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Abstract 
One of the main limitations of most current machine vision systems is a lack of flexibility 
to consider the wide variety of information provided by visual data. The research 
proposed here aims to improve this situation by the development of an adaptive visual 
system able to selectively combine information from different visual algorithms.  
 
The problem is cast as a knowledge discovery problem, where the two main steps are 
detection and characterization of relevant patterns. The algorithms will be able to 
perceive different attributes of the visual space such as color, depth, motion or specific 
shapes. The intended system should be able to adaptively select and combine the 
information provided by the algorithms according to the quality of the information given 
by each of them.  
 
The system proposed is based on an intelligent agent1 paradigm. Each visual module will 
be implemented as an agent that will be able to adapt its behavior according to the 
relevant task and environment constraints. The adaptation will be provided by a local 
self-evaluation function on each agent. Cooperation among the agents will be given by a 
probabilistic scheme that will integrate the evidential information provided by them.  
 
The proposed system aims to achieve two highly desirable attributes of an engineering 
system: robustness and efficiency. By combining the outputs of multiple vision modules 
the assumptions and constrains of each module will be factored out to result in a more 
robust system overall. Efficiency will be still kept through the on-line selection and 
specialization of the algorithms according to the relevant structures and conditions 
present at each time in the visual scene.  
 
The advantages of the approach proposed here will be demonstrated in two frequent 
problems faced by a mobile robot: dynamic target tracking and obstacle detection. 
                                                 
1 For a definition of an intelligent agent see section 2.2 
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1. INTRODUCTION 
 
• Knowledge Discovery 
Today technology is changing the way we produce and handle information. The 
increasing capabilities and falling cost of suitable equipment to acquire, process, and 
store information is allowing its massive use. In this new technological context large 
sources of information of diverse types are becoming increasingly available. 
 
While the opportunities of an effective use of this information are enormous, there is still 
a lack of effective tools that can fully exploit its potential. From the seemingly endless 
information paths of Internet to the case of a mobile robot collecting information from its 
environment, there is an increasing need for the development of automatic tools able to 
transform the information available in useful knowledge. Manual analysis is not longer a 
viable solution, and automated knowledge discovery has emerged as the key technology 
that can take advantage of the new massive sources of data. 
 
In general, the process of automatic knowledge discovery is given by the extraction of 
regularities or patterns in the information data. The identification of regular structures in 
the data allows making predictions and generalizations, justifying the knowledge 
acquisition through an inductive learning step. In contrast to information theory where 
the relevant part of the information lays in the unpredictable part of a signal, in the case 
of knowledge discovery the relevant information lays in the redundancy of non-
accidental structures.  
 
• Robotics Domain  
In the Robotics domain the problem of knowledge discovery from sensing information is 
highly relevant. While today it is possible to equip a robot with many sensors and 
sophisticated locomotion capabilities, the perception skills of most robots are still rather 
limited. 
 
In order to move robots out of labs to perform useful tasks in natural environments, it is 
needed to equip them with more powerful perception systems able to acquire useful 
knowledge from diverse sources of information. Today the main challenge for robots is 
not the controllability but the observability problem. 
 
• Visual Perception 
In particular, the case of visual perception is a very attractive option to equip a robot with 
suitable perceptual capabilities. In contrast to other sensor modalities, vision can allow to 
perceive a large number of different features of the environment such as color, shape, 
depth, motion, and so on. Unfortunately, visual perception has turned to be a complex 
problem, even though there have been advances in the field, still it is not possible to find 
a reliable vision system able to safely guide the way of a robot on an unstructured and 
dynamic environment. 
 
The main problem is that a dynamic unconstrained environment presents numerous 
ambiguities to a visual perception system. Patterns, tendencies, and models lay in a 
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complex high dimensional space of shapes, distances, colors, sounds, past experiences, 
and so on.  Different visual attributes form a multidimensional space where the number 
of subspaces that can contain relevant features grows exponentially with the number of 
dimensions. This stresses the need for good heuristics or previous high-level knowledge 
to bias the search and to keep the problem manageable.  
 
Most of current successful applications in machine vision have heavily used task and 
environment constraints to cope with the high dimensionality and inherent ambiguity of 
visual information. The typical approach relies on simplifications of the environment or 
on good engineering work to identify relevant visual attributes that allow solving a 
specific visual task.  For example, consider the case of a robot localization system based 
on artificial landmarks. In this case, previous knowledge about the structure of the 
landmarks provides strong constraints that allow constructing algorithms especially 
designed to detect key visual attributes [1][2].  In the same way, recent successful vision 
systems able to detect people or cars are examples of specific visual applications where 
good engineering work allows an off-line identification of key visual attributes to 
complete the task [3][4]. 
 
• Adaptation 
The main problem with the previous approach is lack of flexibility. In general, it is 
difficult to know a priori which part of the visual space and which set of visual attributes 
will convey enough information to extract the knowledge needed to complete a task. 
Problems such as partial occlusion, changes in illumination, or different postures 
constantly modify the quantity of information or entropy of the different visual attributes. 
As a consequence, there is a high variability about the adequate set of attributes to 
complete a given task.  
    
As an example consider ALVINN [5], a perceptual visual system designed to steer a car 
in natural environments using a neural net learning algorithm. After training, the main 
internal features learned by ALVINN were the edges of the road. With this knowledge 
ALVINN was able to demonstrate a reasonable performance, but it irremediable failed in 
situations where the edges of the road were obstructed by other passing vehicles, or were 
missing as on bridges or crossing points. The main problem with ALVINN was its lack of 
adaptability to use alternative sources of information such as centerlines, other traffic, 
roadway signs, and so on.  
 
In contrast to ALVINN human drivers are remarkable robust to changes in the driving 
conditions. This great robustness of the human visual system can be explained by its 
extreme flexibility to adapt to the changing conditions of the environment by selecting 
appropriate sources of information.  
 
The lack of flexibility of most actual machine vision systems to consider alternatives 
sources of information has limited their robustness to successfully operate in natural 
environments, being one of the main reasons to prevent the more extensive use of these 
types of systems. 
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• Information Theory and Probabilistic Reasoning 
The case of ALVINN illustrates the potential benefits of adding adaptability to a visual 
perception system. It also shows that the level of adaptation should be directly related to 
the degree of useful knowledge that a perception system can be able to extract from the 
different sources of information. This introduces the need for appropriate metrics that can 
evaluate the quantity of information conveyed by different subsets of visual attributes.  
Information theory provides such metrics through concepts such as entropy or 
information gain.  
 
Another important intrinsic feature of most information worlds is uncertainty. In order to 
create robust systems, it is highly desirable to use a representation able to characterize the 
ambiguity inherent to natural scenarios. Probability theory provides a solid mathematical 
framework to represent and to reason under uncertainty. In particular, Bayesian inference 
provides a suitable framework to combine knowledge from different sources of 
information. 
 
I foresee that the synergistic interaction between elements from probabilistic reasoning 
and information theory can be a powerful combination to implement a knowledge 
discovery system. The intuition behind this idea lays at the heart of two highly desirable 
attributes of an engineering system: robustness and efficiency. In order to achieve 
robustness one needs to use a representation such as the one provides by probability 
theory that allows to reason under ambiguity. Unfortunally, in many situations the 
combinatorial explosion in the number of possible hypotheses or explanations makes a 
full probabilistic approach impractical. This is especially true for high dimensional and 
real time applications such as the one intended in this work. So, one also needs to be 
efficient, and in order to achieve efficiency one needs to use tools able to quantify 
ambiguity, tools that leads the inference engine to the more prominent hypothesis and 
sources of information. Information theory can provide such tools.  
 
• Proposed work 
The focus of the dissertation research I propose to perform is the development of an 
adaptive visual system able to selectively combine information from different visual 
algorithms. These algorithms will be able to perceive different attributes of the visual 
space such as color, depth, motion or specific shapes.  
 
The intended system will be based on an intelligent agent2 paradigm. Each visual module 
will be implemented as an agent that will be able to adapt its behavior according to the 
relevant task and environment constraints. The adaptation will be provided by a local 
self-evaluation function on each agent. Cooperation among the agents will be given by a 
probabilistic scheme that will integrate the evidential information provided by them.  
 
Using the power of probability theory for representing and reasoning under uncertainty, 
and elements from information theory to lead the inference engine to prominent 

                                                 
2 For a definition of an intelligent agent see section 2.2 
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hypothesis and information sources, the proposed system aims to achieve two highly 
desirable attributes of an engineering system: robustness and efficiency. 
 
By combining the outputs of multiple vision modules the assumption and constrains of 
each module will be factored out to result in a more robust system overall. Efficiency will 
be still kept through the on-line selection and specialization of the algorithms according 
to the relevant structures and conditions present at each time in the visual scene.  
 
The adaptive cooperation of diverse visual algorithms will provide great flexibility about 
the type of visual structures and therefore the kind of knowledge that can be extracted 
from visual information. Although the system is presented for the case of visual 
information, the ideas can be extended to other domains that perform unsupervised 
knowledge extraction from dynamic multidimensional information sources.  
 
The research proposed in this work is particularly relevant for the case of dynamic visual 
tasks with a high variability about the subsets of visual attributes that can characterize 
relevant visual structures. This includes visual tasks such as dynamic target tracking, 
obstacle detection, and identification of landmarks in natural scenes. In particular, the 
advantages of the approach proposed here will be demonstrated in two frequent problems 
faced by a mobile robot: dynamic target tracking and obstacle detection. This document 
includes preliminary results in this direction for both visual problems.  
 
 
2. PROPOSED RESEARCH 
 
2.1. Detectors and Specialists 
In most visual applications one is interested in the detection of some type of visual 
structures or patterns. Usually these visual structures define regularities in the visual 
space, which can be characterized by a combination of visual properties, such as spatial 
continuity, coherent motion, specific shape and so on. This characterization of visual 
structures using their more prominent visual properties is which allow their posterior 
detection.  
 
In general given the great variability of most natural scenarios, it is difficult to know a 
priori which part of the visual space and which set of visual attributes will define a 
relevant visual structure. This presents a duality between detection (where is it?) and 
characterization (how is it?). Knowledge about the location of a relevant visual structure 
in an input image simplifies the problem of finding the more appropriate set of visual 
attributes to build appearance model for the pattern. In the same way, knowledge about 
the more appropriate set of visual attributes to characterize a relevant visual structure 
simplifies the problem of detecting the pattern in an input image. 
  
This idea suggests a two-step approach to find relevant structures in a complex visual 
space. First one needs general tools able to explore the incoming information looking for 
possible structures without relying in specific illumination, views, posture, etc. Then once 
possible candidate structures have been identified, it is possible to use more specific tools 
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able to look for specific supporting evidence in order to provide more efficient and robust 
appearance models. I will refer to these steps as detection and specialization, and the 
respective algorithms as detectors and specialists.  
 
The intuition behind this idea is that detectors and specialists use different types of 
constraints. While in natural environments the detection of visual structures allows only 
the use of very general weak constraints, after a relevant structure has been detected it is 
possible to select more appropriated and specific constraints that allow a more robust and 
efficient characterization of a given visual structure. This more effective characterization 
is especially useful for the case of dynamic visual sequences, where the visual system 
needs to keep track of the structures in time.   
 
For example if the goal of a given visual system is to track people, one possible approach 
could use a detector based on depth continuity and shape, and a set of specialists based 
on motion, color, position, and other visual attributes. At the beginning of the tracking the 
lack of specific knowledge about the types of colors that a given person is wearing, as 
long as its position or its type of motion will not allow to use these types of visual 
information for the tracking task, so the system would have to relies in the more general 
detector base on depth continuity and shape. Now, after a person is detected, the set of 
specialists can provide a more adequate appearance model, specially tuned to the more 
prominent visual attributes of the intended target. Giving that tracking based only on 
depth continuity and shape will inevitable fail when a detected person passes close to 
another person or a bulky object, the on-line specialization of the tracker using the strong 
constraint providing by the specialists will allow a more robust tracking. 
 
2.2. Intelligent Agents 
Even though there are a diversity of views about what intelligent agents are, there is a 
general agreement that the main features that distinguish an intelligent agent are 
autonomy, adaptation and sociability [6]. Autonomy provides the independency that 
allows the agent to exhibit an opportunistic behavior in agreement with its goals. 
Adaptation provides the flexibility that allows the agent to change its behavior according 
to the conditions of the environment. Sociability provides the communication skills that 
allow the agent to interact with other artificial agents and humans.  
 
This work makes use of multiple agents that can simultaneously analyze different 
properties of the incoming information. These agents will act as a group of experts where 
each agent will have a specific knowledge area. This scheme provides a high degree of 
abstraction and modularity, which facilitate the design and scalability of the system.   
 
The system will consist of two main types of agents. A set of agents known as detectors 
will have the mission to explore the incoming information providing hypothesis about the 
location of possible relevant structures. The main requirement for a detector agent will be 
the capacity to provide useful information under different conditions. For example, in the 
case of visual information a detector agent should be able to detect structures under 
different illumination, views or posture conditions. A second type of agents will be the 
specialists. These agents will have the mission to adapt their behavior according to the 
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type of structures detected. This adaptation will be possible by the specialization of 
detector agents or through the opportunistic pro-activation of specific algorithms that 
encapsulate particular constraints.  
 
All these agents will be able to run in parallel in local or remote machines using a 
distributed multi-threated software architecture. This will provide the degree of autonomy 
needed by the agent in order to show an opportunistic behavior. Furthermore, each 
detector and specialist will be provided with a local self-evaluation function that will be 
used by the agent to evaluate its own performance. This self-evaluation will be the key 
element used by the agents to activate adaptation mechanisms. Finally, sociability among 
the agents will be given through the integration of information using Bayesian reasoning, 
which is the topic of the next section. 
 
2.3. Probabilistic Inference through Bayesian Reasoning 
• Bayes’ Rule 
Bayesian theory provides a solid mathematical framework for reasoning under 
uncertainty. Using the language of probability theory, a Bayesian approach provides 
mechanisms to combine information in order to reason about different hypothetical 
solutions to a problem. The basic idea is to use the information available for building a 
probability distribution, which characterizes the relative likelihood of each hypothesis.   
 
The core of the Bayesian technique is the so-called Bayes’ Rule : 
 

        (1)           )h(P*)h/e(P* 
)e(P

)h(P*)h/e(P
)e/h(P α==  

 
P(h / e) is called the posterior conditional probability and represents the probability of a 
hypothesis h given the information or evidence available e.  P(e / h) is called the 
likelihood function and represents the degree of fitness between the hypothesis and the 
data. P(h) is called the prior probability and represents the previous belief about the 
feasibility of each hypothesis h. Finally, as it is stated in (2), P(e) acts as a normalization 
factor that can be derived from the other terms. 
 

(2)       /)h(P*)h/e(P)e(P
h

α1== ∑  

One of the more suitable features of the Bayesian approach is the decoupling between 
evidence and previous knowledge given by the likelihood and the a priori terms in (1). 
This explicitly shows how the inference engine combines the different types of 
information, being a great help to model the system. The likelihood term allows 
measuring the support of the incoming information to each of the possible hypothesis. 
The a priori term allows considering past experiences and task constraints. This is closely 
related to the theory of regularization commonly used in computer vision. Regularization 
theory calls for minimizing a cost function that has a data and a regularizer term. The 
data term considers the evidence while the regularizer term constraints the set of possible 
hypothesis allowing to solve ill-posed problems. 
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One common extension to the traditional Bayes’s Rule is to account for time, which is a 
highly relevant dimension for the case of dynamic visual scenes. There is a 
straightforward method to extend (1) to the dynamic case. Consider the posterior 
conditional probability distribution for hypothesis h at time instant t called th , given all 

the evidence te
r

 accumulated until time t. Using Bayes’s rule this can be expressed as: 

 
Now, assuming that the current evidence te  can be totally explained by the current 

hypothesis th , and that the dynamic of the system follows a first order Markov process, it 

is possible to obtain (6) which is the standard way to perform Bayesian inference for the 
dynamic case. 
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Equation (6) is the equivalent of Bayes’ Rule for the time variant case. The posterior 

density at time t-1,  ehP tt )/( 11

→

−−  is propagated in time using the dynamics of the system, 

 hhP tt )/( 1− , to form the new priors for the new time instant. These priors are then 

multiplied by a likelihood function  heP tt )/(  in the usual Bayesian fashion to obtain 

the new posterior  ehP tt )/(
→

. 

  
• Estimation of Probability Density Functions 
One practical difficulty using Bayesian modeling is to find adequate probability density 
functions (pdfs) to represent the different terms required by the Bayes’ Rule. The 
problem is even more difficult for the dynamic case, where one also needs to propagate 
the pdfs in time. The theory of probability provides several techniques to estimate 
probability models from data. These techniques are mainly classified in parametric, semi-
parametric and non-parametric estimation methods. Two of these estimation techniques 
are relevant to the system proposed in this work: parametric estimation using Gaussian 
densities and non-parametric estimation based on stochastic sampling. 
 
A Gaussian density provides a suitable tool to probabilistically model the performance of 
detectors and specialists for cases when in average they provide non-bias solutions close 
to the correct hypothesis. There are several advantages in using Gaussian densities. First, 
they provide a closed form representation where the parameters can be estimated using 

(3)          ehPehePehP ttttttt )/(*),/(*)/( 11

→

−

→

−

→
= β
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training data and maximum likelihood. Also, the probabilistic models can be easily 
extended to higher dimensions using multivariate Gaussian densities.  Furthermore in the 
case that the dynamics of the process is lineal and the system noise is Gaussian, the pdfs 
can be propagated in time using the well-known Kalman Filter [7].  
 
Unfortunately in some cases detectors and specialists are no so well behaved, in the sense 
described above. Ambiguous situations can confuse detectors and specialists producing 
less predictable results. In this case the probability distribution can have a complex multi-
modal shape that cannot be accurately modeled by a Gaussian density. Stochastic 
sampling provides an alternative estimation approach for these cases. 
  
In stochastic sampling a pdf is represented through a set of samples, each with an 
associated weight representing its probability. There are several algorithms available to 
estimate the samples. Likelihood Weighting [8] and Factored Sampling [9] are two of 
those algorithms. 
 
• Likelihood Weighting  
Consider a case where there are available a set of hypotheses, a set of observations, and a 
metric to evaluate the degree of fitness between hypotheses and observations. An 
intuitive idea to obtain a probabilistic model over the set of hypotheses is to normalize 
the fitness between hypotheses and observations, and then use this metric as the 
probability of each hypothesis. In the case of an extremely large hypotheses space, the 
complete pdf could be approximated using a set of regularly spaced samples.  
 
The previous approach is the basis of the Likelihood Weighting algorithm, which has 
been widely used for stochastic simulation. The algorithm can be extended to the time 
variant case using the dynamic of the process to propagate each hypothesis in time and 
then repeat the weighting procedure using the new set of hypotheses and observations.  
 
• Factored Sampling  
Although Likelihood Weighting provides a suitable way to represent and to propagate 
complex pdfs in time, it does not provide a mechanism to allocate the samples in an 
efficient way. The initial set of samples is allocated in a uniform fashion without 
considering critical areas of the probability distribution. Factored Sampling overcomes 
this limitation for the case of a posterior density factored according to (1).  
 
As opposed to Likelihood Weighting, Factored Sampling uses the current beliefs to 
obtain a more suitable set of samples. Instead of just obtaining the set of samples using a 
uniform scheme, the samples are obtained by sampling from the current prior 
distribution. This is particularly important for the case of dynamic inference because it 
allows using the information gathered so far to obtain a more adequate allocation of the 
samples. 
 
Although originally the Factored Sampling algorithm was presented for the static case of 
equation (1) [9], it can be easily extended to the dynamic case of equation (4) [11]. In this 
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case the Factored Sampling is also called the Condensation algorithm, and it operates in 
the following way: 

First obtain a set of n sample hypotheses ih  from  )/( 1

→

−tt ehP  or equivalently 

)/(*)/( 111

1

→

−−−∑
−

ttt
h

t ehPhhP
t

, and then weight each of these sample hypotheses ih  by iπ . 

As it is stated in (7), iπ  is a normalized version of  heP it )/( with te  the current 

observation. 
 

(7)          
)/(
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∑
=

ih
it

it
i heP

hePπ  

The set of n hypothesis and weights { }iih π,  generated in this way increasingly 

approximates the posterior )/(
→

tt ehP  as n increases3.  

 
There are 2 key questions in the previous presentation of the Factoring Sampling 
algorithm: how to sample from the sum in (6)?, and how to obtain each weight factor iπ ?. 

For the first question, assuming that one has an initial set of samples of the posterior 

density )/(
→

tt ehP  and knowledge about the dynamics of the system, it is possible to use 

the composition algorithm [10] to obtain a set of fair samples from the sum in (6).  In the 
case of the second question, the weight factors iπ ’s can be obtained in a similar way to 

the Likelihood Weighting algorithm by evaluating the fitness between each sample 
hypotheses and the observations. 
 
In summary, to be able to keep a sample version of the posterior density in time using the 
Factored Sampling algorithm, one needs an initial approximation of the posterior density, 
and knowledge about how evaluate the likelihood and propagation densities 

 heP tt )/( and  hhP tt )/( 1− . The following example shows the power of Factored 

Sampling to approximate an arbitrary distribution.  
 
Figure 1a shows the initial frame of a video sequence that contains 2 yellow boxes that 
move freely around the image plane. Factored Sampling was used to track the box in the 
lower right side of the image using color information. Simulating the role of a detector 
agent, the initial box to be tracked was manually selected using the mouse.  In figure 1b, 
the blue square inside the lower yellow box shows the area selected for tracking. 
Identification numbers “1” and “2” were added inside the boxes to facilitate the 
identification of each target by the reader, but they are not part of the video sequence 
used to track the targets.  
 

                                                 
3 For a proof of the Factored Sampling method see [9]. 
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Figure 1. a) Artificial scenes with two yellow boxes. b) The intended target is manually marked with a bounding box. 
 
Each hypothesis about the target position was given by a bounding box defined by height, 
width and the (x,y) coordinates of its center of mass. For this example, the height and 
width of each bounding box was kept fix equal to the initial area selected manually for 
tracking. The posterior density was at all times approximated using 500 samples. The 
initial approximation to the posterior density was obtained by sampling from a Gaussian 
distribution centered at the position of the manually selected box and with a variance of 
20 pixels in both axes. Figure 2a shows an image with the initial distribution of the 
sample hypothesis.  Figure 2b shows the Gaussian distribution of the center of mass of 
the hypothesis in the x-axis. 

 
Figure 2. a) Initial distribution of the boxes. b) Distribution in the x-axis. 

 
The tracker used as observation the hue histogram of the pixels inside each hypothesis in 
the sample set. The hue histogram of the initial box selected manually was kept as the 
desired reference. In this way the evaluation of the likelihood of each bounding box was 
calculated measuring the similarity between its hue histogram and the reference 
histogram. The metric used to evaluate similarity was a modified version of the L1 
distance using a sigmoid type of function.    

(8)             )
cte

cte)-distance (L1
*2.0 tanh(-1.0Likelihood =  

 
Figure 3 shows the variation of likelihood in function of the L1 distance for a value of cte 
equal to 25% the size of the initial box. 
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Figure 3. Variation of likelihood in function of  L1 distance for a value of cte equal to 25% the size of the original box. 

 
The propagation density was calculated using a stationary Gaussian model with a 
variance of 20 pixels in both axes. A binary search algorithm over cumulative 
probabilities of the current approximation of the posterior density was used to select the 
set of samples used for time propagation.  
 
Figures 4-7 show the tracking at different time instants. The left figures show in blue the 
set of bounding boxes used to approximate the posterior density. The right figures only 
show the bounding box corresponding to the maximum likelihood hypothesis. The 
figures show the ability of Factored Sampling to dynamically approximate the posterior 
density. In particular, when the two identical yellow boxes overlap the tracking system 
becomes confuse because it does not have any way to resolve the inherent ambiguity. 
This ambiguity materializes in the approximation of the posterior density with a bimodal 
shape that is clear in figures 6 and 7. Also the maximum likelihood estimator jumps from 
one box to the other reflecting the high confusion in the tracker.    
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Figures 4-7. Left) Posterior distribution of bounding boxes for different time instants. Right) The maximum likelihood 
hypothesis is highlighted with a blue square inside the most probable target. 
 

• Bayes Nets 
Other relevant component of the framework proposed in this work is the integration of 
information. This integration will be performed using Bayes nets [12]. Bayes nets take 
advantage of causal relations among random variables to allow an efficient graphical 
representation of joint probability distributions (jpds). The efficiency is gained by use of 
causal knowledge that provides conditional independence relations between the random 
variables. These independence relations allow partitioning the jpd in simpler local 
probabilistic models.  
 
Figure 8 shows the typical tree structure of the Bayes nets relevant to this work.  Agent 
nodes represent the detectors and specialists able to directly measure visual properties 
from the incoming information. Abstraction nodes allow the integration of information 
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and the representation of relevant visual structures. Also, abstraction nodes allow 
introducing conditional independence relations among the agents. This decoupling of the 
information provided by the agents facilitates the construction of probabilistic models for 
applying Bayesian inference using equation (6). 

 

 
Figure 8. Example of a Bayes net structure. 

 
One of the most important features of the net is the flow of information. Agent nodes 
send evidential information to high-level abstractions nodes in the form of likelihood 
functions represented by Gaussian densities or stochastic sampling. In the same way, 
abstraction nodes send top-down feedback in the form of priors to the agent nodes. These 
priors allow an efficient communication channel from detectors to specialists allowing 
the self-adaptation of the system and the generation of opportunistic behaviors on the 
agents.   
          
This type of information flow is closely related to the idea of bottom-up and top-down 
information paths in the human visual system [22]. After the work of Marr [13] the 
bottom-up model has been the usual approach in machine vision. One of the main 
problems of a pure bottom-up model is the lack of feedback from high to low-level 
stages. A bottom-up model is not able to learn and use knowledge in order to reduce the 
heavy load of a powerful vision system. Each time, a bottom-up model needs to reprocess 
all the information looking for the desired cues and answers. The use of a top-down 
feedback from high level inference modules can guide the vision system to search for the 
correct visual cues and answers in the correct places, which can produce a great impact in 
the robustness and efficiency of such a system.  
 
Bayes nets provide a suitable framework to implement bottom-up and top-down 
information channels. Each time that a detector agent finds a new relevant structure a 
new Bayes net is instantiated. The information about the new structure is sent by the 
detector agent to the abstraction node, which then sends the information as priors to a set 
of specialist agents. Each specialist initiates a predictive step over the feature. The 
specialists with a low self-evaluation will stop working, and the ones with a high 
evaluation will assume the work of keeping track of the feature.  
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• Adaptation 
A difference of most traditional applications of Bayes Nets, where the structure of the 
nets is fix, the system intended in this research will include adaptation mechanisms that 
will allow a dynamic reconfiguration of the nets according to the characteristics of the 
incoming visual information. So far, there are 2 main adaptation mechanisms that will be 
included in the intended system:  Agent switching and Belief sampling.  
 
Agent switching refers to the pro-activation of detector and specialist agents. Using self-
evaluation functions these agents will locally estimate the benefits of providing 
information to the inference engine. This evaluation will be based on robustness and 
efficiency considerations. An initial implementation of a self-evaluation function is 
discussed in section 4. 
 
Belief sampling refers to the number of samples used by the system to keep track of the 
posterior density or belief function. This variable plays an important role in the 
computational complexity of the system because it defines the number of hypothesis to 
be considered by each active agent, and the fusing nodes. An initial heuristic approach to 
decide about this variable is discussed in section 4.  
 
 
3. RELATED WORK 
 
The idea of reducing uncertainty by combining knowledge from difference sources is by 
not account new. In several fields it is possible to find studies that recognize the 
relevance of integrating information in order to create more robust and flexible systems.  
Although all the abundant literature, there have been a gap between the conceptual idea 
and the production of working systems for real problems. Important issues such as the 
organization and control of the pieces of knowledge, and in special the development of 
mechanisms that allow the adaptation and feedback among the knowledge sources have 
not been tackled in depth, and they are still very much open questions. This section 
reviews some of the main efforts that have been appeared in the scientific literature under 
these lines. 
 
• Artificial Intelligence (AI)  
In the AI domain the blackboard model for problem solving is one of the first attempts to 
adaptively integrate different types of knowledge sources.  Using ideas independently 
proposed by Newell [14] and Simmon [15], Reddy and Erman implemented the first 
blackboard systems as part of the HEARSAY and HEARSAY II speech understanding 
programs [16][17]. 
 
A blackboard model consists of 3 major components: the knowledge sources, the 
blackboard, and the control unit. A blackboard model divides a problem in knowledge 
sources, which are kept separate and independent. These knowledge sources interact 
through a blackboard, which is the global database that integrates the information. 
Finally, a control unit manages the opportunistic activation of the knowledge sources 
according to changes in the blackboard.  
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The blackboard conceptualization is closely related to the ideas presented in this work, 
but as a problem-solving scheme the blackboard model offers just a conceptual 
framework for formulating solutions to problems.  In this sense, at least for the 2 
applications presented here, the work proposed in this research aims to extent the 
blackboard conceptualization to a computational specification or working system, 
providing specific mechanisms to perform probabilistic inference and adaptive 
integration of visual information. 
 
• Machine Learning 
In the machine learning literature there are been related work in the context of ensembles 
of classifiers. An ensemble of classifiers is a set of classifiers whose individual decisions 
are combined to classify new examples [18]. Each classifier can be considered as a 
different source of knowledge. Adaptation mechanisms are included in the policy used to 
combine the outputs of the individual classifiers. These kinds of techniques are currently 
receiving broad attention in the machine learning literature due to the capacity of the 
ensemble to improve performance over the individual classifiers that make them up. 
There have been several algorithms proposed to implement the ensemble of classifiers; 
among the more relevant are Mixture of Experts [19] and AdaBoost [20].  
 
The work presented in this proposal differs in many ways with respect to the current 
algorithms used to build ensemble of classifiers.  One of the main differences resides in 
the adaptation mechanisms. An ensemble of classifiers is an eager learner in the sense 
that the training is performed off-line and during operation each classifier acts as blind 
data driven box. In contrast, one of the main features of the work proposed here is the on-
line interaction or feedback between the knowledge sources.  
 
• Computer vision 
In the area of computer vision although most of the work has been concentrated in the 
development of algorithms to extract knowledge from single visual cues, such as edges or 
binocular disparities, there have been also several attempts to integrate information from 
different visual modules.  
 
Since at least the work of Marr [13] it have been widely accepted that different visual 
cues should be computed in separate modules, but there has been lot of controversy about 
how these modules should interact to create a unified visual representation. Marr suggests 
that the information from different visual modules is integrated to obtain a complete, 
labeled 3D description of the world (2 ½-D sketch). According to Marr, in this process 
there is not interaction between the different visual modules, and perceptual vision is just 
a bottom-up data driven process.  Recently, several researchers have criticized this idea 
and proposed an alternative model [21][22], which considers perception as a distributed 
collection of task-specific, task-driven visual routines with strong feedback among the 
visual modules. 
 
Besides all this conceptual debate, the strange fact is that although the constant 
acknowledge in the computer vision literature about the importance of integrating visual 
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information, there have been not many working systems that exploit these ideas. There 
are several reasons to argue about this situation. One of the main reasons is that as a new 
field rather than looking for the complex problem of integration, the focus of the research 
has been concentrated in solving more elemental issues, such as increasing the robustness 
of individual visual modules. Also there has been important hardware limitations because 
of the intensive computing power needed to run several visual modules in parallel. Other 
possible reason is a lack of a global perspective to envision vision as an interdisciplinary 
field including elements from areas such as information theory, statistics, and artificial 
intelligence, which provide more solid theories to implement the integration and 
adaptation steps.  
 
Although the previous argumentation, still it is possible to find some interesting works 
that share some of the ideas presented in this research proposal. Krotkov and Bajcsy [23] 
used a Kalman Filter approach to combine stereo, depth from focus, and vergence in 
order to obtain more robust 3-D data. Brautigam [24] used a voting scheme among 
several visual modules to detect planar surfaces.  Nordlund and Eklundh [25] described a 
system that integrates motion and binocular disparities to achieve real time figure ground 
segmentation. In the context of object recognition and image understanding, Drapper [26] 
investigated the use of learning strategies to determine recognition policies using 
different visual modules. Darrel et al. [27] presented a tracking system that combines 
information from stereo, color, and face pattern matching. Isard and Blake [11] proposed 
a probabilistic approach to target tracking under a Bayesian framework. Sherrah and 
Gong [28] proposed the use of covariance estimation to track pose and face position 
fusing skin color information and pose similarity measures. Rasmussen and Hager [29] 
proposed an adaptive visual system that integrates information from several visual cues 
using the Joint Probabilistic Data Association Filter (JPDAF).  
 
Although most of these works have shown the gain in robustness of combining several 
visual modules, most of them have limited the scope to static scenes and lab 
implementations. Even more important, most of these works have not considered in their 
systems topics such as adaptation and uncertainty. The works by Isard and Blake, and 
Rasmussen and Hager are notable exceptions, both will be discussed in more detail later 
in this document.  
 
• Cognitive Psychology 
It is worth to mention that one of the main motivations for the integration of visual cues 
comes from studies in the human visual system. The theory of visual specialization has 
become widely accepted by the cognitive psychology community as a partial explanation 
about how the brain achieves visual perception [22]. According to this theory different 
attributes of the visual scene such as form, color, motion, and depth are processed in 
parallel in different areas of the cerebral visual cortex. Unfortunately, as in the case of 
computer vision, so far the studies on the human visual system have fail to explain how 
the knowledge from the different visual modules is put together to give us our unitary 
experience of the visual world.  
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• Computer Vision and Target Tracking 
There have been several attempts to build visual systems for the case of dynamic target 
tracking. Toyama and Hager [30] presented a target tracking architecture based on an 
incremental focus of attention. The system consists of different trackers organized in a 
top-down fashion where trackers in the top layers provide higher tracking precision but 
poor target reacquisition capabilities and less robustness again changes in the tracking 
conditions. After each tracking cycle the system can adaptively move up and down the 
layers depending of the success of the tracking during the previous cycle. If the current 
tracker fails to detect a target, the system move down passing control to a tracking 
algorithm with better target reacquisition capabilities. One of the problems with this 
system is that the switching between trackers is fix without mechanisms to swap layers in 
and out. Also, there is not estimation of ambiguity or a mechanism to integrate 
information from different sources. Besides that the work did not mention how each 
tracker evaluates its performance. The authors claim good results for tracking several 
objects in indoor scenes. Unfortunally the analysis of the results is performed only in 
qualitative terms.  
 
Darrel et al. [27] presented a tracking system that combines information from stereo, 
color, and face pattern matching. Stereo is used to segment out the silhouette of possible 
people. After this, a color detector specially tuned to detect skin color analyzes the 
candidate silhouettes searching for skin regions. This analysis provides the position of 
faces, which are then used by a face pattern-matching algorithm. Although most of the 
processing is achieved in a serial reduction, at the end the system integrates the 
information from color, face pattern matching, and height of the silhouette to establish 
target correspondence. The system was tested on real indoor images with encouraging 
results. According to this study the integration of information considerably improved the 
system performance. In contrast to the research proposed here, in this work there is not 
adaptation or interaction between the different vision modules. Also the decision rules 
used to establish target correspondence are based on maximum likelihood estimators and 
heuristic thresholds without considering the complete belief or posterior distribution. 
 
Sherrah and Gong [28] proposed the use of covariance estimation to track pose and face 
position fusing skin color information and pose similarity measures. The tracking is 
based on the Condensation algorithm. The covariance of the modules is estimated from 
training examples, and it is used to estimate the state propagation density. Correlation 
between face and head positions is used to model the state-conditional density function. 
The experimental results show that the system is able to closely track the head pose. 
Also, the authors highlight the fact that without the use of data fusion the pose tracker 
does not track reliable at all. In this work there is not adaptation or feedback between the 
different vision modules. 
 
Inspired by ideas from the statistic community, Isard and Blake proposed the 
Condensation algorithm [11]. The Condensation algorithm uses an extended version of 
Factored Sampling to keep in time a population of hypothesis about the target states and 
their posterior probabilities. Using learned models about the target dynamics the posterior 
probabilities are propagated in time using a dynamic version of Bayes rule. Isard and 
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Blake used the Condensation algorithm to track deformable contours in highly cluttered 
environments with great success. Recently, using the statistical technique of important 
sampling, they have extended the Condensation algorithm to consider color information 
as an auxiliary source of knowledge to sample from the posterior distribution [31]. 
Although the work of Isard And Blake only indirectly touches the ideas of integration and 
adaptation, their probabilistic representation is one of the main attempts in the computer 
vision community to explicitly represent ambiguity in the form of a belief function or 
posterior probability.   
 
One of the main problems in target tracking is the data association, i.e., how to 
distinguish which measurements come from a specific target. The target tracking 
community has been studying this problem for a long time given origin to several 
algorithms such as the track-splitting algorithm, the joint likelihood filter, the multiple 
hypothesis filter, and the joint probabilistic data association filter. The naïve solution to 
the data association problem is the nearest neighbors approach, however in the case of 
dynamic target tracking it is possible to achieve more robust associations by postponing 
the decision process until future measurements can clarify current ambiguities. This is 
one of the main robustness of the Isard and Blake’s Condensation algorithm. Keeping in 
time a sample version of the posterior density makes possible to track alternative 
hypothesis hoping that the new incoming information will resolve possible ambiguities. 
The research proposed here aims to go one step forward.  Instead of passively waiting 
that the incoming data will resolve ambiguities, the idea of this work is to actively search 
for new information integrating and adaptively switching in and out visual algorithms.  
 
Using a modified version of the Joint Probabilistic Data Association Filter (JPDAF), 
Rasmussen and Hager [29] presented an adaptive system that integrates visual 
information to perform tracking tasks. The JPDAF is an extension of the Kalman filter to 
deal with the data association problem in a Bayesian framework. The JPDAF modifies 
the innovation vector in the Kalman Filter update equation with a combined weighted 
innovation term. This combined innovation term is obtained by weighting each 
measurement with its probability to belong to a specific target. Rasmussen and Hager 
extended the JPDAF in order to deal with information from several visual cues and 
mutual constraints between targets. Interesting is the fact that using information from the 
strength of the associations between targets and measurements, they are able to 
adaptively switch visual cues in and out. Rasmussen and Hager have tested this system 
for tracking multi-part objects with promising preliminary results.  
 
One of the main merits of the work of Rasmussen and Hager is that it includes ideas such 
as adaptation, ambiguity, and integration in a working system. As far as I know, this is 
the only working system with such features. Although their system has shown promising 
results, the JPDAF has several limitations as a framework to perform these kinds of tasks. 
One of the main limitations is the averaging or expected value calculation used by the 
JPDAF to obtain the combined innovation factor. This averaging is a consequence of the 
normality assumption used by the Kalman Filter, but it is not valid in a general case. The 
risk of using averaging is particularly significant for the case of conflicting measurements 
because the tracker can end up tracking an average position where there is not target at 
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all. Another limitation of the JPDAF is that it just provides weak mechanisms to 
characterize false measurements and feasible hypothesis. This is especially problematic 
because of the combinatorial explosion in the number of data associations. On other 
hand, the framework described by Rasmussen and Hager does not include a mechanism 
to initialize the trackers.  
 
The work of Rasmussen and Hager is closely related to the research intended in this 
proposal. The main difference resides in the mathematical machinery used to solve the 
problem. While Rasmussen and Hager use a modified version of the Kalman filter, the 
work presented here uses Bayesian Nets in conjunction with Factored Sampling to keep 
an approximation of the posterior density. I believe that incorporating measurement of 
reliabilities based on the posterior density rather on heuristics will produce a more robust 
system.  
 
• Obstacle Detection 
In the mobile robotics domain there is an extensive list of works about the use of vision 
to solve the obstacle detection problem. Most of the working systems can be classified 
into two categories: depth estimation or use of low-level visual cues.  
 
There have been several attempts to detect obstacles using a geometrical reconstruction 
of the depth structure of the environment. Although there have been some attempts using 
visual cues such as focusing [32] and depth from motion [41], binocular stereo has been 
the favorite method used in most of the systems [33] [34]. At a first glance the use of 
stereo vision seems very appealing. A robust system able to generate correct binocular 
matches for every point in a scene could be the key to solve not only the robot navigation, 
but also other recognition problems. Unfortunately, so far the state of the art shows that 
this robust system is not possible. Textureless areas, occlusion, repeated patterns seem to 
be ill-posed problems. Also calibration problems and the high computational 
requirements make this approach even more difficult. Ratler and Nomad at CMU, and 
Robby and HMMWV at JPL are examples of mobiles robots that use a stereovision 
system to detect obstacles.  
 
The limitations of stereovision to produce an accurate 3D description of the environment 
have produced a change in the scope of these systems. In this way, ideas such as evidence 
grid and pyramidal correspondence have appeared in the literature [35]. In [36] under the 
title “Why stereo vision if not only always about 3D reconstruction”, W. Grimson 
presented an interesting alternative approach where stereo is used to determine 
figure/ground separation instead of 3D reconstruction. Here, instead of finding absolute 
depth estimation, the role of stereo is to find cluster of neighboring points that have 
similar depth. This is a good example of a new tendency to use qualitative rather than 
metric information. In general qualitative information is easier to obtain, and it is more 
robust to noise than metric information. 
 
After the work of I. Horswill with the robot Polly [37], there has been an increased 
interest in exploiting low-level visual cues to detect obstacles. These systems use task and 
environment constraints to simplify the detection of obstacles using just low-level visual 
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cues such particular colors, textures, shapes, and so on. For example, [38] describes a 
mobile robot that is able to navigate on particular indoor environments detecting the 
texture properties of the floor.  
 
The main characteristic of these systems is their simplicity. Typically, these vision 
systems are able to run at several cycles per second. This high efficiency is achieved due 
to a fine-tuning between the perception capabilities and the task/environment constraints. 
However this simplicity can produce several failure modes when the assumptions are 
slightly violated. 
 
One of the main limitations with the use of low-level visual cues is that so far there is not 
an automatic procedure that allows selecting appropriate visual cues. Also, there is a lack 
of a clever way to fuse the information from different visual cues. Most of the systems 
base the fusion on simple average or voting schemes.  
 
 
4. CURRENT PROGRESS  
 
A preliminary version of the system proposed in this work has been implemented using 
color and stereo visual cues. These cues were used to implement two detector and two 
specialist agents4. The color specialist is based on hue and the stereo specialist on depth 
continuity. These specialists evaluate local likelihood functions in a similar way that the 
color specialist described in section 2.3.  
 
The agents have been implemented using CyberAries (Autonomous Reconnaissance and 
Intelligent Exploration System) [39], a multi-threaded and distributed agent architecture 
that greatly simplifies the job of developing ensembles of cooperating agents. Each agent 
runs as a separate thread in a local or remote machine using standard sockets to 
communicate to the rest of the system.  
 
The preliminary system was evaluated for the case of single person tracking and obstacle 
detection. Bounding boxes were used to describe the state of a tracked target or a detected 
obstacle. These bounding boxes were modeled by their center position, width, and height 
using a multivariate Gaussian density of known mean and diagonal covariance matrix. 
Factored Sampling and Bayesian fusion using equation (6) were used to maintain an 
approximation of the posterior pdf using 1000 samples.  
 
• Single Person Tracking 
In order to evaluate the benefits of the framework presented in this research proposal, 
three different schemes were used to track a single person in the same video sequence. 
Figure 9 shows the intended target enclosed by a bounding box. 

                                                 
4 See [40] for a description of the segmentation algorithm used to build the detectors. 
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Figures 9. Initial detection of an intended target by a detector agent. 
 
Scheme 1: Tracking using stereo  
The first scheme uses a tracker based only on 3D positions provided by a stereovision 
system. This tracker set up a baseline to compare the benefits of adaptively integrating 
different visual modules. Figures 10-13 show the performance of this tracker for different 
time instants. The left figures show in blue the set of bounding boxes used to approximate 
the posterior density. The right figures show the bounding box of the maximum 
likelihood hypothesis. Notice how the tracker becomes confuse when the tracked person 
walks close to another person. In special, notice how the maximum likelihood hypothesis 
becomes erroneous. 
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Figures 10-13. Left) Distribution of bounding boxes for different time instants. Right) Bounding box with the maximum 
likelihood. 
 

 
Scheme 2: Tracking using stereo and color information.  
The second scheme uses a tracker based on stereo and color information. Figure 14-17 
show the performance of this tracker for different time instants. Notice how the 
approximation of the pdf given by the blue boxes is more compact than the previous 
scheme. This more compact or unimodal distribution shows the reduction in ambiguity 
obtained by adding the color information. Notice also how the system is able to re-
acquire the target after a momentary occlusion. For this example the system was able to 
run in real time with an average processing time of 3.2 hz. 
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Figures 14-17. Left) Distribution of bounding boxes for different time instants. Right) Bounding box with the maximum 
likelihood. 
 
Scheme 3: Adaptive tracking using stereo and color information. 
The third scheme uses an adaptive tracker based on stereo and color information. The 
adaptation is based on local self-evaluation functions on each agent. After each tracking 
cycle each agent compare its local likelihood function with the likelihood obtained by the 
fusing nodes. This comparison is based on a discrete version of the Kullback-Leibler 
divergence defined by: 
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Also each agent keeps a normalized processing time, obtained by normalizing the local 
average processing time with respect to the processing time of the other active agents. 
These normalized processing time is multiplied by the local D(f , g) to obtain a local 
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performance score. This performance score is used by each agent to start or stop 
processing according to the degree of ambiguity measured by the fusing node. 
 
After each cycle the fusing node calculates the entropy E of the approximation to the 
posterior density. 

∑=
i

ififE )(log*)( 2  

If the entropy is lower than a threshold the fusing node sends a message to the agent with 
the lower performance score to stop processing. In the same way if the entropy is greater 
than a threshold the fusing agent sends a message to start any non-active agent. Also, in 
the case that the entropy is lower that a certain threshold and there is only one agent 
active, the adaptive system decreases the number of samples used to estimate the 
posterior probability by 10%. 
  
Compared to the results obtained using the scheme 2, the adaptive system was able to 
speed up the processing time by a factor of 2.8 without major difference with respect to 
the tracking performance. Figure 18 shows the adaptive configuration of the Bayes net. 
After frame 15 the system decided to operate only with the color visual agent.  

 
Figure 18. Adaptive evolution of the Bayes net. 

 
• Obstacle Detection 
Figure 19 shows an example of the performance of the system for the detection of 
obstacles using stereo and color information. The upper images show the detection based 
only on stereo for different time instants in the video sequence. From this figure it is clear 
that the effect of noise makes not possible a robust tracking of the features using just the 
stereo agent. The lower images show the combined tracking based on the color and the 
stereo agents. Combining both cues the system was able to keep track of all the structures 
during the complete video sequence consisting of 40 video frames. 
 

Stereo Stereo Stereo ColorStereo  Color

Fusing Node Fusing Node
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Figure 19. Upper images show the structures detected by the stereo agent at some points during the robot motion. 
Lower images show the detection on the obstacles for the initial and final frame in the video sequence using 

information from the color and the stereo agents. 

 
 
5. CONTRIBUTIONS 
 
• To develop a new framework to perform visual tasks through the creation of an 

adaptive visual system able to selectively combine a wide variety of visual 
information.  

• A synergistic combination of elements from computer vision, intelligent agents 
technology, probabilistic reasoning, and information theory for the creation of a 
flexible, robust and efficient vision system.  

• To develop innovative metrics to express under probabilistic terms the fitness 
between visual hypothesis and observations 

• To study innovative adaptation criterions and their optimality conditions 
• To evaluate the ideas presented in this proposal in a working system to perform target 

tracking and obstacle detection by a mobile robot 
• To recommend improvements and new lines of investigation according to the results 

obtained with this research.  
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6. FUTURE SCHEDULE 
 
Fall 2000 

• Incorporate agents based on motion and texture 
• Study new adaptation criterions and their optimality  
• Develop an adaptation mechanism to control the number of samples 

 
Spring 2001 

• Develop a reinforcement learning algorithm to learn optimal switching strategies 
• Evaluate alternative propagation models 
• Initiate the evaluation period 
 

Summer 2001 
• Complete evaluation period  
• Compare results with alternative methods 
 

Fall 2001 
• Complete written thesis 
• Defend 
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