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Abstract

This paper addresses the problem of 3D shape similarity be-
tween closed surfaces. A curved or polyhedral 3D object of
genus zero is represented by a mesh that has nearly uniform
distribution with known connectivity among mesh nodes. A
shape similarity metric is defined based on the L, distance
between the local curvature distributions over the mesh rep-
resentations of the two objects. For both convex and concave
objects, the shape metric can be computed in time O(n2 )
where n is the number of tessellations of the sphere or the
number of meshes which approximate the surface. Experi-
ments show that our method produces good shape similarity
measurements.

1 Introduction

The ability to compare object shapes is essential for many
computer vision tasks such as object model categorization
and hypothesis verification in model-based object recogni-
tion [6]. Previous work has focused on comparing 2D scene
images with 2D object models. For example, as shown in
Figure 1, a gradual shape change of a 2D closed curve, from
a square to a concaved triangle, can be captured by previous
shape similarity measures (e.g., [1] [20]).
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Figure 1 An example of 2D shape similarity: how to
measure the gradual shape change from left to right?

Recent progress in 3D sensors such as laser range finders
and real-time stereo machines has led us to the problem of
comparing 3D objects with 3D or 2D scene images. In this
paper, we address the following question: to what extent is a
3D shape A similar (or dissimilar) to a 3D shape B?

The desirable properties of such a shape similarity measure
are as follows. First, such a measure between two geometri-
cal shapes should be a metric. In particular, the triangle ine-
quality is necessary since it is desirable in pattern matching
and object recognition applications. In addition, the distance
function between two shapes should be invariant under rigid
transformation and scaling, easy to compute, and intuitive
with human shape perception [1].

1063-6919/96 $5.00 © 1996 IEEE

The problem of shape similarity has been studied exten-
sively in both machine vision and biological vision. Read-
ers interested in human perception of similarity, such as
contextual and asymmetrical properties, are referred to
Tversky [24] and Mumford [17]. For human perception,
other features such as color or functional information are
also used to compare objects. In this paper, we focus on
geometrical shape similarity because geometry is the basis
for other features such as color and reflectance, etc. As a
first step toward 3D shape similarity with arbitrary topol-
ogy, we restrict ourselves only to objects of genus zero
(objects without holes). We want to compare polyhedral
shapes as well as smooth surfaces.

To compare different shapes, one must first understand how
to represent them. Most work assumed an object shape to
be a two dimensional closed contour. Many previous meth-
ods can evaluate the shape similarity among the set of 2D
closed polygons shown in Figure 1. For instance, Schwartz
and Sharir [20] proposed to approximate a closed 2D curve,
after proper smoothing if necessary, by a simple polygon
with equal-length edge segments. The polygon was then
represented by the turning angle (a measure of local curva-
ture) at each vertex. Arkin et al. [1] represented local curva-
ture at each vertex of a polygon using a turning angle and,
in addition, proposed an efficient algorithm to directly com-
pare polygons. Mumford [17] suggested the use of
moments as an alternative to curvature because moments
are also invariant to rigid transformation and scaling. Other
2D shape similarity methods include 2D planar graph and
graph matching by Kupeev and Wolfson [15], and shape
deformation by Basri et. al. [3].
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Figure 2 An example of 3D shape similarity: how
similar are these shapes?
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Unlike using a closed 2D curve which can be simply
parameterized by its arc-length, however, it is' much more
difficult to find an appropriate “data structure” in which to
store a 3D surface. How to compute and store the curvature
information on the surface depends on the choice of coordi-
nate system. Without a proper representation, it is unclear



how to compare polyhedral shapes because curvature is
zero everywhere except on vertices and edges. It is no triv-
ial task to compare simple 3D shapes as shown in Figure 2.
In practice, local curvature on each sample point of surface
is difficult to estimate robustly from noisy range data. It is
even more severe when only a single view depth map is
available because of surface discontinuity and occlusion.

Because a closed surface is topologically equivalent to a
sphere, many spherical representations have been proposed
to represent closed surfaces. The Gauss map characterizes
the surface normal at each point on a unit sphere, called a
Gaussian sphere. Horn [9] proposed to represent objects
using an extended Gaussian image (EGI) which uses a dis-
tribution of mass over the Gaussian sphere. Ikeuchi [11]
and Little [16] showed that an EGI could be used for pose
determination. A Complex EGI was proposed by Kang and
Ikeuchi [13] to store both surface area and distance infor-
mation which can be very useful for recovering translation.
It has been proven that two convex objects are congruent if
they have the same EGIs. Nalwa [19] augmented Gaussian
images by some support function which was the signed dis-
tance of the oriented tangent plane from a predefined ori-
gin. Hebert, Ikeuchi and Delingette [8] proposed a simplex
attribute image (SAI) to characterize the convex/concave
surfaces, both as a coordinate system and as a representa-
tion. For a summary of different spherical representations,
the reader is referred to [12] by Ikeuchi and Hebert. Brech-
buhler, Gerig and Kubler [5] also defined a one-to-one
mapping from a simply-connected surface to a unit sphere,
using extended 3D elliptical Fourier descriptors.

The lack of a proper coordinate system (or data structure)
for geometrical entities has driven many researchers to
compare 3D shapes in domains other than geometrical
space. For example, Sclaroff and Pentland [21] used many
modes to represent shapes and to compare shapes based on
the coefficients of the modes. Murase and Nayar [18] repre-
sented objects in eigenspace, and compared objects
depending on the proximity of two eigenvalues to one
another. Unfortunately, these quantities used for measuring
similarity do not provide us with geometrical intuition.

Even with the appropriate data structure, choosing a good
metric for comparing shapes can be confusing. For exam-
ple, Arkin et. al. [1] used L, norm to compare polygons.
Huttenlocher and Kedem [10] used Hausdorff distance to
compare the distance between two point sets under transla-
tion. Kupeev and Wolfson [15] used graph matching to
compare 2D shapes. Basri et. al. [3] emphasized that the
distance function has to be continuous and should matter
less as curvature becomes greater. Comparison among dif-
ferent metrics can be found in [17].

Using a special spherical coordinate system, we represent a
closed curved or polyhedral 3D surface without holes. A
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semi-regularly tessellated sphere is deformed so that the
meshes sit on the original data points while the connectiv-
ity among the mesh nodes is preserved. After deformation,
we obtain a spherical representation with local curvature at
each mesh node. The problem of comparing two shapes
becomes that of comparing the corresponding curvature
distributions on spherical coordinates. This approach is
illustrated in Figure 3. The local curvature at each node is
calculated by its position relative to its neighbors. We then
present an efficient shape metric between two objects: the
metric is a distance function between two corresponding
curvature distributions on spherical coordinates.

The paper is organized as follows. In Section 2 we intro-
duce a spherical representation of a 3D surface. Then we
define local curvature and show how to compute it. In Sec-
tion 3 we present a distance metric between two objects, or
between two spherical approximations of these two objects
obtained from surface deformation. We also construct two
algorithms to compute the metric. We show experimental
results in Section 4 and give final comments in Section 5.
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Figure 3 Comparing shapes from curvature
distribution: an example of a sphere and a
hexahedron. The curvature has been coded so that
the darker the bigger positive curvature and the
lighter the bigger negative curvature.

2 Representation of a Closed Surface

2.1 Discrete Representation of a curve

To compare object shapes, one first has to find appropriate
representations of those shapes [2]. A standard way of rep-



resenting a simple polygon is to describe its boundary by a
circular list of vertices with known coordinates. To repre-
sent a simple closed 2D curve (not self intersecting), one
can parameterize the curve by a number of points. For
example, one can approximate the curve by equal length
line segments. The similarity between two curves can be
measured by comparing the distribution of curvature mea-
surement at the vertices of the approximating polygons.

The curvature of a discrete curve at each node of the polyg-
onal approximation can be approximated by the turning
angle between adjacent line segments. The turning angle
can be viewed as a discrete average measure of local curva-
ture at the vertex. Like curvature, the turning angle is inde-
pendent of rigid transformation and scaling. To avoid
possible unstable representation under certain kinds of
noise, dense equal length line segments have been adopted
in [20] and [8]. For noise-free polygons with few vertices,
Arkin et. al. [1] showed a very efficient algorithm which
directly compares turning angles on vertices. Unfortunately
Arkin’s approach can not be extended to 3D polyhedra
because of the lack of a proper coordinate system.

2.2 Spherical Representation of a 3D surface
A natural discrete representation of a surface is a graph of
nodes, or tessellation, such that each node is connected to
each of its closest neighbors by an arc of the graph. We use
a special mesh, each node of which has exactly three neigh-
bors. Such a mesh can be constructed as the dual of a trian-
gulation of the surface [7]. To tessellate a unit sphere, we
use a standard semi-regular triangulation of the unit sphere
constructed by subdividing each triangular face of a 20-
face icosahedron into N? smaller triangles. The final tessel-
lation is built by taking the dual of the 20 N*-face triangula-
tion, yielding a tessellation with the same number of nodes.

In order to obtain a mesh representation for an arbitrary
surface, we use a deformable surface algorithm in which
we deform a tessellated surface until it is as close as possi-
ble to the object surface. This algorithm drives the spheri-
cal mesh to converge to the correct object shape by
combining forces between the data set and the mesh. Our
algorithm originates from the idea of a 2D deformable sur-
face [23] and is described in detail in [8]. The deformed
surface can accurately represent concave as well as convex
surfaces. Our deformable algorithm is not sensitive to
deformation parameters such as initial center and radius of
the sphere. An example of a free-form object model created
using the deformable surface and multiple view merging
techniques [22] is show in Figure 4. The deformation pro-
cess is robust against data noise and moderate change of
parameters such as initial sphere center and radius [22].

The key idea of our spherical representation of surface is to
produce meshes in which the density of nodes on the
object’s surface is nearly uniform. Although perfectly uni-
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form distribution is impossible, a simple local regularity
constraint can enforce a very high degree of uniformity
across the mesh. First of all, we start with a semi-regularly
tessellated sphere. Then we implement the local regularity
constraint in the deformable surface algorithm such that
each mesh is similar to the others in area [8].

(@)
Figure 4 An example of a free-form object: (a) (c)
Images of a pig; (b) (d) Semi-regular mesh model of
a pig.

(b) (©) (d)

2.3 3D Local Curvature: An Approximation

After we obtain a nearly uniform surface mesh representa-
tion, the next step is to define a measure of curvature that
can be computed from the surface representation. Conven-
tional ways of estimating surface curvature, either by
locally fitting a surface or by estimating first and second
derivatives [4], are very sensitive to noise. This sensitivity
is mainly due to the discrete sampling and, possibly, to the
noisy data. We introduced in [8] a robust measure of curva-
ture computed at every node from the relative positions of
its three neighbors. Our method is robust because all the
nodes are at a relatively stable position after the deforma-
tion process. The deformable surface process serves as a
smoothing operation over the possibly noisy original data.
We called this measure of curvature the simplex angle.

The simplex angle varies between -1 and 7, and is negative
if the surface is locally concave, positive if it is convex.
Given a configuration of four points, the angle is invariant
by rotation, translation, and scaling because it depends only
on the relative positions of the points, not on their absolute
positions.

(©) (d)

Figure 5 (a) A spherical tessellation; (b) Deformable
surface of a concave octahedron; (¢) Local curvature
on each mesh node; (d) Curvature distribution on
the unit sphere (The curvature on (c) and (d) is
negative if it is light, positive if dark, zero if grey).

The spherical representation can approximate not only free-
form, but also polyhedral objects. For example, Figure 5
shows an example of a spherical polyhedral approximation
of an octahedron with one concave face. Because of the



regularity constraint, corners and edges are not represented
perfectly. All plane surfaces, however, are well approxi-
mated.

3 The 3D Shape similarity Metric

In Section 2 we have explained how we obtain mesh repre-
sentation and curvature distribution of a 3D surface over
the sphere. Let S, and Sp be the mesh representations of
shape A and shape B, and kg(S,) and kg(Sg) be the curva-
ture distribution functions under a spherical rotation R. We
then formally define the distance function between two 3D
surfaces A and B as the L, distance between their local cur-
vature functions kj(S4) and kg(Sp), minimized with respect
to the rotation matrix R over the sphere. The function k)(S,)
denotes the curvature distribution of S, under no rotation
where [ is the identity matrix. Hausdorff distance [10] can
be an alternative to L, distance, but the computation is for-
midable.

3.1 A Distance Function on Sphere

We define the L, distance d,(S4, Sp, R) between A and B at

a certain spherical rotation R as
1

»
d,(Sy SpR) = (j[k,(sA) ~ kg (Sp) |”ds)
which is the sum of curvature differences over the sphere.

Then the distance function between A and B, ADp(A, B)
becomes

D, (A, B) = ming d (S,,5pR)

which is minimized dy, over all possible rotations R.
Property 1:
Proof:

Because dp isa Lp norm, we have

D,(A, B) is a metric for all p>0.

* D, is positive. D, (A,B) 20;
* D, isidentity. D, (A,A) =0;
* D, is symmetric. DP (A,B) = D, (B,A) .

The only thing left to prove is the triangle inequality
D,(4,B) +D,(B,C) 2D,(4,C) .

Let R; and R, be the rotation matrices which minimize the
D/,(A, B) and DP(B, C) and, respectively,

D,(A,B) +D, (B, C)

= mian dp (845 Sp) +minR2 dp(SB, Se)

—

= ming, (”kI(SA) _le(sB)lPdS)
1

eming, ([, (Sp) ~ kg, (S |”d5)p
1

> ming g (”k,(sA) ~ k. (Sp) "’ds)"
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1
+Ulle (Sp) - le,lRZ(SC),”ds)” ]
= ming x (d,(Sy Sy R) +d, (S SciRy))
2ming d (SyScRy)
= D, (S, 50)
where R, = RIIRQ.

3.2 Search for Global minimum

The above proof showed that we can search over the spher-
ical rotation space to compute the distance between two
curvature distributions. A naive algorithm can then be eas-
ily constructed. Because this is an exhaustive search, global
minimum is always found provided that the search step is
small enough (that is, the number of searches is sufficiently
large). This leads to the following property:

Property 2:  The distance between two shapes A
and B, D,(A, B), can be computed in time 0(»°) where
m is the number of searches in each rotational
space.

The above time bound can be improved by employing a
property of the semi-regularly tessellated sphere: each node
has exactly three neighbors. We have observed [8] that the
only rotations for which d(S,, Sp) should be evaluated are
the ones that correspond to a valid list of correspondences
{P; P;} between the nodes P; of S4 and the nodes P;” of Sp.
There are only 3 valid neighborhood matchings since each
node has exactly three neighbors and the connectivity
among them is always preserved. Given the correspon-
dence of three nodes, a spherical rotation can be calculated.
This rotation defines a unique assignment for the other
nodes. Moreover, the number of such correspondences is
3n where n is the number of nodes of spherical tessellation
[8]. Equivalently, there are 3r distinct valid rotations of the
unit sphere. This analysis leads us to an efficient algorithm
for comparing two shapes.

Property 3:  The distance between two shapes A
and B, Dy(A, B), can be computed in time 0(n’) where
n is the number of nodes, with preprocessing stor-
age O(r%).

4 Experiments

In this section, we present the results of applying our shape
similarity metric to synthetic data and to real objects. We
have used L, distance in the metric function defined in Sec-
tion 3. For all experiments below, we will use L, distance
for the ease of computation. Our data set consists of several
polyhedra such as icosahedron and dodecahedron whose
shapes are known in advance. To make deformable sur-
faces, we generate uniformly random-sampled data points
over each object surface. We also use the free-form object
model generated from real range images. Unless specified,



the frequency of spherical tessellation is set to 7, which
means that the total number of meshes is 980.

Figure 6 shows the distance between a set of regular poly-
hedra (a tetrahedron, a hexahedron, a dodecahedron, and an
icosahedron) and a sphere. We show shape similarity
between this sequence of concave objects and an octahe-
dron in Figure 7. Figure 8 shows the distance between the
object sharpei and a set of other free-form objects.

One possible drawback of our approach is that the quality
of approximation of a polyhedral or free-form surface
depends on the number of patches chosen. For example,
with frequency 7 semi-regular spherical tessellation, we
have 980 surface patches. We have 3380 patches when the
frequency is 13. The more surface patches we use, the bet-
ter the approximation is. Figure 10 presents the curvature
distribution of an approximated hexahedron when different
tessellation frequencies are used. When a higher frequency
is used, the higher curvature distribution is narrower
because of better approximation. Figure 10 shows a com-
parison of shape similarity measure when different tessella-
tion frequencies are used. The results demonstrate that the
shape similarity measure is robust provided that a sufficient
number of tessellations is adopted.

Figure 6 Distance between a sphere and its polyhedral
approximations. (1) Tetrahedron; (2) Hexahedron;
(3) Dodecahedron; (4) Icosahedron; (5) Sphere.

Figure 7 Distance between an octahedron and several
concaved octahedron objects. (1) with itself; (2) with
one concave dent; (3) with two dents; (4) with three
dents; (5) with four dents; (6) with eight dents.
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Figure 8 Shape similarity among all free-form objects:
distance between the object sharpei and others.

Figure 9 An example (cube) of curvature distribution
of mesh representation at tessellation frequencies:
(@ 7; (b) 9; (c) 115 (d) 13.

30 =7

25 f=13
ol =9

” £=11

Figure 10 Effect of tessellation frequency on shape
similarity between regular polyhedra and a sphere.

5 Conclusion

In this paper we have proposed an efficient shape metric to
compare 3D convex and concave shapes. Our shape metric
is defined as the minimum distance between two curvature
distributions generated from two semi-regular meshes of



the objects. Based on a special mesh structure, we resample
the objects with nearly uniformly patch size and encode the
local curvature efficiently at each mesh node. Experiments
show that our shape similarity metric is robust and invari-
ant under rigid transformation and scaling, easy to com-
pute, and intuitive with human perception on shape.

To build a spherical mesh representation that has nearly
uniform distribution with known connectivity among mesh
nodes, we iteratively deform a semi-tessellated sphere so
that the mesh converges to the original shape. The local
curvature computed at each node captures the averaged
curvature information in its vicinity. The task of comparing
two shapes is essentially one of comparing two curvature
distributions generated from deformed meshes. An impor-
tant observation is that, unlike the curvatures on sparse ver-
tices and edges on polyhedra, the curvature distribution
(either on a mesh representation or on a sphere) can be used
to compare shapes efficiently and effectively. Therefore,
our mesh representation is a good data structure for storing
object shapes of genus zero, both free form and polyhedral.

Our approach is, in essence, similar to the one used by
Schwartz and Sharir [20] where they approximated a 2D
curve from noise data points by discretizing the turning
function (a 2D curvature in some sense) of two polygons
into many equally spaced points. We discretize the polyhe-
dral and/or free-form surfaces into many approximately
equally spaced patches in 3D. An advantage of our distance
function is that it is stable under a certain amount of noise.
Even with non-uniform noise, we can keep most parts of
objects well represented.

Currently our approach is restricted to genus zero shape
topology. Recent progress on geometrical heat equation
and geometry diffusion sheds some light on how to com-
pare topological shape similarity as well as geometrical
similarity. We will work in this direction.
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