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Abstract

Virtual reality object modeling from a sequence of range
images has been formulated as a problem of principal com-
ponent analysis with missing data (PCAMD), which can be
generalized as a weighted least square (WLS) minimization
problem. An efficient algorithm has been devised to solve
the problem of PCAMD. After all visible P regions appeared
over the whole sequence of F views are segmented and
tracked, a 3F x P normal measurement matrix of surface
normals and an F X P distance measurement matrix of nor-
mal distances to the origin are constructed respectively.
These two measurement matrices, with possibly many miss-
ing elements due to occlusion and mismatching, enable us to
formulate multiple view merging as a combination of two
WLS problems. By combining information at both the signal
level and the algebraic level, a modified Jarvis’ march algo-
rithm is proposed to recover the spatial connectivity among
all the reconstructed surface patches. Experiments using syn-
thetic data and real range images show that our approach is
robust against noise and mismatch because it produces statis-
tically optimal object model by making use of redundancy
from multiple views. A toy house model from a sequence of
real range images is presented.

1 Introduction

Virtual Reality (VR) has fascinated most people through
convincing real-time graphical illusion. However, creating
models to inhabit virtual world is still the bottleneck and one
of the main obstacles to making use of the technology in use-
ful applications. Currently, most object models are con-
structed by human operators [2]. It would be much better to
have a system that can automatically build models of real
objects and real scenes that it observes. If we can develop a
reliable technique to generate realistic virtual reality models
by observing real objects from multiple views, we can
reduce the effort and cost of model construction, and we can
significantly broaden the application areas of virtual reality.

Observation-based modeling systems usually work with a
sequence of images of the object(s), where the sequence
spans a smoothly varying change in the positions of the sen-
sor and/or object(s). Much work has been done in object
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modeling from a sequence of range images [1][4][5][9][12]
[16][21]. Most work assumed that transformation between
successive views is either known or can be recovered, so that
all data can be transformed to a fixed coordinate system.
Inferring scene geometry and camera motion from a
sequence of intensity image is also possible in principle
[3][6][18][19][20]. Most existing algorithms in so-called
“structure from motion” seem to be more useful for deter-
mining camera motion than for building 3D object models
because the recovered object shape is defined by a collection
of 3D points whose connectivity is not explicitly known.

Most previous systems have attempted to apply inter-frame
motion estimates to successive pairs of views in a sequential
manner [3][5][12]. Whenever a new view is introduced, it is
matched with the previous view, and the transformation
between these two successive views has to be recovered
before the object model is updated. This sequential method
does not work well in practice because local motion esti-
mates are subject to noise and missing data. Local mismatch-
ing errors accumulate and propagate along the sequence,
yielding inaccurately reconstructed object models.

Rather than sequentially integrating successive pairs of view,
we should instead search for the statistically optimal object
model that is most consistent with all the views. Although
every single view provides only partial information of the
object it is likely that any part of the object will be observed
a number of times along the sequence. Object modelin g from
this sequence of views can be formulated as an overdeter-
mined minimization problem because significant redundancy
exists among all the views.

We propose to build boundary surface representation (B-rep)
[12] object models from a sequence of range images. There
are two key differences between our approach and other tra-
ditional approaches. First, our approach is to recover bound-
ing surfaces and transformations simultaneously by
employing principal component analysis with missing data
(PCAMD). Statistically optimal surface patches can be
reconstructed from a sequence of segmented and tracked
range images. Second, by combining information on both the
algebraic level (surface descriptions) and the signal level
(data points), the problem of spatial connectivity among all



reconstructed surface patches is also recovered so that a B-
rep model can be reconstructed.

This paper is organized as follows. In section 2 we formulate
the problem of multiple view merging as one of principal
component analysis when data is missing. In section 3 we
discuss of how to track a sequence of segmented range
images. The spatial connectivity among different surface
patches is solved using a modified Jarvis’ march algorithm in
section 4. We demonstrate the robustness and effectiveness
of our approach by applying it to synthetic data and real
range images in Section 5. Final comments and conclusions
are presented in Section 6.

2 Multiple view merging
2.1 A motivational example

Suppose that our task is to make a model for a dodecahedron
(/2-faced polyhedra) from a sequence of segmented range
images. Assume that we have tracked /2 faces over 4 nons-
ingular views. The segmented range images provide trajecto-
ries of plane coordinates {p;,‘ f=1,...4, p=1,.,12} , where
p= (v, d)" represents a planar equation with surface nor-
mal v and normal distance to the origin 4. Then we may
form a 16 x 12 measurement matrix as follows:
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where every * indicates an unobservable face since there are
only six visible faces from each nonsingular view. Our mod-
eling task is now to recover the poses of all the /2 faces in a
fixed coordinate system.
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Figure 1 Distinct views of a dodecahedron

If the measurement matrix were complete, our task would be
to average all those /2 taces over 4 views assuming data is
noisy. In the absence of noise, any set of /2 faces from one

of 4 views will do. The standard way to solve this problem is
to apply singular value decomposition (SVD) [10] to this
measurement matrix, whose rank is at most 4. The measure-
ment matrix can subsequently be factorized, with proper nor-
malization, into a left matrix Q of transformation parameters
and a right matrix P of plane coordinates

W=0P
where Q]
p= i_p] P, P Q=

4

and Q' is the transformation of fth view with respect to the
fixed world coordinate system, and P, is the pth plane equa-
tion in the same world coordinate system.

Unfortunately, the measurement matrix is often incomplete
in practice; it is not unusual for a large portion of the matrix
to be unobservable. As we have seen in the above example,
half of the measurement matrix is unknown. When the per-
centage of missing data is very small, it is possible to replace
the missing elements with the mean or an extreme value; this
is a common strategy in multivariate statistics [7]. However,
such an approach is no longer valid when a significant por-
tion of the measurement matrix is unknown.

One common practice in modeling from a sequence of
images is to use extrapolation. For example, we can recover
the transformation between view / and view 2 if there are at
least three matched planar surfaces that are non-parallel [8].
Then we extrapolate the invisible planar surfaces in view /
from its corresponding surfaces in view 2 which are visible
using the transformation recovered. The same extrapolation
step is similarly applied to invisible surfaces in view /. By
repeating this process we can in principle extrapolate the
locations of all invisible surfaces from visible surfaces [12].
A final step could be added to fine-tune the result by factoriz-
ing the extrapolated measuremernt matrix using SVD. A sim-
ilar extrapolation approach “‘propagation method” [19] is
used in motion and shape recovery from multiple intensity
images.

The major problem with the extrapolation method is that
once the estimated transformation is incorrect at any step,
the extrapolated results will be erroneous. In sequential mod-
eling errors accumulate and propagate all the way. The fine-
tuning process at the last step would not improve the result
dramatically since the extrapolated measurement matrix is
inaccurate. To obviate this problem, we make use of more
rigorous mathematical tools developed in computational sta-
tistics that caters for missing data without resorting to error
sensitive extrapolation. We will demonstrate the formulation
in this section and apply it to multiple view merging in the
next section.
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2.2 PCAMD

The problem of object modeling from a sequence of views
shown in the previous section can be formulated as a prob-
lem of principal component analysis with missing data
(PCAMD), which has been studied in computational statis-
tics. Suppose that an F x P measurement matrix W consists
of P individuals from an F-variate normal distribution with
mean [I and covariance . Let the rank of W be r. If the
data is complete and the measurement matrix filled, the
problem of principal component analysis is to determine U,
S, and V such that
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is minimized, where U, and V are F X r and P X r matrices
with orthogonal columns, S = diag (0} is an r x r diagonal
matrix, W is the maximum likelihood approximation of the
mean vector and e’ = (/,..., I) is an F-tuple vector with all
ones. The solution to this problem is essentially SVD of the
centered (or registered) data matrix W — e T

If data is incomplete, we have the minimization problem:
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where w, and v, are column vector notations defined by
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Ruhe [14] proposed a minimization method to analyze one
component model when observations are missing. One com-
ponent model decomposes an F x P measurement matrix
into an Fx 1 left matrix and a 1 x P right matrix. Wiberg
[22] extended Ruhe’s method to the more general case of
arbitrary component model. Wiberg [22] solved this problem
by an iterative method using the bilinear property of the
above problem. We have modified Wiberg’s formulation and
proposed a weighted least squares (WLS) approach to gener-
alize this problem [15]. This approach has been successfully
applied to merge planar patches tracked over multiple views.

2.3 Merging multiple planar patches

Suppose we have tracked P planar regions over F frames.
We then have trajectories of plane coordinates
{(Vpdp) | f=1,.,Fp=1,..P} where v, is the sur-
face normal of the pth patch in the fth frame, and dg, is the
associated normal distance to the origin. To facilitate the
decomposability of rotation and translation, instead of form-
ing a 4F x P measurement matrix as in section 2.1, we form
surface normals Vy, into a 3F x P matrix w® and dis-
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tances dg, into an Fx P matrix w9 w™ and w@ are
called the normal measurement matrix and distance mea-
surement matrix respectively.

It can be easily shown that W has at most rank 3 and w®
has at most rank 4 when noise-free, therefore, W’ and

w@ are highly rank-deficient. We decompose W into
w®” =RV
where
R
R=1
R

is the rotation matrix of each view with respect to the world
coordinate system, and V = [V, ..., v,] is the surface nor-
mal matrix in the world coordinate system. Since R is a
3F x 3 matrix and V is an 3 X P matrix, the rank of W* is
at most 3.

Similarly, we can decompose W? into

w9 =T1Mm
[t 1]
[t
d, dp [tFRFIJ

and t; and R, are the translation vector and rotation matrix
f Sof .
of view f with respect to a fixed world coordinate system.

where

We can also decompose w into

R, 1
o A S IR AN
R, I

When all elements in the two measurement matrices are
known, we need to solve two least-squares problems. How-
ever, since only part of the planar regions are visible in each
view, we end up with two WLS problems instead. The first
least squares problem, labeled as WLS-1, is

L
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2
min () (W) = [RV], ) (EQ2)

f=1..Fp=1..P
and the second one, denoted as WLS-2, is

. d 2
min Y YW -1TM), ) (EQI)
f=l..Ep=1...P
where Y, = O if surface p is invisible in frame f, and

Y;, = 1 otherwise. All weights can be any number between
zero and one, depending on the significance or confidence of
each measurement. A similar WLS formulation is also used
in [18].



3 Surface Patch tracking

In this section, we briefly overview each module of our sur-
face patch tracking system: range image segmentation, adja-
cency graph building, and two-view matching.

3.1 Range image segmentation

There are many different techniques for range image seg-
mentation. By and large they can be divided into feature-
based and primitive-based approaches, although statistics-
based approaches have also been introduced recently. Fea-
ture-based approaches yield precise segmentation but are
sensitive to noise in practice. For example, Gaussian and
mean curvatures can be used to label different regions before
region growing; however, this process is quite sensitive to
noise. Primitive-based approaches are more robust to noise
but constrained by the number of primitives. The higher the
degree of surface polynomial, the more difficult and the less
robust the segmentation is likely to be.

We have used the primitive-based region growing segmenta-
tion method of [8]. The regions are established via region
growing from seed points, i.e., the seed points are chosen
from points which are closest to their approximating primi-
tives. and then merged with their neighbors until the best-fit
errors become unacceptable.

3.2 Adjacency graph

Once we have successtully segmented the range data for
each view, the range image associated with view i can be
represented as a set of planar regions 1, = {v,, dip ity
where v, and d; are the normal and distance of the jth seg-
ment planar surface respectively, and ¢;; is the centroid of jth
segmented region.

From each view of the 3D object, we build an adjacency
graph where every node in the graph represents a visible pla-
nar region and each arc connects two adjacent nodes. The
adjacency graph is updated whenever this view is matched
with another. Eventually we have adjacency information
among all visible planar regions after tracking all of them for
the whole sequence. From the adjacency graph, all the object
vertices can be located; thus, 3D object model is obtained.
However, augmenting adjacency graph is difficult for con-
cave objects because of occlusion. A better way of establish-
ing spatial connectivity among all surfaces is discussed in
section 4.

We have implemented the planar surface patch tracking sys-
tem which employs an algorithm to generate the adjacency
graph. This algorithm makes use of range data because there
is significant change in range data across an occluding edge.
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3.3 Matching two views

Given two adjacent segmented images /; and /,, we would
like to find correspondence between different regions in two
views, i.e., we want to find a mapping ¢: 1, — I, such that
a certain distance measurement d (/,, 1,) is minimized.

Two questions arise in matching two views of planar regions.
The first is how to make correspondence between two views;
the second is how to recover the transformation between
them. Our solution to the first problem is to use adjacency
information between two segmented patches and between
segmented surface normals. If displacement between two
views is relatively small, there should be only linear shape
change [11] within the same aspect, corresponding seg-
mented regions are of similar size (number of points), cen-
troid, and surface normals. When a new aspect appears,
which signals a nonlinear shape change, there would be sig-
nificant change in these parameters. There may not always
be solutions to the second problem because we need at least
two corresponding non-parallel faces to determine rotation
and three to determine translation. In practice, we can make
the assumption that we always have two non-parallel corre-
sponding faces in two adjacent views.

In fact, solving the second problem can be of help to the first
problem because we can then make use of the hypothesis-
and-test approach. We iteratively select two pairs of non-par-
allel faces from the two images to be matched, estimate the
corresponding rotation matrix, and then attempt to match the
rest of the faces. The estimated transformation matrix is only
used to help building the adjacency graph, while the precise
transformation is robustly recovered from our WLS method.

Multiple view tracking is done by sequentially matching two
adjacent views. Whenever a new view is added, the adja-
cency graph and the weight matrix are automatically modi-
fied. Because of the problems associated with updating
adjacency graph, subsequent to surface patch tracking and
multiple view merging, we use a better method to establish
the spatial connectivity among surfaces in next section.

4  Spatial Connectivity

Once we have extracted the equations of planar surfaces of
the object, we then need to establish spatial connectivity
relationship among these surfaces. Other than augmenting
adjacency graph whenever a new view is introduced, we
present a new method of recovering surface connectivity
among reconstructed surface patches. We show that the
problem of spatial connectivity of boundary surfaces can be
reduced to that of supporting lines of a simple polygon.



4.1 Half-space intersection and union

We assume that every planar patch P of an object model is a
simple polygon. Every (infinite) plane divides the space into
two parts, inside and outside, with surface normal pointing
towards the external side of the object. Given an unbounded
planar surface, if we intersect all other planar surfaces on it,
we obtain supporting lines as illustrated in Fig.2. Each sup-
porting line is directed so that the interior of P lies locally to
its right. The right half-plane created by such a directed sup-
porting line ¢ is called the supporting half-plane, and is char-
acterized as supporting the polygon; however, a concave P
might not all lie in the right half-plane as indicated in Fig.2.

Fig 2 A simple polygon and its supporting lines (stippled
and solid lines)

For each point x in the plane, if we know which side of each
supporting line x lies on, we know if x is inside P. Therefore,
the polygon P (and its interior) can be represented as a bool-
ean formula whose atoms are those supporting lines. In other
words, a simple polygon can be represented by intersection
and union of its supporting line. For example, a boolean for-
mula for the polygon in Fig.2 can be ca ® ab ® bd ® dc.

4.2 Modified Jarvis’ march

The problem of establishing spatial connectivity of support-
ing lines can be formulated as a modified convex hull-like
problem which involves only vertices. This problem can also
be regarded as one of cell decomposition which involves
data points. We propose a modified Jarvis’ march algorithm
to reconstruct simple polygons from supporting lines and
valid data points. The algorithm to recover spatial connectiv-
ity among 3D surfaces is discussed in section 4.3.

Definition |

A point is defined as valid in a simple polygon if there exist sufficient
valid data points around its neighborhood.

Lemma 1

The intersection point P of two supporting lines is valid in a simple
polygon if and only if the intersection of two corresponding half-
planes is valid locally at P.

Proof:

When the intersection of two half-planes is valid locally at P, the inter-
section point of these two supporting lines is valid by its definition.

Assume that the intersection point of two supporting lines is valid.
Since two lines divide the plane into four regions, there must exist at
least one such region among four around the intersection point that is
a valid cell of the simple polygon. Therefore, the intersection of two
half-planes is valid locally at P. (QED.)

The Lemma | leads to a modified Jarvis’ march algorithm of
reconstructing simple polygon from supporting lines and
valid data points.

To construct the simple polygon from all supporting lines
and valid data points, we first precompute all intersection
points which are candidates of vertices of the simple poly-
gon. If we march successive vertices with the least turning
angle, we obtain their convex hull; this is referred to as
Jarvis’ march algorithm [13]. The kernel of the simple poly-
gon, if it exists, can also be found by intersecting all half-
spaces. Using Lemma 1, however, enables us to find the cor-
rect simple polygon by marching all points whose local
neighborhood is valid. We call this algorithm the “modified
Jarvis’ march”.

Assume that we have first found the lowest left point p; of
the set of vertex candidates, which is certainly a convex hull
vertex, but not necessarily a vertex for our simple polygon
(unless it is valid locally). For example, in Fig.3, p; is not a
simple vertex because psp;p, is not a valid triangle cell
(valid cells are shaded areas which show valid data points).
Since pgp,p3 is a valid triangle cell, we start our algorithm
from p,.

A data structure is defined for each intersection point P as
follows

typedef {
intersect-point left, right, up, down;

intersect-point previous, next;
} intersect-point P;

Py P

Fig 3 Modified Jarvis’ march and cell decomposition.
Shaded area represents valid data points.
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P->right = P4

P->left = P,
P->previous = P,

P->next = ?

P->down = P,

Fig 4 Data structure of intersection point

Fig.4 shows the relationship among the members of the data
structure. Assume that an intersection point is intersected by
only two supporting lines.

After the starting vertex is found, we march for the next ver-
tex as illustrated in Fig.4. If there are sufficient data points in
cell PP,P3, next valid vertex is P,. If P, is not valid, we
check if Py is valid. If P5 is also invalid, P4 must be valid, or
an error will occur. The march ends when the next vertex is
the starting vertex. The modified Jarvis’ march (MIM) algo-
rithm is given as follows:

Algorithm MIM
Step 1. initialize starting vertex

START->previous = NULL,
P = START->next,
P->previous = START:

Step 2. march

P->left = Py; P->down = Py; P->right = P3; P->up = Py;
if cell PP,P5 valid, P->next = P, (case 1)

else if cell PP3P,4 valid, P->next=P; (case 2)

else if cell PP4P, valid, P->next=P, (case 3)

else error occurs;

Step 3. terminate

if P->next = START.

A postprocessing step may be necessary to remove points
which belong to case 2 in step 2 of the march algorithm.
These points are on the same line with its previous point and
its next point. For example, in Fig.3, p;, can be removed
because pg and p,¢ make it redundant.

As can be seen from the above algorithm and Fig.3 as well as
Fig.4, the problem of single polygon reconstruction from
supporting lines and valid data points is one of cell decom-
position. As we march around all supporting lines, a boolean
formula of the simple polygon can be readily formulated.
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4.3 3D spatial connectivity

So far we have discussed the problem of recovering the con-
nectivity of supporting lines of a simple polygon. The
approach uses information at both signal level (real data
points) and algebraic level (line equations). The same hybrid
approach can be applied to the problem of spatial connectiv-
ity of planar surfaces in 3D.

Indeed, the problem of connectivity of planar surfaces in 3D
can be reduced to a set of problems of connectivity in 2D.
Assume that we have recovered a set of N face equations and
transformation among different views (e.g., from PCAMD).
All valid data points from multiple views can be merged in
the same world coordinate system. For each face F;, if we
intersect all other N-/ faces F,(j=1..,N=1,j#i)with
F; and project all these lines onto F;, we get M (=N-/) sup-
porting lines on face F;. We also project nearby 3D points
onto this face F;. We assume that no two supporting lines are
parallel (or a normal threshodd d can be set such that
v;v;2d). For any of the M supporting lines, we intersect it
with the rest M-/ lines, we get all possible candidates for
vertices of the valid simple polygon which is the model of
face F;, as illustrated in Fig.5. The modified Jarvis’ march
algorithm can be then applied to each of the N faces accord-
ingly. By connecting all polygons recovered, we get the
entire 3D object model boundary. A simple algorithm can be
accordingly constructed to establish 3D spatial connectivity
then.

Fig. 5 shows an example. It is a face of a toy house model.
The complete house model is reconstructed and presented in
next section. Fig.5(a) shows intersections of supporting lines
and nearby data points projected on this face, while Fig.5(b)
superimposes a reconstructed simple polygon model of this
face on Fig.5(a).

Fig 5 Reconstruction of connectivity. The tiny dots are
projected nearby data points. Intersections of
supporting lines are large dots. Vertices of
reconstructed simple polygon are small squares.
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6  Concluding remarks

A virtual reality object modeling system using multiple
range images has been described in this paper. The boundary
representation object model is reconstructed by integrating
information from different views. One significant contribu-
tion of this work is the application of principal component
analysis with missing data to object modeling from a
sequence of views. An inherent problem in multiple view
integration is that the information observed from each view
is incomplete and noisy. Based on Wiberg's formulation, we
have generalized principal component analysis with missing
data as a WLS minimization problem and presented an effi-
cient algorithm, PCAMD, to solve it. Spatial connectivity
among different surface patches is also recovered using
reconstructed surface descriptions and range data.

“One general principle in computer vision is, if surface
information is not enough to determine each surface locally,
use global constraints that constrain relative configuration of
the surfaces so that the total degrees of freedom decrease.”
[17]. The object modeling technique presented in this paper
is an example of this principle, where the algebraic structure
of surface equations from multiple views is used as the glo-
bal constraint. The reconstructed object model is statistically
optimal because it is most consistent with all of the views.
By observing and employing different forms of input redun-
dancy, our approach can be easily extended to other vision
problems such as shape and motion from a sequence of
intensity images.
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