since only a small portion of the model (in general) is
visible from a particular location (x,y) of the robot,
feature prediction greatly simplifies the process of feature
matching (described below) by reducing the number of
model features that can possibly match the sensed feature
(see Fig. 4). The feature predictor assembles an ordered
list of model features visible from a given (x,y) as the
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Fig. 3. (a) Corner; (b) line segments.

scanner sweeps in a counterclockwise direction. This pre-
processing greatly constrains the possible combinations of
pairings of sensed features and model features, thereby
simplifying the feature matching process.

The feature prediction algorithm first creates a sorted
array of the endpoints of all the line segments in the
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Fig. 4. Depending on the location of the robot (marked with a cross),
the set of visible model features varies.

model. The endpoints are sorted on the basis of azimuth
relative to the given (x, y) of the robot. The next step is to
consider each line segment in the model and, making use
of the sorted list of points, determine whether each point
that lies in the azimuth range subtended by the current
line segment either occludes or is hidden by the current
line segment. The outcome of this step is that every
corner in the model is labeled as either visible or invisible
and, if visible, either occluding or nonoccluding. In one
final pass, the array elements are stitched together into
the ordered list of visible features required by the feature
matcher. The worst-case complexity of the prediction al-
gorithm is O(N?) (where N is the number of line seg-
ments in the model) in the case where there is a large
number of occluded features. However, the average-case
complexity is closer to O(N log N) for typical mine maps,
especially if the feature predictor uses the maximum
range of the scanner to limit the number of model lines
considered.

Neither Drumheller [5] nor Krotkov [10] address this
issue of feature prediction since they attempt to match all
model features to all sensor features. Crowley [4] main-
tains a “composite local model,” which consists primarily
of the currently visible segments only.

- E. Feature Extraction

Feature extraction is the process of reducing the raw
range scan to an ordered list of features. The feature
extraction algorithm first subdivides the scan into seg-
ments by breaking the scan at points where the distance
between successive points exceeds a threshold, thereby
finding occlusions. Pieces of the scan that contain only a
small number of points (such as two or three) are thrown
out since they give very unreliable features. Each piece of
the scan is processed using a corner operator to find line
segments and corners. The corner operator is a template
consisting of two line segments that is compared against a
sequence of range points to determine whether they ex-
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¢ Corner Operator
not a corner ® 1s a corner
)

Fig. 5. Corner operator is applied at every point in the scan.

hibit a corner-like shape (see Fig. 5). The corner operator
is parameterized by size (length of the component line
segments) and by the angle between them. The corner
operator template is “applied” to the range sequence by
fitting the left and right line segments to the range data at
a particular point using an incremental line fitter. If the
template matches, a corner is defined at the intersection
of the two line segments that form the operator. A larger
corner operator gives more reliable feature parameters.
Use of an incremental line fitter is possible because the
corner operator template is moved sequentially one point
at a time through the range scan and greatly decreases
the amount of processing compared with a separate line
fit at every point in the scan.

To find the parameters (length, perpendicular distance,
orientation) of the line segment that lies between any two
corners, a line is fit to all the data points in the scan
sequence that fall between the two corners. The perpen-
dicular distance and orientation are determined by the
slope and intercept of the fit line; the length of the line
segment is the distance between the two corners.

F. Feature Matching

The matcher determines the correspondence of the
sensor features to the model features. A total of N! sets
of correspondences exist, assuming there are N model
features and N sensor features. This prohibitively high
complexity is further exacerbated by extra and missing
sensor features corresponding to features not in the map
(e.g., people, machines) and features that cannot be reli-
ably extracted, respectively. Fortunately, the problem is
usually constrained enough that only a much smaller set
needs to be examined. See Wallace [12] for a survey of
matching techniques. The type of matching technique
used was determined by the following problem character-
istics:

1) The position of the robot is approximately known.
2) The extracted features are reliable and rich in geo-
metric information.

The first characteristic greatly constrains those sensor
features that can match a model feature (called unary
constraints), and the second greatly reduces the number
of sensor-model pairs that need to be compared to deter-
mine match consistency. Three comparisons are used;
hence, the constraint is labeled ternary. The algorithm
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begins by applying the unary constraints to construct the
set of possible sensor-model pairs. Then, the ternary con-
straints are applied to find the largest set of consistent
correspondences. Efficient cut-off techniques are em-
ployed to reduce the complexity of the search.

The matcher first converts the list of predicted model
features from the world coordinate frame to the robot
coordinate frame using an approximate position given by
dead reckoning; therefore, the model and sensor features
are both in the robot coordinate frame. The unary con-
straints are then applied. These constraints are subdivided
into unary bounds and unary properties. The unary bounds
constrain the difference in position of corresponding
sensed and model features based on the maximum posi-
tion error ( poserr) and orientation error (angerr) of the
dead reckoning position. Specifically, the unary bounds
can be stated as the following necessary conditions for
correspondence between a sensor and model feature:

1) The angle to the sensed corner, relative to the
positive x axis, must lie within +angerr of the angle
to the model corner.

2) The distance from the origin to the sensed corner
must He within +poserr of the distance to the model
corner.

3) The angle subtended by the sensed line segment
must at least partially overlap (or be partially over-
lapped by) that of the mode! line segment, allowing a
rotation of +angerr of the sensed line segment.

The unary property constraints are similar to the unary
bounds constraints, except that whereas the unary bounds
compare locations of features, the unary properties (for
the most part) compare properties of the features that are
unrelated to the position of the robot. Given that a
particular candidate sensor-model pair satisfies the appli-
cable unary bound constraints, the unary properties pro-
vide additional necessary conditions to further confirm
the correspondence between a sensor feature and a model
feature. The unary property constraints are specified as
follows:

1) The concave angle of the sensed corner must lie
within + concerr of the concave angle of the model
corner.

2) The bisector orientation of the sensed corner must
lie within +angerr of the bisector orientation of the
model corner.

3) The orientation of the sensed line segment must lie
within +angerr of the orientation of the model line
segment.

4) The perpendicular distance to the sensed line seg-
ment must lie within +(poserr + disterr) of the per-
pendicular distance to the model line segment.

Concerr is the angular tolerance of the concave angle of
a corner, and disterr is the distance tolerance of the
perpendicular distance to a line segment. Each sensor
feature is compared with every model feature, first with
the unary bounds constraints and then with the unary
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properties constraints. In this way, the number of candi-
date sensor-model pairs (which before the unary con-
straints are applied is of size MN, where M is the number
of model features, and N is the number of sensed fea-
tures) is greatly reduced. The result is a list of ordered
sensor-model pairs. The unary constraints, however, are
not perfect, nor do they capture all of the available
constraining information. Additional pruning is needed.

In order to extract from this ordered list of sensor-model
pairs a set of consistent pairings, the next step utilizes the
innate ordering (features are encountered in the order
that the sensor scans) of the list and a set of ternary
constraints to weed out the inconsistent pairings. We
assume that the largest such consistent set of pairings is
most likely to be a correct match and provides the most
accurate position estimate. A ternary constraint compares
a sensor-model pair to two sensor-model pairs that pre-
cede it in the ordered list. These two comparisons fall into
one or two of the following categories:

1) If one of the sensor-model pairs is a pair of line
segments and the other is a pair of corners, then the
model line segment must be positioned relative to
the model corner in the same way as the sensor line
segment and corner.

2) If both sensor-model pairs are pairs of corners, then
the distance between the two model corners must be
equal to the distance between the two sensor cor-
ners +temndisterr.

3) If both sensor-model pairs are pairs of line seg-
ments, then the difference in orientation between
the two model line segments must be equal to the
difference in orientation between the two sensor line
segments +ternangerr.

Terndisterr is a tolerance on distance error, and fer-
nangerr is a tolerance on angular error. An efficient
search algorithm applies these ternary constraints to the
sensor-model pairs. The algorithm builds sequences of
ternary-consistent sensor-model pairs using a depth-first
search of the ordered sensor-model pair list. The longest
sequences of consistent pairs leading into and out of each
sensor model pair are tracked to enable the search algo-
rithm to terminate fruitless branches efficiently. Thus, the
search process assembles progressively larger sets of pairs
until it exhausts all possible combinations. The largest set
of pairs is used to calculate the position estimate.

G. Position Estimation

The position estimator finds a transformation that mini-
mizes the total error between all transformed model fea-
tures and their corresponding sensor features. Any combi-
nation of line segment feature pairs and corner feature
pairs can be used in producing an estimate. The error
measures are different for the two feature types—for line
segments, there are two error measures (difference in
orientation and difference in perpendicular distance from
the origin), and for corners, there are also two error
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measures (difference in x and difference in y). An itera-
tive (Gauss—Newton) method is used to converge on a
solution. The quantity to be minimized is F + JD, where
F is a vector of the four error measures, J is the Jacobian
of the four error measures differentiated with respect to
the three transform parameters (x,y, 8), and D is the
vector of differences between the transform parameters
on successive iterations. For this algorithm to converge to
a correct solution, it must be guaranteed that the initial
orientation error is less than 90°, which is well within the
accuracy of dead reckoning. The algorithm weights fea-
tures by the number of range data points that were used
to compute them. A better scheme that uses error of
feature fit is planned for future work.

IV. EXPERIMENTATION

The techniques developed in this work were carried
beyond formulation and simulation into implementation
to navigate a physical robot through a mine corridor
mockup. In this section, we describe our mobile robot
testbed, laser range sensor, computing environment,
mockup and experimentation to set the context for re-
sults.

A. The Locomotion Emulator

The Locomotion Emulator (LE) is a mobile robot that
was developed at the CMU Field Robotics Center as a
testbed for development of mobile robotic systems (see
Fig. 6). The LE consists of a Jlocomotor, which is a
mechanism capable of completely general locomotion on
a flat surface, and an emulator, which is a software envi-
ronment that enables this mechanism to mimic the char-
acteristics of different vehicles. The locomotor is a power-
ful all-wheel steer, all-wheel drive base with a rotating
payload platform. The steering motions of the LE’s
three-wheel modules are belt driven by one motor; its
three drive motions are belt driven by another. Two
shock-isolated enclosures, located between the wheel
modules, house the on-board electronics and computing.
Shore power is provided to the LE via a tether. The
emulation software supports the four most common steer-
ing modules of wheeled robots—unicycle, Ackerman, skid,
and articulated (see Fitzpatrick [7]). An operator or com-
puter host can issue commands specific to any of these
configurations, and the LE generates appropriate motions
of its steer, drive, and payload platform to replicate the
motions of the target vehicle. For the purpose of the
experiments reported here, we have used the LE in omni-
directional (unicycle) mode.

B. Cyclone

The cyclone laser range sensor (Fig. 7) was also devel-
oped at the CMU Field Robotics Center to acquire fast,
precise scans of range data over long distances (up to 50
m). The sensor consists of a pulsed gallium arsenide
infrared laser transmitter/receiver pair that is aimed ver-
tically upward. Like a lighthouse, a mirror in the tower
part of the scanner rotates about the vertical axis and
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Fig. 6. Location emulator.

Fig. 7. Cyclone laser range sensor.

deflects the laser so that it shoots parallel to the ground,
creating a 360° field of view. The tower rotation is belt
driven by a motor at speeds from 0.5 to 5 Hz. The
resolution of range measurements is 10 cm; the accuracy
is +20 cm. The angular resolution depends on the resolu-
tion of the encoder that is used on the tower motor
because the encoder pulses are used to trigger the laser.
Currently, the scanner acquires 1000 range readings per
360° scan.

C. Computing Hardware

The perception system is implemented on a single pro-
cessor (68030 20 MHz, 68882 math coprocessor) real-time
development cage. A Sun 3 sits atop the LE but is used
only to boot the real-time system and then to download
files. A video board in the real-time cage displays relevant
information to a color monitor.

D. Navigation Experimentation

All of our navigation experiments were conducted within
a mine corridor mockup that covers an area of approxi-
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mately 20 X 30 m of the highbay area of the Field Robotics
Center. A photograph of this area appears in Fig. 8. The
walls that are part of the line model incfude all of the
partitions and two of the concrete walls of the highbay
area (only one of them is visible in the photo—along the
extreme left edge). Notice that the concrete walls are not
perfect—there are a few roughly 0.4 m columns that jut
out from the wall. Heavy clutter is often present (people,
machines, equipment), none of which is represented in
the line model. This clutter has never caused the percep-
tion system to fail in estimating a position; it only reduces
the number of usable sensed features. We surveyed the
mockup with a transit to create a line model. We gener-
ated intended paths as straight lines that direct the robot
down the centers of the corridors.

The tracking algorithm takes one parameter (step size),
which determines how far the robot moves between posi-
tion estimates. After each estimate, the tracking algorithm
moves to the point on the desired path that is a step size
away from the current position estimate.

Fig. 9 shows the motion history of the robot along the
desired path through the line model. Notice that there are
two sets of arrows. The arrows that point exactly on path
represent the desired positions, and the other arrows are
the estimated positions. The discrepancy between the two
sets of positions is due to a combination of dead reckon-
ing inaccuracy (i.e., the robot did not go where it was told)
and position estimate inaccuracy. Therefore, this plot
does not isolate information about the accuracy of the
position estimate.

Fig. 10 shows a raw range scan taken from the marked
position with extracted features overlaid. The clusters of
features at the top and on the right are due to clutter and
are ignored by the matcher since there are no model
features in these locations. This line model challenges the
feature extractor due to the columns in the left wall,
which have dimensions of about 0.4 m. To find the corners
of these columns, a 0.4-m corner operator must be used,
and since this dimension approaches the accuracy of the
sensor (+£0.2 m), the corner operator is vulnerable to
noise. Using a larger corner operator for this line model is
not acceptable since it would miss these small features
and treat the entire left wall as one line segment, columns
included. The small corner operator produces some false
corners, which are discarded by the matcher.

Figs. 11 and 12 compare two sets of features: Fig. 11
shows the predicted model features, and Fig. 12 shows the
same set of extracted sensor features as in Fig. 11, except
that they are transformed using the estimated position of
the robot; therefore, it should ideally appear identical to
the prediction. The numbers indicate the pairings of sen-
sor and model features. In this case, there are 18 pairs of
matched features. Our line model consists of 29 line
segments, giving a total of 58 features. The feature predic-
tor usually prunes the set to between 20 and 30, and the
matcher usually matches between 10 and 20 features with
some of the approximately 60 sensed features, requiring
fewer than 250 recursive calls of the search function.
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Fig. 8. Mine corridor mockup; corridor width is 6 m.

Fig.9. Motion history of the LE in the middle of a run.

Thus, most position estimates are based on at least 10
feature pairs. Some of the model features match more
than one sensor feature and vice versa; therefore, some
numbers overlap in the figures.

E. Navigation Results

Fig. 13 shows an overlay of the path as reported by the
position estimator, and the path as measured using the
surveying transit. Table I shows the position data for the
run of Fig. 13. The maximum position error is 0.40 m, and
the average position error is 0.19 m. Table II shows the
heading data for the same run. The maximum heading
error was 1.9°, the average was 0.67°. The “correct” head-
ing was provided by a gyro. The gyro drift problem was
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er A Y
M TABLE 1
p e SURVEYED POSITIONS AND ESTIMATED POSITIONS
Surveyed x Surveyed y Estimated x Estimated y
Fig. 10. Range scan with extracted features overlaid. 9.822m 3.646m 10.185m 3.804m
8.248m 3.353m 8.410m 3.442m
6.685m 3.158m 6.989m 3.134m
5.088m 3.099m 5.155m 3.033m
3.736m 3.921m 3.885m 3.824m
]2 q 3.579m 5.483m 3.610m 5.320m
3.641m 7.082m 3.684m 6.869m
P 567 3.579m 8.694m 3.636m 8.520m
P 3.452m 10.261m 3.521m 10.112m
3.393m 11.854m 3.441m 11.697m
D 3.327m 13.425m 3.210m 13.292m
4.300m 14.660m 4.307m 14.614m
173 0 5.763m 15.258m 5.527m 15.236m
7.236m 15.793m 7.110m 15.802m
11 8.707m 16.392m 8.547m 16.416m
12 9.179m 16.517m 8.892m 16.489m
15
L}4
13 TABLE 11
GYRO (ACTUAL) AND ESTIMATED HEADINGS
Fig. 11. Predicted features visible from current location of robot Gyro Heading Estimated Heading
(marked with a cross in Fig. 10).
— 4.297°
187.587° 186.900°
181.628° 181.514°
177.675° 176.300°
143.068° 144.099°
== d 89.324° 89.210°
81.704° 80.845°
\\ LS 87.090° 87.147°
88.179° . 88.637°
. 87.090° 87.663°
2 =1 86.689° 84.798°
45.035° 45.722°
-3 15.241° 14.840°
7 12.834° 12.433°
9 18.163° 17.934°
1 10.714° 9.568°
10 virtually eliminated by using differences in gyro readings
15 12 from position to position to update orientation, but this
introduced some quantization error since the gyro reports
4 heading to a resolution of 0.25°. Since the run consisted of
g

15 moves, the maximum error that this quantization pro-
duced was 1.875° by the end of the path. The parameter
Fig. 12. Extracted features transformed according to position estimate.

— o _ - o
If the position estimate is perfect, this figure should almost be identical V?]ues used were ange_rr = 5% poserr = 1 m, concerr 100’
to Fig. 11. isterr = 0.5 m, terndisterr = 0.5 m, and ternangerr = 5.0°.
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Approximate run times were 60 ms for feature prediction,
2 s for extraction, and 1 s for combined matching and
estimation, giving a total cycle time of approximately 3 s.

F. Surveying Experimentation

In order to investigate the feasibility of using our laser
range scanner and position estimation technique to survey
an underground mine environment, we collected data
from an operating underground coal mine in West Vir-
ginia. A sequence of scans was collected from accurately
known positions in a 2-wk-old mine corridor. To collect
data, we set up the Cyclone on a mobile mine cart and a
surveying transit at a fixed reference point. Ten scans
were recorded at each of 30 positions about 1 m apart.
Each position was measured using the surveying transit.
We had no way of measuring the orientation of the
scanner. (Both pitch and roll of the scanner varied signif-
icantly as we moved.) '

G. Surveying Results

Fig. 14 shows one of the scans with extracted features
overlaid. The range data points in the middle of corridors
correspond to either mine machinery (clutter) or hits on
the roof. A large corner operator (3 m) was used since the
geometry is large enough to allow it. The parts of the
scene describable by line segments were successfully pro-
cessed into line segments and corners.

V. CONCLUSIONS

This paper presents a method of position estimation
relevant to underground mine operations. It is a model-
based perception technique that matches sensed features
(from a laser range sensor) to predicted features (from a
map). The world model is 2-D; features are line segments
and corners. The resulting system has fast cycle time and
high accuracy. It works well for environments that can be
represented accurately by a 2-D line segment model.

Our experience suggests that the rounded corners and
ribbed, wavy walls that occur in an actual mine do not
appear in the idealized maps that are in use today. Al-
though these nonideal features do not debilitate our sys-
tem, they do degrade the position accuracy. Since some of
the corners are not sharply defined in the mine, there is
no one point that can be assigned as the vertex of that
corner in order to form a line model, and by the same
token, the feature extractor cannot lock on to one particu-
lar point either. In short, there is no guarantee of crisp
corners. Although it is possible to add a third type of
feature (the arc) to our system, it is clear that an iconic
approach would have advantages for the mine environ-
ment. An iconic system would match all raw range points
from a scan to a more detailed model of the world. The
iconic system that we envision requires a more accurate
initial estimate than dead reckoning can provide (espe-
cially for a continuous miner, which can hop around when
cutting); therefore, the feature-based estimator would be
used as a preprocessing step for the iconic system.

Future work will include implementation of the iconic
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Fig. 14. Range scan from an underground coal mine with extracted
features overlaid.

position estimation system and a more sophisticated path
planner and path tracker. We intend to first develop a
more detailed world model that sufficiently represents the
mine environment. A path planner that is based on this
world model and incorporates the geometric and kine-
matic constraints of a continuous mining machine will be
implemented long with a path tracker that will be capable
of navigating a continuous miner along the planned path
while avoiding obstacles.
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